留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 8
Aug.  2024

图(9)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  1004
  • HTML全文浏览量:  144
  • PDF下载量:  38
  • 被引次数: 0
Kwang Tae Son, Chang Hee Cho, Myoung Gyun Kim, and Ji Woon Lee, Two-stage dynamic recrystallization and texture evolution in Al–7Mg alloy during hot torsion, Int. J. Miner. Metall. Mater., 31(2024), No. 8, pp. 1900-1911. https://doi.org/10.1007/s12613-024-2877-9
Cite this article as:
Kwang Tae Son, Chang Hee Cho, Myoung Gyun Kim, and Ji Woon Lee, Two-stage dynamic recrystallization and texture evolution in Al–7Mg alloy during hot torsion, Int. J. Miner. Metall. Mater., 31(2024), No. 8, pp. 1900-1911. https://doi.org/10.1007/s12613-024-2877-9
引用本文 PDF XML SpringerLink
研究论文

Al–7Mg合金在热扭转阶段的动态再结晶与织构演变


  • 通讯作者:

    Ji Woon Lee    E-mail: jwl@kongju.ac.kr

  • 为探讨渐进动态再结晶(DRX)和织构行为,本文在300–500°C的温度和0.05–5 s–1的应变速率下,对Al–7Mg合金进行了热扭转试验。实验发现,Al–7Mg合金的DRX行为分为两个阶段:(1)应变≤2和(2)应变≥2。在第1阶段,DRXed颗粒分数(XDRX)略有增加,以不连续动态再结晶(DDRX)为主,随后XDRX略有变化,直到过渡到第2阶段。第2阶段以DRX的加速为标志,最终达到XDRX≈0.9。此阶段样品的电子背散射衍射(EBSD)分析表明,连续动态再结晶(CDRX)主要发生在(12(–)1)[001]晶粒内,而(111)[110]晶粒经历了几何动态再结晶(GDRX)演变,没有明显的亚晶粒结构。此外,利用改进的Avrami DRX动力学模型预测了在DRX演化过程中Al–7Mg合金的微观结构变化。尽管该动力学模型没有准确地捕捉到第1阶段的DDRX行为,但它有效地模拟了第2阶段的DRX速率。纹理指数用于评估热扭转试验期间纹理各向同性的演变,表明在第2阶段开始之前,纹理随机性显著改善(>75%),这可以归因于母体晶粒的旋转和亚结构演变,而不是XDRX的增加。
  • Research Article

    Two-stage dynamic recrystallization and texture evolution in Al–7Mg alloy during hot torsion

    + Author Affiliations
    • Hot torsion tests were performed on the Al–7Mg alloy at the temperature ranging from 300 to 500°C and strain rates between 0.05 and 5 s−1 to explore the progressive dynamic recrystallization (DRX) and texture behaviors. The DRX behavior of the alloy manifested two distinct stages: Stage 1 at strain of ≤2 and Stage 2 at strains of ≥2. In Stage 1, there was a slight increase in the DRXed grain fraction (XDRX) with predominance of discontinuous DRX (DDRX), followed by a modest change in XDRX until the transition to Stage 2. Stage 2 was marked by an accelerated rate of DRX, culminating in a substantial final XDRX of ~0.9. Electron backscattered diffraction (EBSD) analysis on a sample in Stage 2 revealed that continuous DRX (CDRX) predominantly occurred within the ($ 1 \bar{2} 1$) [001] grains, whereas the (111) [110] grains underwent a geometric DRX (GDRX) evolution without a noticeable sub-grain structure. Furthermore, a modified Avrami’s DRX kinetics model was utilized to predict the microstructural refinement in the Al–7Mg alloy during the DRX evolution. Although this kinetics model did not accurately capture the DDRX behavior in Stage 1, it effectively simulated the DRX rate in Stage 2. The texture index was employed to assess the evolution of the texture isotropy during hot-torsion test, demonstrating significant improvement (>75%) in texture randomness before the commencement of Stage 2. This initial texture evolution is attributed to the rotation of parent grains and the substructure evolution, rather than to an increase in XDRX.
    • loading
    • [1]
      F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, Amsterdam, 2004.
      [2]
      H.J. McQueen, S. Spigarelli, M.E. Kassner, and E. Evangelista, Hot Deformation and Processing of Aluminum Alloys, CRC Press, Boca Raton, 2016.
      [3]
      J.J. Jonas, Dynamic recrystallization—Scientific curiosity or industrial tool?, Mater. Sci. Eng. A, 184(1994), No. 2, p. 155. doi: 10.1016/0921-5093(94)91028-6
      [4]
      N. Ravichandran and Y.V.R.K. Prasad, Dynamic recrystallization during hot deformation of aluminum: A study using processing maps, Metall. Trans. A, 22(1991), No. 10, p. 2339. doi: 10.1007/BF02665000
      [5]
      L. Xing, P.F. Gao, M. Zhan, Z.P. Ren, and X.G. Fan, A micromechanics-based damage constitutive model considering microstructure for aluminum alloys, Int. J. Plast., 157(2022), art. No. 103390. doi: 10.1016/j.ijplas.2022.103390
      [6]
      K. Huang and R.E. Logé, A review of dynamic recrystallization phenomena in metallic materials, Mater. Des., 111(2016), p. 548. doi: 10.1016/j.matdes.2016.09.012
      [7]
      Y.C. Lin, X.H. Zhu, W.Y. Dong, H. Yang, Y.W. Xiao, and N. Kotkunde, Effects of deformation parameters and stress triaxiality on the fracture behaviors and microstructural evolution of an Al–Zn–Mg–Cu alloy, J. Alloys Compd., 832(2020), art. No. 154988. doi: 10.1016/j.jallcom.2020.154988
      [8]
      L.E. Murr, Interfacial Phenomena in Metal and Alloys, Addison-Wesley Pub. Co., Boston, 1975.
      [9]
      R.W. Hertzberg, R.P. Vinci, and J.L. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, John Wiley & Sons, Hoboken, 2020.
      [10]
      E.I. Galindo-Nava, J. Sietsma, and P.E.J. Rivera-Díaz-del-Castillo, Dislocation annihilation in plastic deformation: II. Kocks–Mecking analysis, Acta Mater., 60(2012), No. 6-7, p. 2615. doi: 10.1016/j.actamat.2012.01.028
      [11]
      E.I. Galindo-Nava and P.E.J. Rivera-Díaz-del-Castillo, Thermostatistical modelling of hot deformation in FCC metals, Int. J. Plast., 47(2013), p. 202. doi: 10.1016/j.ijplas.2013.02.002
      [12]
      W. Blum, Q. Zhu, R. Merkel, and H.J. McQueen, Geometric dynamic recrystallization in hot torsion of Al–5Mg–0.6Mn (AA5083), Mater. Sci. Eng. A, 205(1996), No. 1-2, p. 23. doi: 10.1016/0921-5093(95)09990-5
      [13]
      G.A. Henshall, M.E. Kassner, and H.J. McQueen, Dynamic restoration mechanisms in Al-5.8 At. Pct Mg deformed to large strains in the solute drag regime, Metall. Trans. A, 23(1992), No. 3, p. 881. doi: 10.1007/BF02675565
      [14]
      H.W. Son, J.C. Lee, C.H. Cho, and S.K. Hyun, Effect of Mg content on the dislocation characteristics and discontinuous dynamic recrystallization during the hot deformation of Al–Mg alloy, J. Alloys Compd., 887(2021), art. No. 161397. doi: 10.1016/j.jallcom.2021.161397
      [15]
      M. Zecevic, R.A. Lebensohn, R.J. McCabe, and M. Knezevic, Modelling recrystallization textures driven by intragranular fluctuations implemented in the viscoplastic self-consistent formulation, Acta Mater., 164(2019), p. 530. doi: 10.1016/j.actamat.2018.11.002
      [16]
      O. Engler, Texture and anisotropy in the Al–Mg alloy AA 5005–Part I: Texture evolution during rolling and recrystallization, Mater. Sci. Eng. A, 618(2014), p. 654. doi: 10.1016/j.msea.2014.08.037
      [17]
      S. Tamimi, G. Sivaswamy, I. Violatos, S. Moturu, S. Rahimi, and P. Blackwell, Modelling and experimentation of the evolution of texture in an Al–Mg alloy during earing cupping test, Procedia Eng., 207(2017), p. 1. doi: 10.1016/j.proeng.2017.10.728
      [18]
      O. Engler and S. Kalz, Simulation of earing profiles from texture data by means of a visco-plastic self-consistent polycrystal plasticity approach, Mater. Sci. Eng. A, 373(2004), No. 1-2, p. 350. doi: 10.1016/j.msea.2004.02.003
      [19]
      J. Wang, X.J. Zhang, X. Lu, Y.S. Yang, and Z.H. Wang, Microstructure, texture and mechanical properties of hot-rolled Mg–4Al–2Sn–0.5Y–0.4Nd alloy, J. Magnesium Alloys, 4(2016), No. 3, p. 207. doi: 10.1016/j.jma.2016.07.004
      [20]
      K. Yoshida, Y. Tadano, and M. Kuroda, Improvement in formability of aluminum alloy sheet by enhancing geometrical hardening, Comput. Mater. Sci., 46(2009), No. 2, p. 459. doi: 10.1016/j.commatsci.2009.03.034
      [21]
      M. Rezayat, M.H. Parsa, H. Mirzadeh, and J.M. Cabrera, Texture development during hot deformation of Al/Mg alloy reinforced with ceramic particles, J. Alloys Compd., 798(2019), p. 267. doi: 10.1016/j.jallcom.2019.05.233
      [22]
      K. Yoshida, T. Ishizaka, M. Kuroda, and S. Ikawa, The effects of texture on formability of aluminum alloy sheets, Acta Mater., 55(2007), No. 13, p. 4499. doi: 10.1016/j.actamat.2007.04.014
      [23]
      X. Zeng, X.G. Fan, H.W. Li, et al., Grain refinement in hot working of 2219 aluminium alloy: On the effect of deformation mode and loading path, Mater. Sci. Eng. A, 794(2020), art. No. 139905. doi: 10.1016/j.msea.2020.139905
      [24]
      I. Kovacs and P. Feltham, Determination of the work-hardening characteristics of metals at large strains by means of torsion, Phys. Status Solidi B, 3(1963), No. 12, p. 2379. doi: 10.1002/pssb.19630031219
      [25]
      H.W. Son, C.H. Cho, J.C. Lee, et al., Deformation banding and static recrystallization in high-strain-rate-torsioned Al–Mg alloy, J. Alloys Compd., 814(2020), art. No. 152311. doi: 10.1016/j.jallcom.2019.152311
      [26]
      J.C. Li, X.D. Wu, L.F. Cao, B. Liao, Y.C. Wang, and Q. Liu, Hot deformation and dynamic recrystallization in Al–Mg–Si alloy, Mater. Charact., 173(2021), art. No. 110976. doi: 10.1016/j.matchar.2021.110976
      [27]
      K.T. Son, J.W. Lee, T.K. Jung, et al., Evaluation of dynamic recrystallization behaviors in hot-extruded AA5083 through hot torsion tests, Met. Mater. Int., 23(2017), No. 1, p. 68. doi: 10.1007/s12540-017-6384-7
      [28]
      D. Odoh, Y. Mahmoodkhani, and M. Wells, Effect of alloy composition on hot deformation behavior of some Al–Mg–Si alloys, Vacuum, 149(2018), p. 248. doi: 10.1016/j.vacuum.2017.12.037
      [29]
      G.J. Baxter, Q. Zhu, and C.M. Sellars, Effects of magnesium content on hot deformation and subsequent recrystallization behavior of aluminum–magnesium alloys, [in] Proceedings of International Conference on Aluminum Alloys (ICAA ), 6(1998), p. 1233.
      [30]
      H.T. Jeong, S.H. Han, and W.J. Kim, Effects of large amounts of Mg (5–13 wt%) on hot compressive deformation behavior and processing maps of Al–Mg alloys, J. Alloys Compd., 788(2019), p. 1282. doi: 10.1016/j.jallcom.2019.02.293
      [31]
      D.L. Sang, R.D. Fu, and Y.J. Li, The hot deformation activation energy of 7050 aluminum alloy under three different deformation modes, Metals, 6(2016), No. 3, art. No. 49. doi: 10.3390/met6030049
      [32]
      S.F. Medina and C.A. Hernandez, Modelling of the dynamic recrystallization of austenite in low alloy and microalloyed steels, Acta Mater., 44(1996), No. 1, p. 165. doi: 10.1016/1359-6454(95)00154-6
      [33]
      V. Randle and O. Engler, Introduction to Texture Analysis : Macrotexture , Microtexture and Orientation Mapping, CRC Press, Boca Raton, 2000.
      [34]
      S.I. Kim and Y.C. Yoo, Dynamic recrystallization behavior of AISI 304 stainless steel, Mater. Sci. Eng. A, 311(2001), No. 1-2, p. 108. doi: 10.1016/S0921-5093(01)00917-0
      [35]
      S. Serajzadeh and A. Karimi Taheri, An investigation on the effect of carbon and silicon on flow behavior of steel, Mater. Des., 23(2002), No. 3, p. 271. doi: 10.1016/S0261-3069(01)00080-2
      [36]
      E.I. Poliak and J.J. Jonas, A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization, Acta Mater., 44(1996), No. 1, p. 127. doi: 10.1016/1359-6454(95)00146-7
      [37]
      J.J. Jonas, X. Quelennec. L. Jiang, and É Martin, The Avrami kinetics of dynamic recrystallization, Acta Mater., 57(2009), No. 9, p. 2748. doi: 10.1016/j.actamat.2009.02.033
      [38]
      S. Gourdet and F. Montheillet, An experimental study of the recrystallization mechanism during hot deformation of aluminium, Mater. Sci. Eng. A, 283(2000), No. 1-2, p. 274. doi: 10.1016/S0921-5093(00)00733-4
      [39]
      T. Sakai, H. Miura, A. Goloborodko, and O. Sitdikov, Continuous dynamic recrystallization during the transient severe deformation of aluminum alloy 7475, Acta Mater., 57(2009), No. 1, p. 153. doi: 10.1016/j.actamat.2008.09.001
      [40]
      T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Prog. Mater. Sci., 60(2014), p. 130. doi: 10.1016/j.pmatsci.2013.09.002
      [41]
      H. Yamagata, Y. Ohuchida, N. Saito, and M. Otsuka, Nucleation of new grains during discontinuous dynamic recrystallization of 99.998 mass% aluminum at 453 K, Scripta Mater., 45(2001), No. 9, p. 1055. doi: 10.1016/S1359-6462(01)01139-3
      [42]
      R. Kapoor, G.B. Reddy, and A. Sarkar, Discontinuous dynamic recrystallization in α-Zr, Mater. Sci. Eng. A, 718(2018), p. 104. doi: 10.1016/j.msea.2018.01.117
      [43]
      M. Mofarrehi, M. Javidani, and X.-G. Chen, Effect of Mn content on the hot deformation behavior and microstructure evolution of Al–Mg–Mn 5xxx alloys, Mater. Sci. Eng. A, 845(2022), art. No. 143217. doi: 10.1016/j.msea.2022.143217
      [44]
      A.G. Beer and M.R. Barnett, Microstructural development during hot working of Mg–3Al–1Zn, Metall. Mater. Trans. A, 38(2007), No. 8, p. 1856. doi: 10.1007/s11661-007-9207-5
      [45]
      A. Heidarzadeh, T. Saeid, V. Klemm, A. Chabok, and Y.T. Pei, Effect of stacking fault energy on the restoration mechanisms and mechanical properties of friction stir welded copper alloys, Mater. Des., 162(2019), p. 185. doi: 10.1016/j.matdes.2018.11.050
      [46]
      Y. Zhang and C.J.L. Wilson, Lattice rotation in polycrystalline aggregates and single crystals with one slip system: A numerical and experimental approach, J. Struct. Geol., 19(1997), No. 6, p. 875. doi: 10.1016/S0191-8141(97)00016-3
      [47]
      G. Winther, Slip systems extracted from lattice rotations and dislocation structures, Acta Mater., 56(2008), No. 9, p. 1919. doi: 10.1016/j.actamat.2007.12.026
      [48]
      S.Y. Li, P. Van Houtte, and S.R. Kalidindi, A quantitative evaluation of the deformation texture predictions for aluminium alloys from crystal plasticity finite element method, Modell. Simul. Mater. Sci. Eng., 12(2004), No. 5, p. 845. doi: 10.1088/0965-0393/12/5/006
      [49]
      O. Engler, E. Sachot, J.C. Ehrström, A. Reeves, and R. Shahani, Recrystallisation and texture in hot deformed aluminium alloy 7010 thick plates, Mater. Sci. Technol., 12(1996), No. 9, p. 717. doi: 10.1179/mst.1996.12.9.717
      [50]
      T. Khelfa, R. Lachhab, H. Azzeddine, et al., Effect of ECAP and subsequent annealing on microstructure, texture, and microhardness of an AA6060 aluminum alloy, J. Mater. Eng. Perform., 31(2022), No. 4, p. 2606. doi: 10.1007/s11665-021-06404-w
      [51]
      S. Naghdy, L. Kestens, S. Hertelé, and P. Verleysen, Evolution of microstructure and texture in commercial pure aluminum subjected to high pressure torsion processing, Mater. Charact., 120(2016), p. 285. doi: 10.1016/j.matchar.2016.09.012
      [52]
      Z. Chen, G.A. Sun, Y. Wu, et al., Multi-scale study of microstructure evolution in hot extruded nano-sized TiB2 particle reinforced aluminum composites, Mater. Des., 116(2017), p. 577. doi: 10.1016/j.matdes.2016.12.070

    Catalog


    • /

      返回文章
      返回