留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 6
Jun.  2024

图(8)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  1260
  • HTML全文浏览量:  118
  • PDF下载量:  40
  • 被引次数: 0
Shuming Wen, Thermodynamic theory of flotation for a complex multiphase solid–liquid system and high-entropy flotation, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1177-1197. https://doi.org/10.1007/s12613-024-2874-z
Cite this article as:
Shuming Wen, Thermodynamic theory of flotation for a complex multiphase solid–liquid system and high-entropy flotation, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1177-1197. https://doi.org/10.1007/s12613-024-2874-z
引用本文 PDF XML SpringerLink
研究论文

浮选固液多相复杂系统的热力学理论与高熵浮选


  • 通讯作者:

    文书明    E-mail: shmwen@126.com

文章亮点

  • (1) 推导获得了浮选固液复杂系统中物质组分吸附过程的熵变和吉布斯自由能变化
  • (2) 建立了浮选固液复杂系统的热力学平衡方程组
  • (3) 基于热力学平衡方程组获得了表征浮选药剂吸附反应能力的吸附平衡常数
  • (4) 提出了组合使用浮选药剂的高熵浮选技术方法
  • 浮选固液复杂系统涉及多种物质组元之间的相互作用,是浮选理论研究的核心问题。同时,多组元浮选药剂联合使用,提高矿物的浮选效果,也成为难处理矿产资源高效利用研究的热点问题之一。但对浮选固液复杂系统的研究极其困难,至今没有形成系统的理论,组合药剂提高浮选效果的物理机制也还没有获得统一的认识,这都限制了浮选理论的发展和浮选技术的进步。基于热力学基础理论,研究了浮选固液系统中药剂在矿物表面吸附的熵变和吉布斯自由能变化,建立了各种物质组分相互作用的热力学平衡方程组,提出了矿物表面吸附浮选药剂的吸附平衡常数。结果表明,矿浆溶液中各种矿物表面的同质化效应是各矿物表面物质组分化学势保持平衡的结果。多组元浮选药剂联合使用,协同作用,提高浮选效果,其物理本质是矿物表面浮选药剂组元数增加,表面吸附熵变增加,吸附吉布斯自由能降低的热力学规律。基于浮选热力学理论研究结果,建立了通过增加矿物表面吸附浮选药剂种类,提高浮选药剂的吸附熵变,减少吉布斯自由能变化,提高浮选药剂吸附的效率和稳定性,从而提高难处理矿物的浮选效果的高熵浮选理论和技术方法。
  • Research Article

    Thermodynamic theory of flotation for a complex multiphase solid–liquid system and high-entropy flotation

    + Author Affiliations
    • The flotation of complex solid–liquid multiphase systems involve interactions among multiple components, the core problem facing flotation theory. Meanwhile, the combined use of multicomponent flotation reagents to improve mineral flotation has become an important issue in studies on the efficient use of refractory mineral resources. However, studying the flotation of complex solid–liquid systems is extremely difficult, and no systematic theory has been developed to date. In addition, the physical mechanism associated with combining reagents to improve the flotation effect has not been unified, which limits the development of flotation theory and the progress of flotation technology. In this study, we applied theoretical thermodynamics to a solid–liquid flotation system and used changes in the entropy and Gibbs free energy of the reagents adsorbed on the mineral surface to establish thermodynamic equilibrium equations that describe interactions among various material components while also introducing adsorption equilibrium constants for the flotation reagents adsorbed on the mineral surface. The homogenization effect on the mineral surface in pulp solution was determined using the chemical potentials of the material components of the various mineral surfaces required to maintain balance. The flotation effect can be improved through synergy among multicomponent flotation reagents; its physical essence is the thermodynamic law that as the number of components of flotation reagents on the mineral surface increases, the surface adsorption entropy change increases, and the Gibbs free energy change of adsorption decreases. According to the results obtained using flotation thermodynamics theory, we established high-entropy flotation theory and a technical method in which increasing the types of flotation reagents adsorbed on the mineral surface, increasing the adsorption entropy change of the flotation reagents, decreasing the Gibbs free energy change, and improving the adsorption efficiency and stability of the flotation reagents improves refractory mineral flotation.
    • loading
    • [1]
      J.V. Mehrabani, S.M. Mousavi, and M. Noaparast, Evaluation of the replacement of NaCN with Acidithiobacillus ferrooxidans in the flotation of high-pyrite, low-grade lead–zinc ore, Sep. Purif. Technol., 80(2011), No. 2, p. 202. doi: 10.1016/j.seppur.2011.04.006
      [2]
      W.Z. Yin, L.R. Zhang, and F. Xie, Flotation of Xinhua molybdenite using sodium sulfide as modifier, Trans. Nonferrous Met. Soc. China, 20(2010), No. 4, p. 702. doi: 10.1016/S1003-6326(09)60201-6
      [3]
      Q.B. Cao, S.M. Wen, C.X. Li, S.J. Bai, and D. Liu, Investigation on molybdenite separation from a complex sulfide ore, Adv. Mater. Res., 634-638(2013), p. 3408. doi: 10.4028/www.scientific.net/AMR.634-638.3408
      [4]
      B.Q. Yang, H. Yan, M.Y. Zeng, P.L. Huang, F.F. Jia, and A.P. Teng, A novel copper depressant for selective flotation of chalcopyrite and molybdenite, Miner. Eng., 151(2020), art. No. 106309. doi: 10.1016/j.mineng.2020.106309
      [5]
      R.P. Liao, Q.C. Feng, S.M. Wen, and J. Liu, Flotation separation of molybdenite from chalcopyrite using ferrate (VI) as selective depressant in the absence of a collector, Miner. Eng., 152(2020), art. No. 106369. doi: 10.1016/j.mineng.2020.106369
      [6]
      Y. Chen, X.M. Chen, and Y.J. Peng, The depression of molybdenite flotation by sodium metabisulphite in fresh water and seawater, Miner. Eng., 168 (2021), art. No. 106939. doi: 10.1016/j.mineng.2021.106939
      [7]
      B. Taheri, M. Abdollahy, S.Z.S. Tonkaboni, S. Javadian, and M. Yarahmadi, Dual effects of sodium sulfide on the flotation behavior of chalcopyrite: I. Effect of pulp potential, Int. J. Miner. Metall. Mater., 21(2014), No. 5, p. 415. doi: 10.1007/s12613-014-0924-7
      [8]
      X.M. Qiu, H.Y. Yang, G.B. Chen, L.L. Tong, Z.N. Jin, and Q. Zhang, Interface behavior of chalcopyrite during flotation from cyanide tailings, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 439. doi: 10.1007/s12613-020-2170-5
      [9]
      J.M. Hao, J. Liu, Y.L. Yu, H.L. Gao, X.Y. Qin, and X. Bai, Depressants for separation of chalcopyrite and molybdenite: Review and prospects, Miner. Eng., 201(2023), art. No. 108209. doi: 10.1016/j.mineng.2023.108209
      [10]
      Z.G. Yin, W. Sun, Y.H. Hu, J.H. Zhai, and Q.J. Guan, Evaluation of the replacement of NaCN with depressant mixtures in the separation of copper–molybdenum sulphide ore by flotation, Sep. Purif. Technol., 173(2017), p. 9. doi: 10.1016/j.seppur.2016.09.011
      [11]
      Z.G. Yin, W. Sun, J.D. Liu, et al., Investigation into the flotation response of refractory molybdenum ore to depressant mixtures: A case study, Int. J. Min. Sci. Technol., 26(2016), No. 6, p. 1089. doi: 10.1016/j.ijmst.2016.09.018
      [12]
      X. Chen, G.H. Gu, and Z.X. Chen, Seaweed glue as a novel polymer depressant for the selective separation of chalcopyrite and galena, Int. J. Miner. Metall. Mater., 26(2019), No. 12, p. 1495. doi: 10.1007/s12613-019-1848-z
      [13]
      J.S. Yu, R.Q. Liu, L. Wang, W. Sun, H. Peng, and Y.H. Hu, Selective depression mechanism of ferric chromium lignin sulfonate for chalcopyrite–galena flotation separation, Int. J. Miner. Metall. Mater., 25(2018), No. 5, p. 489. doi: 10.1007/s12613-018-1595-6
      [14]
      L. Lu, S. Liang, X.R. Zhang, Y.G. Zhu, Z. Hu, and C.X. Wang, Advanced research on galena depressant in copper–lead sulfides flotation separation, Conserv. Util. Miner. Resour., 40 (2020), No. 2, p. 105.
      [15]
      R.F. Sun, D. Liu, Y. Du, B.Y. Zhang, R. Guo, and S.M. Wen, Research status and development of separation of chalcopyrite and galena, Multipurpose Util. Miner. Resour., 4(2021) p. 80.
      [16]
      J.H. Chen, Q.M. Feng, and Y.P. Lu, Research on a new organic depressant ASC for separation chalcopyrite and galena, Multipurpose Util. Miner. Resour., 5(2000), p. 39.
      [17]
      G.H. Ai, Z.F. Xie, H.S. Yan, J.F. Zhong, and X. Huang, Experimental study on mineral processing of a copper lead zinc polymetallic mine in inner Mongolia, Nonferrous Met. Miner. Process. Sec., 3(2015), p. 15.
      [18]
      Z.J. Pu, D.Z. Wei, X.J. Lv, and X.Y. Kou, Advanced research on depressants used for flotation separation of Cu–Pb sulfide minerals, Multipurpose Util. Miner. Resour., 4(2018), p. 13.
      [19]
      L. Yu, Q.J. Liu, H.W. Yuan, Y. Gao, and J.W. Song, Flotation separation of copper–lead mixed concentrate, J. Kunming Univ. Technol. Nat. Sci., 42(2017), No. 1, p. 26.
      [20]
      Y. Zhang, R.Q. Liu, W. Sun, L. Wang, Y.H. Dong, and C.T. Wang, Electrochemical mechanism and flotation of chalcopyrite and galena in the presence of sodium silicate and sodium sulfite, Trans. Nonferrous Met. Soc. China, 30(2020), No. 4, p. 1091. doi: 10.1016/S1003-6326(20)65280-3
      [21]
      L.H. Xu, J. Tian, H.Q. Wu, Z.Y. Lu, W. Sun, and Y.H. Hu, The flotation and adsorption of mixed collectors on oxide and silicate minerals, Adv. Colloid Interface Sci., 250(2017), p. 1. doi: 10.1016/j.cis.2017.11.003
      [22]
      M.J. Rosen and B. Gu, Synergism in binary mixtures of surfactants. 6. Interfacial tension reduction efficiency at the liquid/hydrophobic solid interface, Colloids Surf., 23(1987), No. 1-2, p. 119. doi: 10.1016/0166-6622(87)80254-8
      [23]
      Q. Zhou and P. Somasundaran, Synergistic adsorption of mixtures of cationic gemini and nonionic sugar-based surfactant on silica, J. Colloid Interface Sci., 331(2009), No. 2, p. 288. doi: 10.1016/j.jcis.2008.11.062
      [24]
      D.D. Wu, S.M. Wen, J. Liu, H.Y. Shen, and S.J. Bai, The effect of mixed collectors on zinc oxide flotation, Adv. Mater. Res., 524-527(2012), p. 1124. doi: 10.4028/www.scientific.net/AMR.524-527.1124
      [25]
      Z. Wang, S.K. Huang, and J.H. Xiao, Influence of head-group size of combined collectors on their performance in floating smithsonite, Min. Metall. Eng., 40(2020), No. 4, p. 49.
      [26]
      L. Wang, G.Y. Hu, W. Sun, S.A. Khoso, R.Q. Liu, and X.F. Zhang, Selective flotation of smithsonite from dolomite by using novel mixed collector system, Trans. Nonferrous Met. Soc. China, 29(2019), No. 5, p. 1082. doi: 10.1016/S1003-6326(19)65016-8
      [27]
      A. Mehdilo, M. Irannajad, and H. Zarei, Flotation of zinc oxide ore using cationic cationic and cationic–anionic mixed collectors, Physicochem. Probl. Miner. Process., 49(2013), p. 145.
      [28]
      S.H. Hosseini and E. Forssberg, Physicochemical studies of smithsonite flotation using mixed anionic/cationic collector, Miner. Eng., 20(2007), No. 6, p. 621. doi: 10.1016/j.mineng.2006.12.001
      [29]
      Z.H. Zhang, X.H. Zhang, Z.P. Ye, Z.L. Dai, J.T. Tong, and J.G. Guo, The study on new technique for flotation of wolfram from Shizhuyuan polymetallic ores using GY method, Min. Metall. Eng., 19(1999), No. 4, p. 22.
      [30]
      Q.S. Xiao, C.G. Li , and G.Y. Kang, Study on technological flowsheets for flotation process of Shizhuyuan polymetallic ore with CF method, Min. Metall., 5 (1996), No. 3, p. 26.
      [31]
      Z. Wei, W. Sun, H.S. Han, X.H. Gui, and Y.W. Xing, Flotation chemistry of scheelite and its practice: A comprehensive review, Miner. Eng., 204(2023), art. No. 108404. doi: 10.1016/j.mineng.2023.108404
      [32]
      Y.Z. Zhang, G.H. Gu, X.B. Wu, and K.L. Zhao, Selective depression behavior of guar gum on talc-type scheelite flotation, Int. J. Miner. Metall. Mater., 24(2017), No. 8, p. 857. doi: 10.1007/s12613-017-1470-x
      [33]
      Z.M. Wang, B. Feng, and Y.G. Chen, Flotation separation depressants for scheelite and calcium-bearing minerals: A review, Int. J. Miner. Metall. Mater., 30(2023), No. 9, p. 1621. doi: 10.1007/s12613-023-2613-x
      [34]
      G. Zhao, S. Wang, and H. Zhong, Study on the activation of scheelite and wolframite by lead nitrate, Minerals, 5(2015), No. 2, p. 247. doi: 10.3390/min5020247
      [35]
      L.Y. Dong, F. Jiao, W.Q. Qin, H.L. Zhu, and W.H. Jia, Activation effect of lead ions on scheelite flotation: Adsorption mechanism, AFM imaging and adsorption model, Sep. Purif. Technol., 209(2019), p. 955. doi: 10.1016/j.seppur.2018.09.051
      [36]
      H.S. Han, Y.H. Hu, W. Sun, et al., Fatty acid flotation versus BHA flotation of tungsten minerals and their performance in flotation practice, Int. J. Miner. Process., 159(2017), p. 22. doi: 10.1016/j.minpro.2016.12.006
      [37]
      J.J. Wang, Z.Y. Gao, H.S. Han, W. Sun, Y.S. Gao, and S. Ren, Impact of NaOL as an accelerator on the selective separation of scheelite from fluorite using a novel self-assembled Pb–BHA–NaOL collector system, Appl. Surf. Sci., 537(2021), art. No. 147778. doi: 10.1016/j.apsusc.2020.147778
      [38]
      Z. Wei, W. Sun, H.S. Han, G.R. Liu, J.H. Fu, and Y.W. Xing, Probing a colloidal lead-group multiple ligand collector and its adsorption on a mineral surface, Miner. Eng., 160(2021), art. No. 106696. doi: 10.1016/j.mineng.2020.106696
      [39]
      C. Zhao, C.Y. Sun, Y.G. Zhu, Y.M. Zhu, and W.Z. Yin, Study of the mechanism of the Fe–BHA chelates in scheelite flotation, Minerals, 12(2022), No. 4, p. 484. doi: 10.3390/min12040484
      [40]
      X. Wang, S.M. Wen, Q. Zuo, et al., Interaction of manganese ions with scheelite surfaces and its effect on collector adsorption and flotation, Separations, 9(2022), No. 11, p. 365. doi: 10.3390/separations9110365
      [41]
      J.Z. Cai, J.S. Deng, L. Wang, et al., Reagent types and action mechanisms in ilmenite flotation: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1656. doi: 10.1007/s12613-021-2380-5
      [42]
      F.Y. Ma, P. Zhang, and D.P. Tao, Surface nanobubble characterization and its enhancement mechanisms for fine-particle flotation: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 727. doi: 10.1007/s12613-022-2450-3
      [43]
      Q.C. Feng, S.M. Wen, W.J. Zhao, and H.T. Chen, Interaction mechanism of magnesium ions with cassiterite and quartz surfaces and its response to flotation separation, Sep. Purif. Technol., 206(2018), p. 239. doi: 10.1016/j.seppur.2018.06.005
      [44]
      Q. Wei, L.Q. Feng, L.Y. Dong, F. Jiao, and W.Q. Qin, Selective co-adsorption mechanism of a new mixed collector on the flotation separation of lepidolite from quartz, Colloids Surf. A: Physicochem. Eng. Aspects, 612(2021), art. No. 125973. doi: 10.1016/j.colsurfa.2020.125973
      [45]
      S. Fang, L.H. Xu, H.Q. Wu, et al., Comparative studies of flotation and adsorption of Pb(II)/benzohydroxamic acid collector complexes on ilmenite and titanaugite, Powder Technol., 345(2019), p. 35. doi: 10.1016/j.powtec.2018.12.089
      [46]
      F.X. Li, H. Zhong, G. Zhao, S. Wang, and G.Y. Liu, Adsorption of α-hydroxyoctyl phosphonic acid to ilmenite/water interface and its application in flotation, Colloids Surf. A, 490(2016), p. 67. doi: 10.1016/j.colsurfa.2015.11.015
      [47]
      W.J. Liu, J. Zhang, W.Q. Wang, et al., Flotation behaviors of ilmenite, titanaugite, and forsterite using sodium oleate as the collector, Miner. Eng., 72(2015), p. 1. doi: 10.1016/j.mineng.2014.12.021
      [48]
      L.H. Xu, J. Tian, H.Q. Wu, F.C. Yi, and F.Q. Dong, A review on the synergetic effect of the mixed collectors on mineral surface and its application in flotation, Conserv. Util. Miner. Resour., 2(2017), p. 107.
      [49]
      D.X. Zhang, J.H. Kang, and W.X. Zhu, Selective flotation separation of fluorite and calcite by utilising a novel anionic/nonionic collector, Colloids Surf. A: Physicochem. Eng. Aspects, 642(2022), art. No. 128687. doi: 10.1016/j.colsurfa.2022.128687
      [50]
      Y.C. Miao, S.M. Wen, Q. Zuo, Z.H. Shen, Q. Zhang, and Q.C. Feng, Co-adsorption of NaOL/SHA composite collectors on cassiterite surfaces and its effect on surface hydrophobicity and floatability, Sep. Purif. Technol., 308(2023), art. No. 122954. doi: 10.1016/j.seppur.2022.122954

    Catalog


    • /

      返回文章
      返回