Cite this article as: |
Zhongliang Wangand Yanping Bao, New steelmaking process based on clean deoxidation technology, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1249-1262. https://doi.org/10.1007/s12613-024-2878-8 |
包燕平 E-mail: baoyp@ustb.edu.cn
[1] |
R.Y. Yin, Review on the study of metallurgical process engineering, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1253. doi: 10.1007/s12613-020-2220-z
|
[2] |
C.M. Tang, Z.Q. Guo, J. Pan, et al., Current situation of carbon emissions and countermeasures in China’s ironmaking industry, Int. J. Miner. Metall. Mater., 30(2023), No. 9, p. 1633. doi: 10.1007/s12613-023-2632-7
|
[3] |
Y.J. Wang, H.B. Zuo, and J. Zhao, Recent progress and development of ironmaking in China as of 2019: An overview, Ironmaking Steelmaking., 47(2020), No. 6, p. 640. doi: 10.1080/03019233.2020.1794471
|
[4] |
Z.L. Wang and Y.P. Bao, Development and prospects of molten steel deoxidation in steelmaking process, Int. J. Miner. Metall. Mater., 31(2024), No. 1, p. 18. doi: 10.1007/s12613-023-2740-4
|
[5] |
M. Lv, R. Zhu, and L.Z. Yang, High efficiency dephosphorization by mixed injection during steelmaking process, Steel Res. Int., 90(2019), No. 3, art. No. 1800454. doi: 10.1002/srin.201800454
|
[6] |
J. Guo, S.S. Cheng, and H.J. Guo, Thermodynamics and industrial trial on increasing the carbon content at the BOF endpoint to produce ultra-low carbon IF steel by BOF–RH–CSP process, High Temp. Mater. Process., 38(2019), No. 2019, p. 822. doi: 10.1515/htmp-2019-0054
|
[7] |
Y.Q. Ji, C.Y. Liu, H.X. Yu, X.X. Deng, F.X. Huang, and X.H. Wang, Oxygen transfer phenomenon between slag and molten steel for production of IF steel, J. Iron Steel Res. Int., 27(2020), No. 4, p. 402. doi: 10.1007/s42243-019-00285-z
|
[8] |
P.Y. Dong, S.G. Zheng, and M.Y. Zhu, Numerical study on gas–metal–slag interaction with single-flow postcombustion oxygen lance in the steelmaking process of a top-blown converter, JOM, 74(2022), No. 4, p. 1509. doi: 10.1007/s11837-021-05147-2
|
[9] |
R.Y. Chen and W.Y.D. Yeun, Review of the high-temperature oxidation of iron and carbon steels in air or oxygen, Oxid. Met., 59(2003), No. 5-6, p. 433. doi: 10.1023/A:1023685905159
|
[10] |
D. Kalisz, P. Migas, M. Karbowniczek, M. Moskal, and A. Hornik, Influence of selected deoxidizers on chemical composition of molten inclusions in liquid steel, J. Mater. Eng. Perform., 29(2020), No. 3, p. 1479. doi: 10.1007/s11665-019-04493-2
|
[11] |
W. Wang, H.J. Liu, C.C. Zhu, P.T. Wei, and W. Wu, Micromechanical analysis of gear fatigue-ratcheting damage considering the phase state and inclusion, Tribol. Int., 136(2019), p. 182. doi: 10.1016/j.triboint.2019.03.040
|
[12] |
A. Mehralizadeh, S. Reza Shabanian, and G. Bakeri, Effect of modified surfaces on bubble dynamics and pool boiling heat transfer enhancement: A review, Therm. Sci. Eng. Prog., 15(2020), art. No. 100451. doi: 10.1016/j.tsep.2019.100451
|
[13] |
G.F. Huff, G.R. Bailey, and J.H. Richards, Sampling of liquid steel for dissolved oxygen: With discussion, JOM, 4(1952), No. 11, p. 1162. doi: 10.1007/BF03398167
|
[14] |
Z.Y. Deng, M.Y. Zhu, and S.C. Du, Effect of refractory on nonmetallic inclusions in Al-killed steel, Metall. Mater. Trans. B, 47(2016), No. 5, p. 3158. doi: 10.1007/s11663-016-0746-2
|
[15] |
C.B. Shi, X.C. Chen, H.J. Guo, Z.J. Zhu, and H. Ren, Assessment of oxygen control and its effect on inclusion characteristics during electroslag remelting of die steel, Steel Res. Int., 83(2012), No. 5, p. 472. doi: 10.1002/srin.201100200
|
[16] |
G.H. Zhang and K.C. Chou, Deoxidation of molten steel by aluminum, J. Iron Steel Res. Int., 22(2015), No. 10, p. 905. doi: 10.1016/S1006-706X(15)30088-1
|
[17] |
S.G. Jansto, MicroNiobium alloy approach in medium and high carbon steel bar, plate and sheet products, Metall. Mater. Trans. B, 45(2014), No. 2, p. 438. doi: 10.1007/s11663-013-9837-5
|
[18] |
H.B. Yin, H. Shibata, T. Emi, and M. Suzuki, “In-situ” observation of collision, agglomeration and cluster formation of alumina inclusion particles on steel melts, ISIJ Int., 37(1997), No. 10, p. 936. doi: 10.2355/isijinternational.37.936
|
[19] |
S.K. Choudhary and A. Ghosh, Mathematical model for prediction of composition of inclusions formed during solidification of liquid steel, ISIJ Int., 49(2009), No. 12, p. 1819. doi: 10.2355/isijinternational.49.1819
|
[20] |
W. Xiao, M. Wang, and Y.P. Bao, The research of low-oxygen control and oxygen behavior during RH process in silicon-deoxidization bearing steel, Metals, 9(2019), No. 8, art. No. 812. doi: 10.3390/met9080812
|
[21] |
E.S. Alley and R.W. Neu, Microstructure-sensitive modeling of rolling contact fatigue, Int. J. Fatigue, 32(2010), No. 5, p. 841. doi: 10.1016/j.ijfatigue.2009.07.012
|
[22] |
Z.L. Wang, Y.P. Bao, C. Gu, W. Xiao, Y. Liu, and Y.S. Huang, Key metallurgical technology for high-quality bearing steel production based on the nonaluminum deoxidation process, Chin. J. Eng., 44(2022), No. 9, p. 1607.
|
[23] |
C. Gu, Y.P. Bao, P. Gan, J.H. Lian, and S. Münstermann, An experimental study on the impact of deoxidation methods on the fatigue properties of bearing steels, Steel Res. Int., 89(2018), No. 9, art. No. 1800129. doi: 10.1002/srin.201800129
|
[24] |
L. Cao, L.G. Zhu, and Z.H. Guo, Research status of inclusions in bearing steel and discussion on non-alloy deoxidation process, J. Iron Steel Res. Int., 30(2023), No. 1, p. 1. doi: 10.1007/s42243-022-00849-6
|
[25] |
Y. Wang, A. Karasev, J.H. Park, and P.G. Jönsson, Non-metallic inclusions in different ferroalloys and their effect on the steel quality: A review, Metall. Mater. Trans. B, 52(2021), No. 5, p. 2892. doi: 10.1007/s11663-021-02259-7
|
[26] |
D. Roy, P.C. Pistorius, and R.J. Fruehan, Effect of silicon on the desulfurization of Al-killed steels: Part II. experimental results and plant trials, Metall. Mater. Trans. B, 44(2013), No. 5, p. 1095. doi: 10.1007/s11663-013-9888-7
|
[27] |
N.A. Gokcen and J. Chipman, Aluminum–oxygen equilibrium in liquid iron, JOM, 5(1953), No. 2, p. 173. doi: 10.1007/BF03397469
|
[28] |
N.A. Gokcen and J. Chipman, Silicon-oxygen equilibrium in liquid iron, JOM, 4(1952), No. 2, p. 171. doi: 10.1007/BF03397667
|
[29] |
N. Rimbert, L. Claudotte, P. Gardin, and J. Lehmann, Modeling the dynamics of precipitation and agglomeration of oxide inclusions in liquid steel, Ind. Eng. Chem. Res., 53(2014), No. 20, p. 8630. doi: 10.1021/ie403991e
|
[30] |
M.N. Dastur and J. Chipman, Equilibrium in the reaction of hydrogen with oxygen in liquid iron, JOM, 1(1949), No. 8, p. 441. doi: 10.1007/BF03398377
|
[31] |
W. Xing, Study on Deoxidation by Hydrogen and Natural Gas in Molten Steel [Dissertation], Wuhan University of Science and Technology, Wuhan, 2009, p. 18.
|
[32] |
X.D. Mao, P. Garg, X.J. Hu, et al., Kinetic analysis of iron ore powder reaction with hydrogen–carbon monoxide, Int. J. Miner. Metall. Mater., 29(2022), No. 10, p. 1882. doi: 10.1007/s12613-022-2512-6
|
[33] |
L. Cabernard, S. Pfister, C. Oberschelp, and S. Hellweg, Growing environmental footprint of plastics driven by coal combustion, Nat. Sustain., 5(2022), No. 2, p. 139. doi: 10.1038/s41893-021-00807-2
|
[34] |
Q.J. Gao, G.P. Zhang, H.Y. Zheng, X. Jiang, and F.M. Shen, Combustion performance of pulverized coal and corresponding kinetics study after adding the additives of Fe2O3 and CaO, Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. 314. doi: 10.1007/s12613-022-2432-5
|
[35] |
C.S. Psomopoulos, K. Kiskira, K. Kalkanis, H.C. Leligou, and N.J. Themelis, The role of energy recovery from wastes in the decarbonization efforts of the EU power sector, IET Renewable Power Gener., 16(2022), No. 1, p. 48. doi: 10.1049/rpg2.12315
|
[36] |
K. Hashimoto, T. Fujimatsu, N. Tsunekage, K. Hiraoka, K. Kida, and E.C. Santos, Study of rolling contact fatigue of bearing steels in relation to various oxide inclusions, Mater. Des., 32(2011), No. 3, p. 1605. doi: 10.1016/j.matdes.2010.08.052
|
[37] |
P.F.F. Walker, Improving the reliability of highly loaded rolling bearings: The effect of upstream processing on inclusions, Mater. Sci. Technol., 30(2014), No. 4, p. 385. doi: 10.1179/1743284713Y.0000000491
|
[38] |
B.H. Yoon, K.H. Heo, J.S. Kim, and H.S. Sohn, Improvement of steel cleanliness by controlling slag composition, Ironmaking Steelmaking., 29(2002), No. 3, p. 214. doi: 10.1179/030192302225004160
|