留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 9
Sep.  2024

图(15)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  484
  • HTML全文浏览量:  186
  • PDF下载量:  30
  • 被引次数: 0
Jirui Ma, Xiaopeng Lu, Santosh Prasad Sah, Qianqian Chen, You Zhang,  and Fuhui Wang, Enhancing corrosion resistance of plasma electrolytic oxidation coatings on AM50 Mg alloy by inhibitor containing Ba(NO3)2 solutions, Int. J. Miner. Metall. Mater., 31(2024), No. 9, pp. 2048-2061. https://doi.org/10.1007/s12613-024-2876-x
Cite this article as:
Jirui Ma, Xiaopeng Lu, Santosh Prasad Sah, Qianqian Chen, You Zhang,  and Fuhui Wang, Enhancing corrosion resistance of plasma electrolytic oxidation coatings on AM50 Mg alloy by inhibitor containing Ba(NO3)2 solutions, Int. J. Miner. Metall. Mater., 31(2024), No. 9, pp. 2048-2061. https://doi.org/10.1007/s12613-024-2876-x
引用本文 PDF XML SpringerLink
研究论文

Ba(NO3)2溶液原位掺杂缓蚀剂对AM50镁合金微弧氧化涂层耐蚀性的影响


  • 通讯作者:

    卢小鹏    E-mail: luxiaopeng@mail.neu.edu.cn

    张优    E-mail: youzhang@bipt.edu.cn

文章亮点

  • (1) 设计了一种新型微弧氧化涂层后处理方法,使用无机盐原位掺杂缓蚀剂对微弧氧化涂层封孔后处理。
  • (2) 系统地研究了不同缓蚀剂存在下涂层的形貌、成分及性能的变化。
  • (3) 探究了后处理溶液组分对复合涂层耐蚀性能的影响机制。
  • 微弧氧化是一种提高轻质合金耐蚀耐磨性能的表面处理技术,在高温高压作用下,可在基体金属表面原位生成一层陶瓷氧化涂层。由于火花放电和大量气体析出,镁合金微弧氧化涂层通常具有较高的孔隙率,一定程度上降低了其致密性和耐蚀性能。为了提高其长期耐蚀性能,本文使用硝酸钡溶液对AM50镁合金微弧氧化涂层封孔处理,并在后处理溶液中加入了十二烷基硫酸钠和十二烷基苯磺酸钠两种缓蚀剂,研究了不同缓蚀剂的添加对涂层的微观形貌、相成分、耐蚀性等方面的影响。结果表明,缓蚀剂的加入有效提高了涂层表面BaO2的沉积量,同时缓蚀剂可吸附进入涂层内部,大幅提高涂层的长周期耐蚀性能。其中,含有十二烷基硫酸钠的涂层耐蚀性最佳,在0.5 wt% NaCl溶液中浸泡768 h后,低频阻抗模值仍能达到926 kΩ⋅cm²。经过40天的盐雾试验后,未观察到任何明显的腐蚀区域。这些优异的性能与缓蚀剂的加入有关,缓蚀剂的吸附引起涂层表面电位变负,钡离子与负电荷区域的作用导致表面沉积量增加。此外,缓蚀剂可以有效地加载到涂层内部,并在浸泡过程中连续释放以保护涂层。
  • Research Article

    Enhancing corrosion resistance of plasma electrolytic oxidation coatings on AM50 Mg alloy by inhibitor containing Ba(NO3)2 solutions

    + Author Affiliations
    • To enhance the long-term corrosion resistance of the plasma electrolytic oxidation (PEO) coating on the magnesium (Mg) alloy, an inorganic salt combined with corrosion inhibitors was used for posttreatment of the coating. In this study, the corrosion performance of PEO-coated AM50 Mg was significantly improved by loading sodium lauryl sulfonate (SDS) and sodium dodecyl benzene sulfonate into Ba(NO3)2 post-sealing solutions. Scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, Fourier transform infrared spectrometer, and ultraviolet–visible analyses showed that the inhibitors enhanced the incorporation of BaO2 into PEO coatings. Electrochemical impedance showed that post-sealing in Ba(NO3)2/SDS treatment enhanced corrosion resistance by three orders of magnitude. The total impedance value remained at 926 Ω·cm² after immersing in a 0.5wt% NaCl solution for 768 h. A salt spray test for 40 days did not show any obvious region of corrosion, proving excellent post-sealing by Ba(NO3)2/SDS treatment. The corrosion resistance of the coating was enhanced through the synergistic effect of BaO2 pore sealing and SDS adsorption.
    • loading
    • [1]
      J.J. Wang, K.X. Zhang, G.B. Ying, et al., Effects of RE (RE = Sc, Y and Nd) concentration on galvanic corrosion of Mg–Al alloy: A theoretical insight from work function and surface energy, J. Mater. Res. Technol., 24(2023), p. 6958. doi: 10.1016/j.jmrt.2023.04.208
      [2]
      D.D. Zhang, F. Peng, and X.Y. Liu, Protection of magnesium alloys: from physical barrier coating to smart self-healing coating, J. Alloys Compd., 853(2021), art. No. 157010. doi: 10.1016/j.jallcom.2020.157010
      [3]
      J.F. Song, J. She, D.L. Chen, and F.S. Pan, Latest research advances on magnesium and magnesium alloys worldwide, J. Magnesium Alloys, (2020), No. 1, p. 1.
      [4]
      M.C.L. de Oliveira, R.M.P. da Silva, R.M. Souto, and R.A. Antunes, Investigating local corrosion processes of magnesium alloys with scanning probe electrochemical techniques: A review, J. Magnesium Alloys, 10(2022), No. 11, p. 2997. doi: 10.1016/j.jma.2022.09.024
      [5]
      J.H. Liu, Z.H. Yang, D. Li, M. Li, and F.P. Bai, Resistance coefficient for large-scale roughness with seepage through porous bed, J. Hydrol., 590(2020), art. No. 125498. doi: 10.1016/j.jhydrol.2020.125498
      [6]
      Y.M. Zhang, N. Li, N. Ling, J.L. Zhang, and L. Wang, Enhanced long-term corrosion resistance of Mg alloys by superhydrophobic and self-healing composite coating, Chem. Eng. J., 449(2022), art. No. 137778. doi: 10.1016/j.cej.2022.137778
      [7]
      L.Y. Chai, X. Yu, Z.H. Yang, Y.Y. Wang, and M. Okido, Anodizing of magnesium alloy AZ31 in alkaline solutions with silicate under continuous sparking, Corros. Sci., 50(2008), No. 12, p. 3274. doi: 10.1016/j.corsci.2008.08.038
      [8]
      M. Daavari, M. Atapour, M. Mohedano, R. Arrabal, E. Matykina, and A. Taherizadeh, Biotribology and biocorrosion of MWCNTs-reinforced PEO coating on AZ31B Mg alloy, Surf. Interfaces, 22(2021), art. No. 100850. doi: 10.1016/j.surfin.2020.100850
      [9]
      D. Saran, A. Kumar, S. Bathula, D. Klaumünzer, and K.K. Sahu, Review on the phosphate-based conversion coatings of magnesium and its alloys, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1435. doi: 10.1007/s12613-022-2419-2
      [10]
      S.Y. Jin, X.C. Ma, R.Z. Wu, et al., Effect of carbonate additive on the microstructure and corrosion resistance of plasma electrolytic oxidation coating on Mg–9Li–3Al alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1453. doi: 10.1007/s12613-021-2377-0
      [11]
      M. Molaei, K. Babaei, and A. Fattah-alhosseini, Improving the wear resistance of plasma electrolytic oxidation (PEO) coatings applied on Mg and its alloys under the addition of nano- and micro-sized additives into the electrolytes: A review, J. Magnesium Alloys, 9(2021), No. 4, p. 1164. doi: 10.1016/j.jma.2020.11.016
      [12]
      R.O. Hussein, X. Nie, and D.O. Northwood, An investigation of ceramic coating growth mechanisms in plasma electrolytic oxidation (PEO) processing, Electrochim. Acta, 112(2013), p. 111. doi: 10.1016/j.electacta.2013.08.137
      [13]
      W.H. Yao, L. Wu, J.F. Wang, et al., Micro-arc oxidation of magnesium alloys: A review, J. Mater. Sci. Technol., 118(2022), p. 158. doi: 10.1016/j.jmst.2021.11.053
      [14]
      H.Y. Fan, N. Ling, R. Bai, J.L. Zhang, and L. Wang, Influence of V-containing species on formation and corrosion resistance of PEO coatings developed on AZ31B Mg alloy, Ceram. Int., 49(2023), No. 15, p. 24783. doi: 10.1016/j.ceramint.2023.04.246
      [15]
      M. Molaei, A. Fattah-alhosseini, M. Nouri, P. Mahmoodi, and A. Nourian, Incorporating TiO2 nanoparticles to enhance corrosion resistance, cytocompatibility, and antibacterial properties of PEO ceramic coatings on titanium, Ceram. Int., 48(2022), No. 14, p. 21005. doi: 10.1016/j.ceramint.2022.04.096
      [16]
      L. Liu, S.R. Yu, G. Zhu, et al., Corrosion and wear resistance of micro-arc oxidation coating on glass microsphere reinforced Mg alloy composite, J. Mater. Sci., 56(2021), No. 27, p. 15379. doi: 10.1007/s10853-021-06252-y
      [17]
      D. Wang, C. Ma, J.Y. Liu, et al., Corrosion resistance and anti-soiling performance of micro-arc oxidation/graphene oxide/stearic acid superhydrophobic composite coating on magnesium alloys, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1128. doi: 10.1007/s12613-023-2596-7
      [18]
      A.N. Buling and J. Zerrer, Increasing the application fields of magnesium by ultraceramic®: Corrosion and wear protection by plasma electrolytical oxidation (PEO) of Mg alloys, Surf. Coat. Technol., 369(2019), p. 142. doi: 10.1016/j.surfcoat.2019.04.025
      [19]
      X.P. Lu, C. Blawert, K.U. Kainer, and M.L. Zheludkevich, Investigation of the formation mechanisms of plasma electrolytic oxidation coatings on Mg alloy AM50 using particles, Electrochim. Acta, 196(2016), p. 680. doi: 10.1016/j.electacta.2016.03.042
      [20]
      C. Ma, D. Wang, J.Y. Liu, N. Peng, W. Shang, and Y.Q. Wen, Preparation and property of self-sealed plasma electrolytic oxide coating on magnesium alloy, Int. J. Miner. Metall. Mater., 30(2023), No. 5, p. 959. doi: 10.1007/s12613-022-2542-0
      [21]
      H.P. Han, R.Q. Wang, Y.K. Wu, et al., An investigation of plasma electrolytic oxidation coatings on crevice surface of AZ31 magnesium alloy, J. Alloys Compd., 811(2019), art. No. 152010. doi: 10.1016/j.jallcom.2019.152010
      [22]
      C.C. Liu, T. Xu, Q.Y. Shao, et al., Effects of beta phase on the growth behavior of plasma electrolytic oxidation coating formed on magnesium alloys, J. Alloys Compd., 784(2019), p. 414. doi: 10.1016/j.jallcom.2019.01.095
      [23]
      X.Y. Wang, P.F. Ju, X.P. Lu, Y. Chen, and F.H. Wang, Influence of Cr2O3 particles on corrosion, mechanical and thermal control properties of green PEO coatings on Mg alloy, Ceram. Int., 48(2022), No. 3, p. 3615. doi: 10.1016/j.ceramint.2021.10.142
      [24]
      A. Ghanbari, A. Bordbar-Khiabani, F. Warchomicka, C. Sommitsch, B. Yarmand, and A. Zamanian, PEO/Polymer hybrid coatings on magnesium alloy to improve biodegradation and biocompatibility properties, Surf. Interfaces, 36(2023), art. No. 102495. doi: 10.1016/j.surfin.2022.102495
      [25]
      N. Li, N. Ling, H.Y. Fan, L. Wang, and J.L. Zhang, Self-healing and superhydrophobic dual-function composite coating for active protection of magnesium alloys, Surf. Coat. Technol., 454(2023), art. No. 129146. doi: 10.1016/j.surfcoat.2022.129146
      [26]
      K. Qian, W.Z. Li, X.P. Lu, et al., Effect of phosphate-based sealing treatment on the corrosion performance of a PEO coated AZ91D Mg alloy, J. Magnesium Alloys, 8(2020), No. 4, p. 1328. doi: 10.1016/j.jma.2020.05.014
      [27]
      B. Mingo, R. Arrabal, M. Mohedano, et al., Influence of sealing post-treatments on the corrosion resistance of PEO coated AZ91 magnesium alloy, Appl. Surf. Sci., 433(2018), p. 653. doi: 10.1016/j.apsusc.2017.10.083
      [28]
      M. Mohedano, C. Blawert, and M.L. Zheludkevich, Cerium-based sealing of PEO coated AM50 magnesium alloy, Surf. Coat. Technol., 269(2015), p. 145. doi: 10.1016/j.surfcoat.2015.01.003
      [29]
      N.V. Phuong, B.R. Fazal, and S. Moon, Cerium- and phosphate-based sealing treatments of PEO coated AZ31 Mg alloy, Surf. Coat. Technol., 309(2017), p. 86. doi: 10.1016/j.surfcoat.2016.11.055
      [30]
      Q.Q. Chen, X.P. Lu, M. Serdechnova, et al., Formation of self-healing PEO coatings on AM50 Mg by in situ incorporation of zeolite micro-container, Corros. Sci., 209(2022), art. No. 110785. doi: 10.1016/j.corsci.2022.110785
      [31]
      J.B. Meng, H.M. Li, X.J. Dong, et al., Corrosion protection of NiTi alloy via micro-arc oxidation doped with ZnO nanoparticles and polyacrylamide sol–gel sealing, J. Mater. Sci., 58(2023), p. 13816. doi: 10.1007/s10853-023-08883-9
      [32]
      S. Moon, Corrosion behavior of PEO-treated AZ31 Mg alloy in chloride solution, J. Solid State Electrochem., 18(2014), p. 341. doi: 10.1007/s10008-013-2247-4
      [33]
      L. Pezzato, R. Babbolin, P. Cerchier, et al., Sealing of PEO coated AZ91magnesium alloy using solutions containing neodymium, Corros. Sci., 173(2020), art. No. 108741. doi: 10.1016/j.corsci.2020.108741
      [34]
      M. Mohedano, P. Pérez, E. Matykina, B. Pillado, G. Garcés, and R. Arrabal, PEO coating with Ce-sealing for corrosion protection of LPSO Mg–Y–Zn alloy, Surf. Coat. Technol., 383(2020), art. No. 125253. doi: 10.1016/j.surfcoat.2019.125253
      [35]
      M.A. Abd El-Ghaffar, N.A. Abdelwahab, A.M. Fekry, M.A. Sanad, M.W. Sabaa, and S.M.A. Soliman, Polyester-epoxy resin/conducting polymer/barium sulfate hybrid composite as a smart eco-friendly anti-corrosive powder coating, Prog. Org. Coat., 144(2020), art. No. 105664. doi: 10.1016/j.porgcoat.2020.105664
      [36]
      G. Senthilkumar, G.S. Kaliaraj, P. Vignesh, R.S. Vishwak, T.N. Joy, and J. Hemanandh, Hydroxyapatite–barium/strontium titanate composite coatings for better mechanical, corrosion and biological performance, Mater. Today Proc., 44(2021), p. 3618. doi: 10.1016/j.matpr.2020.09.758
      [37]
      F. Liu, D.Y. Shan, E.H. Han, and C.S. Liu, Barium phosphate conversion coating on die-cast AZ91D magnesium alloy, Trans. Nonferrous Met. Soc. China, 18(2008), No. S1, p. s344.
      [38]
      Y.G. Chen, B.L. Luan, G.L. Song, Q. Yang, D.M. Kingston, and F. Bensebaa, An investigation of new barium phosphate chemical conversion coating on AZ31 magnesium alloy, Surf. Coat. Technol., 210(2012), p. 156. doi: 10.1016/j.surfcoat.2012.09.009
      [39]
      P.X. Wu, Y.P. Dai, H. Long, et al., Characterization of organo-montmorillonites and comparison for Sr(II) removal: Equilibrium and kinetic studies, Chem. Eng. J., 191(2012), p. 288. doi: 10.1016/j.cej.2012.03.017
      [40]
      T.D. Pham, T.T. Tran, V.A. Le, T.T. Pham, T.H. Dao, and T.S. Le, Adsorption characteristics of molecular oxytetracycline onto alumina particles: The role of surface modification with an anionic surfactant, J. Mol. Liq., 287(2019), art. No. 110900. doi: 10.1016/j.molliq.2019.110900
      [41]
      C. Bai, M. Guo, Z. Liu, Z.J. Wu, and Q. Li, A novel method for removal of boron from aqueous solution using sodium dodecyl benzene sulfonate and D-mannitol as the collector, Desalination, 431(2018), p. 47. doi: 10.1016/j.desal.2017.12.028
      [42]
      L.Y. Xu, X.J. Fu, H.J. Su, H.L. Sun, R.C. Li, and Y. Wan, Corrosion and tribocorrosion protection of AZ31B Mg alloy by a hydrothermally treated PEO/chitosan composite coating, Prog. Org. Coat., 170(2022), art. No. 107002. doi: 10.1016/j.porgcoat.2022.107002
      [43]
      B. Vaghefinazari, S.V. Lamaka, C. Blawert, et al., Exploring the corrosion inhibition mechanism of 8-hydroxyquinoline for a PEO-coated magnesium alloy, Corros. Sci., 203(2022), art. No. 110344. doi: 10.1016/j.corsci.2022.110344
      [44]
      Y. Chen, X.P. Lu, S.V. Lamaka, et al., Active protection of Mg alloy by composite PEO coating loaded with corrosion inhibitors, Appl. Surf. Sci., 504(2020), art. No. 144462. doi: 10.1016/j.apsusc.2019.144462
      [45]
      D.B. Huang, J.Y. Hu, G.L. Song, and X.P. Guo, Inhibition effect of inorganic and organic inhibitors on the corrosion of Mg–10Gd–3Y–0.5Zr alloy in an ethylene glycol solution at ambient and elevated temperatures, Electrochim. Acta, 56(2011), No. 27, p. 10166. doi: 10.1016/j.electacta.2011.09.002
      [46]
      Y.K. Zhu, M. Free, R. Woollam, and W. Durnie, A review of surfactants as corrosion inhibitors and associated modeling, Prog. Mater. Sci., 90(2017), p. 159. doi: 10.1016/j.pmatsci.2017.07.006
      [47]
      A. Frignani, V. Grassi, F. Zanotto, and F. Zucchi, Inhibition of AZ31 Mg alloy corrosion by anionic surfactants, Corros. Sci., 63(2012), p. 29. doi: 10.1016/j.corsci.2012.05.012
      [48]
      Y. Li, X.P. Lu, D. Mei, T. Zhang, and F.H. Wang, Passivation of corrosion product layer on AM50 Mg by corrosion inhibitor, J. Magnesium Alloys, 10(2022), No. 9, p. 2563. doi: 10.1016/j.jma.2021.11.020
      [49]
      C. Liu, X.P. Lu, Y. Li, Q.Q. Chen, T. Zhang, and F.H. Wang, Influence of post-treatment process on corrosion and wear properties of PEO coatings on AM50 Mg alloy, J. Alloys Compd., 870(2021), art. No. 159462. doi: 10.1016/j.jallcom.2021.159462
      [50]
      T. Bayram, S. Bucak, and D. Ozturk, BR13 dye removal using sodium dodecyl sulfate modified montmorillonite: Equilibrium, thermodynamic, kinetic and reusability studies, Chem. Eng. Process. Process. Intensif., 158(2020), art. No. 108186. doi: 10.1016/j.cep.2020.108186
      [51]
      C.H. Xu, D.M. Wang, H.T. Wang, et al., Experimental investigation of coal dust wetting ability of anionic surfactants with different structures, Process. Saf. Environ. Prot., 121(2019), p. 69. doi: 10.1016/j.psep.2018.10.010
      [52]
      J.G. Speight, Lange's Handbook of Chemistry, McGraw-Hill Education, New York, 2005.
      [53]
      H.Y. Wang, Y.L. Song, X.G. Chen, G.D. Tong, and L.Y. Zhang, Microstructure and corrosion behavior of PEO-LDHs-SDS superhydrophobic composite film on magnesium alloy, Corros. Sci., 208(2022), art. No. 110699. doi: 10.1016/j.corsci.2022.110699
      [54]
      S.I. Omonmhenle and I.J. Shannon, Synthesis and characterisation of surfactant enhanced Mg–Al hydrotalcite-like compounds as potential 2-chlorophenol scavengers, Appl. Clay Sci., 127(2016), p. 88

    Catalog


    • /

      返回文章
      返回