留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 10
Oct.  2024

图(14)

数据统计

分享

计量
  • 文章访问数:  1150
  • HTML全文浏览量:  122
  • PDF下载量:  20
  • 被引次数: 0
Jiang Yu, Yaoxiang Geng, Yongkang Chen, Xiao Wang, Zhijie Zhang, Hao Tang, Junhua Xu, Hongbo Ju, and Dongpeng Wang, High-strength and thermally stable TiB2-modified Al–Mn–Mg–Er–Zr alloy fabricated via selective laser melting, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2221-2232. https://doi.org/10.1007/s12613-024-2879-7
Cite this article as:
Jiang Yu, Yaoxiang Geng, Yongkang Chen, Xiao Wang, Zhijie Zhang, Hao Tang, Junhua Xu, Hongbo Ju, and Dongpeng Wang, High-strength and thermally stable TiB2-modified Al–Mn–Mg–Er–Zr alloy fabricated via selective laser melting, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2221-2232. https://doi.org/10.1007/s12613-024-2879-7
引用本文 PDF XML SpringerLink
研究论文

激光选区熔化高强度和高热稳定性TiB2改性Al–Mn–Mg–Er–Zr铝合金


  • 通讯作者:

    耿遥祥    E-mail: yaoxianggeng@163.com

文章亮点

  • (1) 系统地研究了激光选区熔化成形TiB2/Al–Mn–Mg–Er–Zr合金的成形性、组织和力学性能
  • (2) 开发了高强度和高热稳定性的激光选区熔化铝合金新体系
  • (3) 分析了新合金的强化和热稳定性机理
  • 激光选区熔化(SLM)技术可实现复杂精密金属零部件的一次性快速成形,基于该技术,通过零件结构的拓扑优化及多零件的整合成形,可有效降低零部件的重量并提升其性能。铝合金广泛应用于航空航天等领域重要零部件的制造,然而目前获得广泛应用的SLM成形铝合金主要集中在Al–Si系铸造合金成分,但其强度较低。SLM成形Sc和Zr改性的Al–Mg和Al–Mn系铝合金的力学性能优异,但合金中包含较多的Sc元素,原料成本高昂。通过Er替代Sc可有效降低合金的原料成本,但会恶化合金的SLM成形性。为提升含Er铝合金的SLM成形性,本文通过TiB2纳米颗粒对Al–Mn–Mg–Er–Zr合金进行成分改性,通过合金的表面形貌和显微组织观察、相结构鉴定和力学性能测试等试验手段系统研究了SLM成形TiB2/Al–Mn–Mg–Er–Zr合金成形性及时效处理对合金微观组织和力学性能的影响。研究结果表明,由于均匀光滑的上表面和合适的激光能量输入,使得在250 W激光功率下成形的合金具有更高的相对密度,合金相对密度的最大值为(99.7 ± 0.1)%,表现出良好的SLM成形性。合金具有柱状晶-等轴晶双峰晶粒分布,在晶界处存在TiB2纳米颗粒、Al6Mn和Al3Er纳米析出相。沉积态合金经400°C直接时效处理后,由于α-Al基体中大量二次Al6Mn相的析出,从而有效提升了合金的强度。经400°C时效处理4 h后,合金的屈服强度和极限抗拉强度具有最大值,分别为(374 ± 1)和(512 ± 13)MPa。晶粒的抑制生长、高热稳定性TiB2纳米颗粒的存在和二次Al6Mn的时效析出共同使得SLM成形TiB2改性Al–Mn–Mg–Er–Zr合金具有优异的强度和热稳定性。
  • Research Article

    High-strength and thermally stable TiB2-modified Al–Mn–Mg–Er–Zr alloy fabricated via selective laser melting

    + Author Affiliations
    • To increase the processability and plasticity of the selective laser melting (SLM) fabricated Al–Mn–Mg–Er–Zr alloys, a novel TiB2-modified Al–Mn–Mg–Er–Zr alloy with a mixture of Al–Mn–Mg–Er–Zr and nano-TiB2 powders was fabricated by SLM. The processability, microstructure, and mechanical properties of the alloy were systematically investigated by density measurement, microstructure characterization, and mechanical properties testing. The alloys fabricated at 250 W displayed higher relative densities due to a uniformly smooth top surface and appropriate laser energy input. The maximum relative density value of the alloy reached (99.7 ± 0.1)%, demonstrating good processability. The alloy exhibited a duplex grain microstructure consisting of columnar regions primarily and equiaxed regions with TiB2, Al6Mn, and Al3Er phases distributed along the grain boundaries. After directly aging treatment at a high temperature of 400°C, the strength of the SLM-fabricated TiB2/Al–Mn–Mg–Er–Zr alloy increased due to the precipitation of the secondary Al6Mn phases. The maximum yield strength and ultimate tensile strength of the aging alloy were measured to be (374 ± 1) and (512 ± 13) MPa, respectively. The SLM-fabricated TiB2/Al–Mn–Mg–Er–Zr alloy demonstrates exceptional strength and thermal stability due to the synergistic effects of the inhibition of grain growth, the incorporation of TiB2 nanoparticles, and the precipitation of secondary Al6Mn nanoparticles.
    • loading
    • [1]
      N.T. Aboulkhair, M. Simonelli, L. Parry, I. Ashcroft, C. Tuck, and R. Hague, 3D printing of aluminium alloys: Additive manufacturing of aluminium alloys using selective laser melting, Prog. Mater. Sci., 106(2019), art. No. 100578. doi: 10.1016/j.pmatsci.2019.100578
      [2]
      Y.X. Geng, H. Tang, J.H. Xu, et al., Influence of process parameters and aging treatment on the microstructure and mechanical properties of AlSi8Mg3 alloy fabricated by selective laser melting, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1770. doi: 10.1007/s12613-021-2287-1
      [3]
      Y.X. Geng, Q. Wang, Y.M. Wang, et al., Microstructural evolution and strengthening mechanism of high-strength AlSi8.1Mg1.4 alloy produced by selective laser melting, Mater. Des., 218(2022), art. No. 110674. doi: 10.1016/j.matdes.2022.110674
      [4]
      L.Y. Chen, S.X. Liang, Y.J. Liu, and L.C. Zhang, Additive manufacturing of metallic lattice structures: Unconstrained design, accurate fabrication, fascinated performances, and challenges, Mater. Sci. Eng. R, 146(2021), art. No. 100648. doi: 10.1016/j.mser.2021.100648
      [5]
      L. Zhao, L.B. Song, J.G. Santos Macías, et al., Review on the correlation between microstructure and mechanical performance for laser powder bed fusion AlSi10Mg, Addit. Manuf., 56(2022), art. No. 102914. doi: 10.1016/j.addma.2022.102914
      [6]
      K. Schmidtke, F. Palm, A. Hawkins, and C. Emmelmann, Process and mechanical properties: Applicability of a scandium modified Al-alloy for laser additive manufacturing, Phys. Procedia, 12(2011), p. 369. doi: 10.1016/j.phpro.2011.03.047
      [7]
      Q.B. Jia, P. Rometsch, P. Kürnsteiner, et al., Selective laser melting of a high strength AlMnSc alloy: Alloy design and strengthening mechanisms, Acta Mater., 171(2019), p. 108. doi: 10.1016/j.actamat.2019.04.014
      [8]
      R.D. Li, M.B. Wang, Z.M. Li, P. Cao, T.C. Yuan, and H.B. Zhu, Developing a high-strength Al–Mg–Si–Sc–Zr alloy for selective laser melting: Crack-inhibiting and multiple strengthening mechanisms, Acta Mater., 193(2020), p. 83. doi: 10.1016/j.actamat.2020.03.060
      [9]
      Y.X. Geng, H. Tang, J.H. Xu, Z.J. Zhang, Y.K. Xiao, and Y. Wu, Strengthening mechanisms of high-performance Al–Mn–Mg–Sc–Zr alloy fabricated by selective laser melting, Sci. China Mater., 64(2021), No. 12, p. 3131. doi: 10.1007/s40843-021-1719-8
      [10]
      H. Tang, Y.X. Geng, S.N. Bian, J.H. Xu, and Z.J. Zhang, An ultra-high strength over 700 MPa in Al–Mn–Mg–Sc–Zr alloy fabricated by selective laser melting, Acta Metall. Sin. Engl. Lett., 35(2022), No. 3, p. 466. doi: 10.1007/s40195-021-01286-2
      [11]
      H. Tang, Y.X. Geng, J.J. Luo, J.H. Xu, H.B. Ju, and L.H. Yu, Mechanical properties of high Mg-content Al–Mg–Sc–Zr alloy fabricated by selective laser melting, Met. Mater. Int., 27(2021), No. 8, p. 2592. doi: 10.1007/s12540-020-00907-2
      [12]
      J.R. Croteau, S. Griffiths, M.D. Rossell, et al., Microstructure and mechanical properties of Al–Mg–Zr alloys processed by selective laser melting, Acta Mater., 153(2018), p. 35. doi: 10.1016/j.actamat.2018.04.053
      [13]
      L. Zhou, H. Hyer, S. Park, et al., Microstructure and mechanical properties of Zr-modified aluminum alloy 5083 manufactured by laser powder bed fusion, Addit. Manuf., 28(2019), p. 485.
      [14]
      Y.X. Geng, C.G. Jia, J.H. Xu, et al., Selective laser melting of a novel high-strength Er- and Zr-modified Al–Mn–Mg alloy, Mater. Lett., 313(2022), art. No. 131762. doi: 10.1016/j.matlet.2022.131762
      [15]
      J. Yu, Y.X. Geng, Z.J. Zhang, and H.B. Ju, Densification, microstructural, and mechanical properties of Al–Mn–Mg–Er–Zr alloy fabricated by laser powder bed fusion, Met. Mater. Int., 29(2023), No. 11, p. 3235. doi: 10.1007/s12540-023-01449-z
      [16]
      J. Yu, Y.X. Geng, H.B. Ju, Z.J. Zhang, and J.H. Xu, Selective laser melted Al–Mn–Mg–Er–Zr–Si alloy: Crack elimination and strength enhancement by alloying with Si, Trans. Nonferrous Met. Soc. China, 2023. https://kns.cnki.net/kcms2/detail/43.1239.TG.20230727.1754.038.html.
      [17]
      S.Y. Zhou, Y. Su, H. Wang, J. Enz, T. Ebel, and M. Yan, Selective laser melting additive manufacturing of 7xxx series Al–Zn–Mg–Cu alloy: Cracking elimination by co-incorporation of Si and TiB2, Addit. Manuf., 36(2020), art. No. 101458.
      [18]
      T.T. Sun, H.Z. Wang, Z.Y. Gao, et al., The role of in-situ nano-TiB2 particles in improving the printability of noncastable 2024Al alloy, Mater. Res. Lett., 10(2022), No. 10, p. 656. doi: 10.1080/21663831.2022.2080514
      [19]
      Q.Z. Wang, X. Lin, N. Kang, et al., Effect of laser additive manufacturing on the microstructure and mechanical properties of TiB2 reinforced Al–Cu matrix composite, Mater. Sci. Eng. A, 840(2022), art. No. 142950. doi: 10.1016/j.msea.2022.142950
      [20]
      H. Zhang, Y. Wang, J.J. Wang, et al., Achieving superior mechanical properties of selective laser melted AlSi10Mg via direct aging treatment, J. Mater. Sci. Technol., 108(2022), p. 226. doi: 10.1016/j.jmst.2021.07.059
      [21]
      C. Weingarten, D. Buchbinder, N. Pirch, W. Meiners, K. Wissenbach, and R. Poprawe, Formation and reduction of hydrogen porosity during selective laser melting of AlSi10Mg, J. Mater. Process. Technol., 221(2015), p. 112. doi: 10.1016/j.jmatprotec.2015.02.013
      [22]
      Y.X. Geng, H. Tang, J.H. Xu, et al., Formability and mechanical properties of high-strength Al–(Mn, Mg)–(Sc, Zr) alloy produced by selective laser melting, Acta Metall. Sin., 58(2021), No. 8, p. 1044.
      [23]
      Y.Q. Xue, Z.Y. Lou, Q.T. Hao, et al., Insight into the precipitation behavior and mechanical properties of Sc–Zr micro-alloying TiB2/Al–4.5Cu composites, J. Alloys Compd., 929(2022), art. No. 167209. doi: 10.1016/j.jallcom.2022.167209
      [24]
      M.L. Qu, Q.L. Guo, L.I. Escano, A. Nabaa, Z.A. Young, and L.Y. Chen, Controlling process instability for defect lean metal additive manufacturing, Nat. Commun., 13(2022), No. 1, art. No. 1079. doi: 10.1038/s41467-022-28649-2
      [25]
      L. Du, L.D. Ke, M.L. Xiao, et al., Densification, microstructure and properties of Sc and Zr modified Al–Mn alloy prepared by selective laser melting, Opt. Laser Technol., 148(2022), art. No. 107703. doi: 10.1016/j.optlastec.2021.107703
      [26]
      N.T. Aboulkhair, N.M. Everitt, I. Ashcroft, and C. Tuck, Reducing porosity in AlSi10Mg parts processed by selective laser melting, Addit. Manuf., 1(2014), p. 77.
      [27]
      L.Z. Wang, S. Wang, and J.J. Wu, Experimental investigation on densification behavior and surface roughness of AlSi10Mg powders produced by selective laser melting, Opt. Laser Technol., 96(2017), p. 88. doi: 10.1016/j.optlastec.2017.05.006
      [28]
      Y.K. Xiao, Q. Yang, Z.Y. Bian, et al., Microstructure, heat treatment and mechanical properties of TiB2/Al–7Si–Cu–Mg alloy fabricated by selective laser melting, Mater. Sci. Eng. A, 809(2021), art. No. 140951. doi: 10.1016/j.msea.2021.140951
      [29]
      Z. Feng, H. Tan, Y.B. Fang, X. Lin, and W.D. Huang, Selective laser melting of TiB2/AlSi10Mg composite: Processability, microstructure and fracture behavior, J. Mater. Process. Technol., 299(2022), art. No. 117386. doi: 10.1016/j.jmatprotec.2021.117386
      [30]
      H.Y. Yang, Z.J. Cai, Q. Zhang, et al., Comparison of the effects of Mg and Zn on the interface mismatch and compression properties of 50vol% TiB2/Al composites, Ceram. Int., 47(2021), No. 15, p. 22121. doi: 10.1016/j.ceramint.2021.04.234
      [31]
      Z. Fan, Y. Wang, Y. Zhang, et al., Grain refining mechanism in the Al/Al–Ti–B system, Acta Mater., 84(2015), p. 292. doi: 10.1016/j.actamat.2014.10.055
      [32]
      J.H. Li, F.S. Hage, Q.M. Ramasse, and P. Schumacher, The nucleation sequence of α-Al on TiB2 particles in Al–Cu alloys, Acta Mater., 206(2021), art. No. 116652. doi: 10.1016/j.actamat.2021.116652
      [33]
      P. Mair, L. Kaserer, J. Braun, N. Weinberger, I. Letofsky-Papst, and G. Leichtfried, Microstructure and mechanical properties of a TiB2-modified Al–Cu alloy processed by laser powder-bed fusion, Mater. Sci. Eng. A, 799(2021), art. No. 140209. doi: 10.1016/j.msea.2020.140209
      [34]
      M. Vlach, I. Stulikova, B. Smola, et al., Precipitation in cold-rolled Al–Sc–Zr and Al–Mn–Sc–Zr alloys prepared by powder metallurgy, Mater. Charact., 86(2013), p. 59. doi: 10.1016/j.matchar.2013.09.010
      [35]
      Q. Wang, Z. Li, S.J. Pang, X.N. Li, C. Dong, and P.K. Liaw, Coherent precipitation and strengthening in compositionally complex alloys: A review, Entropy, 20(2018), No. 11, art. No. 878. doi: 10.3390/e20110878
      [36]
      B. Tang, Y.J. Hu, J. Lu, et al., Energy transfer and wavelength tunable lasing of single perovskite alloy nanowire, Nano Energy, 71(2020), art. No. 104641. doi: 10.1016/j.nanoen.2020.104641
      [37]
      I.S. Lee, C.J. Hsu, C.F. Chen, N.J. Ho, and P.W. Kao, Particle-reinforced aluminum matrix composites produced from powder mixtures via friction stir processing, Compos. Sci. Technol., 71(2011), No. 5, p. 693. doi: 10.1016/j.compscitech.2011.01.013
      [38]
      J. Hu, Y.N. Shi, X. Sauvage, G. Sha, and K. Lu, Grain boundary stability governs hardening and softening in extremely fine nanograined metals, Science, 355(2017), No. 6331, p. 1292. doi: 10.1126/science.aal5166
      [39]
      S.M. Ma, Y. Li, W.B. Kan, et al., Enhancement of grain refinement and heat resistance in TiB2-reinforced Al–Cu–Mg–Fe–Ni matrix composite additive manufactured by electron beam melting, J. Alloys Compd., 924(2022), art. No. 166395. doi: 10.1016/j.jallcom.2022.166395

    Catalog


    • /

      返回文章
      返回