留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图(11)

数据统计

分享

计量
  • 文章访问数:  124
  • HTML全文浏览量:  56
  • PDF下载量:  22
  • 被引次数: 0
Jianghao Wen, Di Lan, Yiqun Wang, Lianggui Ren, Ailing Feng, Zirui Jia, and Guanglei Wu, Absorption properties and mechanism of lightweight and broadband electromagnetic wave-absorbing porous carbon by the swelling treatment, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2881-0
Cite this article as:
Jianghao Wen, Di Lan, Yiqun Wang, Lianggui Ren, Ailing Feng, Zirui Jia, and Guanglei Wu, Absorption properties and mechanism of lightweight and broadband electromagnetic wave-absorbing porous carbon by the swelling treatment, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2881-0
引用本文 PDF XML SpringerLink
研究论文

溶胀处理轻质宽带电磁波吸收多孔碳的吸收性能及机理

  • 通讯作者:

    王益群    E-mail: wangyiqun17@cdut.edu.cn

    吴广磊    E-mail: wuguanglei@qdu.edu.cn

文章亮点

  • (1) 利用氢氧化钾活化溶胀诱导法获得了三维生物多孔碳材料
  • (2) 在厚度为2.1 mm时,高密度聚碳酸酯的吸声强度为−47.34 dB
  • (3) 最宽的有效吸收带宽达到7.0 GHz(厚度为2.2 mm),覆盖了整个Ku波段
  • (4) 分析了碳化温度和膨胀率对HPC微波吸收特性的影响
  • 生物碳材料因其可重复性和环境友好性,在微波吸收和屏蔽领域引起了广泛关注。本研究采用溶胀诱导法将KOH均匀分布在生物质银耳上,通过碳化制备出三维网络结构的分层多孔碳(HPC)。在厚度为2.1 mm的情况下,微波吸收强度达到−47.34 dB。值得注意的是,在匹配厚度为2.2 mm时,有效吸收带宽达到7.0 GHz(11~18 GHz)。优异的宽带和反射损耗性能归功于三维多孔网络、界面效应、碳网络缺陷和偶极弛豫。HPC因其出色的阻抗匹配和高衰减常数而具有出色的吸收特性。均匀的孔隙结构大大优化了材料的阻抗匹配性能,而丰富的界面和缺陷则增加了介电损耗,从而提高了衰减常数。此外,还系统研究了碳化温度和膨胀率对微波吸收性能的影响。这项研究提出了一种利用生物质衍生HPC制备吸收材料的策略,在电磁波吸收领域展现了巨大的潜力。
  • Research Article

    Absorption properties and mechanism of lightweight and broadband electromagnetic wave-absorbing porous carbon by the swelling treatment

    + Author Affiliations
    • Bioderived carbon materials have garnered considerable interest in the fields of microwave absorption and shielding due to their reproducibility and environmental friendliness. In this study, KOH was evenly distributed on biomass Tremella using the swelling induction method, leading to the preparation of a three-dimensional network-structured hierarchical porous carbon (HPC) through carbonization. The achieved microwave absorption intensity is robust at −47.34 dB with a thin thickness of 2.1 mm. Notably, the widest effective absorption bandwidth, reaching 7.0 GHz (11–18 GHz), is attained at a matching thickness of 2.2 mm. The exceptional broadband and reflection loss performance are attributed to the 3D porous networks, interface effects, carbon network defects, and dipole relaxation. HPC has outstanding absorption characteristics due to its excellent impedance matching and high attenuation constant. The uniform pore structures considerably optimize the impedance-matching performance of the material, while the abundance of interfaces and defects enhances the dielectric loss, thereby improving the attenuation constant. Furthermore, the impact of carbonization temperature and swelling rate on microwave absorption performance was systematically investigated. This research presents a strategy for preparing absorbing materials using biomass-derived HPC, showcasing considerable potential in the field of electromagnetic wave absorption.
    • loading
    • Supplementary Information-s12613-024-2881-0.docx
    • [1]
      L.G. Ren, Y.Q. Wang, X. Zhang, Q.C. He, and G.L. Wu, Efficient microwave absorption achieved through in situ construction of core-shell CoFe2O4@mesoporous carbon hollow spheres, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 504. doi: 10.1007/s12613-022-2509-1
      [2]
      L. Kong, S.Y. Zhang, Y.J. Liu, H.L. Xu, X.M. Fan, and J.F. Huang, Flexible CNTs/CNF-WPU aerogel for smart electromagnetic wave absorbing with tuning effective absorption bandwidth, Carbon, 207(2023), p. 13. doi: 10.1016/j.carbon.2023.02.067
      [3]
      M.T. Qiao, Y.R. Tian, J.X. Li, et al., Core-shell Fe3O4@SnO2 nanochains toward the application of radar-infrared-visible compatible stealth, J. Colloid Interface Sci., 609(2022), p. 330. doi: 10.1016/j.jcis.2021.12.012
      [4]
      C. Zhang, Y.T. He, Q.W. Song, et al., High performance microwave absorption of light weight and porous non-carbon-based polymeric monoliths via a gel emulsion template, Polym. Chem., 13(2022), No. 12, p. 1672. doi: 10.1039/D2PY00002D
      [5]
      X. Li, D.M. Xu, D. Zhou, et al., Magnetic array vertically anchored on flexible carbon cloth with “magical angle” for the increased effective absorption bandwidth and improved reflection loss simultaneously, Carbon, 210(2023), art. No. 118046. doi: 10.1016/j.carbon.2023.118046
      [6]
      T.B. Zhao, Z.R. Jia, Y. Zhang, and G.L. Wu, Multiphase molybdenum carbide doped carbon hollow sphere engineering: the superiority of unique double-shell structure in microwave absorption, Small, 19(2023), No. 6, art. No. 2206323. doi: 10.1002/smll.202206323
      [7]
      X.L. Cao, D. Lan, Y. Zhang, Z.R. Jia, G.L. Wu, and P.F. Yin, Construction of three-dimensional conductive network and heterogeneous interfaces via different ratio for tunable microwave absorption, Adv. Compos. Hybrid Mater., 6(2023), No. 6, art. No. 187. doi: 10.1007/s42114-023-00763-9
      [8]
      J. Yan, Q. Zheng, S.P. Wang, et al., Multifunctional organic-inorganic hybrid perovskite microcrystalline engineering and electromagnetic response switching multi-band devices, Adv. Mater., 35(2023), No. 25, art. No. 2300015. doi: 10.1002/adma.202300015
      [9]
      Z. Zhang, H.Q. Zhao, W.H. Gu, L.J. Yang, and B.S. Zhang, A biomass derived porous carbon for broadband and lightweight microwave absorption, Sci. Rep., 9(2019), No. 1, art. No. 18617. doi: 10.1038/s41598-019-54104-2
      [10]
      Z.Y. Shen, D. Lan, Y. Cong, Y.Y. Lian, N.N. Wu, and Z.R. Jia, Tailored heterogeneous interface based on porous hollow In-Co-C nanorods to construct adjustable multi-band microwave absorber, J. Mater. Sci. Technol., 181(2024), p. 128. doi: 10.1016/j.jmst.2023.10.007
      [11]
      Z.Y. Tong, Z.J. Liao, Y.Y. Liu, et al., Hierarchical Fe3O4/Fe@C@MoS2 core-shell nanofibers for efficient microwave absorption, Carbon, 179(2021), p. 646. doi: 10.1016/j.carbon.2021.04.051
      [12]
      Z.H. Zhou, D. Lan, J.W. Ren, et al., Controllable heterogeneous interfaces and dielectric modulation of biomass-derived nanosheet metal-sulfide complexes for high-performance electromagnetic wave absorption, J. Mater. Sci. Technol., 185(2024), p. 165. doi: 10.1016/j.jmst.2023.11.010
      [13]
      A.L. Feng, D. Lan, J.K. Liu, G.L. Wu, and Z.R. Jia, Dual strategy of A-site ion substitution and self-assembled MoS2 wrapping to boost permittivity for reinforced microwave absorption performance, J. Mater. Sci. Technol., 180(2024), p. 1. doi: 10.1016/j.jmst.2023.08.060
      [14]
      J.B. Chen, J. Zheng, F. Wang, Q.Q. Huang, and G.B. Ji, Carbon fibers embedded with FeIII-MOF-5-derived composites for enhanced microwave absorption, Carbon, 174(2021), p. 509. doi: 10.1016/j.carbon.2020.12.077
      [15]
      X.L. Chen, F. Zhang, D. Lan, et al., State-of-the-art synthesis strategy for nitrogen-doped carbon-based electromagnetic wave absorbers: from the perspective of nitrogen source, Adv. Compos. Hybrid Mater., 6(2023), No. 6, art. No. 220. doi: 10.1007/s42114-023-00792-4
      [16]
      Y.J. Wang, Y. Sun, Y. Zong, et al., Carbon nanofibers supported by FeCo nanocrystals as difunctional magnetic/dielectric composites with broadband microwave absorption performance, J. Alloys Compd., 824(2020), art. No. 153980. doi: 10.1016/j.jallcom.2020.153980
      [17]
      T.B. Zhao, Z.R. Jia, J.K. Liu, Y. Zhang, G.L. Wu, and P.F. Yin, Multiphase interfacial regulation based on hierarchical porous molybdenum selenide to build anticorrosive and multiband tailorable absorbers, Nano-Micro Lett., 16(2023), No. 1, art. No. 6.
      [18]
      Z.C. Wu, K. Tian, T. Huang, et al., Hierarchically porous carbons derived from biomasses with excellent microwave absorption performance, ACS Appl. Mater. Interfaces, 10(2018), No. 13, p. 11108. doi: 10.1021/acsami.7b17264
      [19]
      B. Zhao, Y. Li, H.Y. Ji, et al., Lightweight graphene aerogels by decoration of 1D CoNi chains and CNTs to achieve ultra-wide microwave absorption, Carbon, 176(2021), p. 411. doi: 10.1016/j.carbon.2021.01.136
      [20]
      T.B. Zhao, T.T. Zheng, D. Lan, et al., Self-assembly tungsten selenide hybrid ternary MOF derived magnetic alloys via multi-polarization to boost microwave absorption, Nano Res., 17(2024), No. 3, p. 1625. doi: 10.1007/s12274-023-6160-6
      [21]
      Z.H. Zhou, X.F. Zhou, D. Lan, et al., Modulation engineering of electromagnetic wave absorption performance of layered double hydroxides derived hollow metal carbides integrating corrosion protection, Small, 20(2024), No. 8, art. No. 2305849. doi: 10.1002/smll.202305849
      [22]
      C.X. Wang, B. Wang, X. Cao, et al., 3D flower-like Co-based oxide composites with excellent wideband electromagnetic microwave absorption, Composites Part B, 205(2021), art. No. 108529. doi: 10.1016/j.compositesb.2020.108529
      [23]
      S.J. Zhang, D. Lan, X.L. Chen, et al., Three-dimensional macroscopic absorbents: From synergistic effects to advanced multifunctionalities, Nano Res., 17(2024), No. 3, p. 1952. doi: 10.1007/s12274-023-6120-1
      [24]
      P.F. Yin, Y.M. Luo, D. Lan, et al., Structural engineering of porous biochar loaded with ferromagnetic/anti-ferromagnetic NiCo2O4/CoO for excellent electromagnetic dissipation with flexible and self-cleaning properties, J. Mater. Sci. Technol., 180(2024), p. 12. doi: 10.1016/j.jmst.2023.08.057
      [25]
      T.Q. Hou, B.B. Wang, M.L. Ma, et al., Preparation of two-dimensional titanium carbide (Ti3C2Tx) and NiCo2O4 composites to achieve excellent microwave absorption properties, Composites Part B, 180(2020), art. No. 107577. doi: 10.1016/j.compositesb.2019.107577
      [26]
      X. Zhong, M.K. He, C.Y. Zhang, Y.Q. Guo, J.W. Hu, and J.W. Gu, Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band, Adv. Funct. Mater., (2024). DOI: 10.1002/adfm.202313544
      [27]
      T.P. Ying, J. Zhang, X.G. Liu, J.H. Yu, J.Y. Yu, and X.F. Zhang, Corncob-derived hierarchical porous carbon/Ni composites for microwave absorbing application, J. Alloys Compd., 849(2020), art. No. 156662. doi: 10.1016/j.jallcom.2020.156662
      [28]
      M.K. He, J.W. Hu, H. Yan, et al., Shape anisotropic chain‐like CoNi/polydimethylsiloxane composite films with excellent low‐frequency microwave absorption and high thermal conductivity, Adv. Funct. Mater., (2024). DOI: 10.1002/adfm.202316691
      [29]
      J.X. Zhou, X.M. Huang, D. Lan, et al., Polymorphic cerium-based Prussian blue derivatives with in situ growing CNT/Co heterojunctions for enhanced microwave absorption via polarization and magnetization, Nano Res., 17(2024), No. 3, p. 2050. doi: 10.1007/s12274-023-6216-7
      [30]
      C.H. Wei, L.Z. Shi, M.Q. Li, et al., Hollow engineering of sandwich NC@Co/NC@MnO2 composites toward strong wideband electromagnetic wave attenuation, J. Mater. Sci. Technol., 175(2024), p. 194. doi: 10.1016/j.jmst.2023.08.020
      [31]
      D. Wu, Y.Q. Wang, S.L. Deng, D. Lan, Z.N. Xiang, and Q.C. He, Heterostructured CoFe@N-doped carbon porous polyhedron for efficient microwave absorption, Nano Res., 16(2023), No. 2, p. 1859.
      [32]
      J.X. Zhou, D. Lan, F. Zhang, et al., Self-assembled MoS2 cladding for corrosion resistant and frequency-modulated electromagnetic wave absorption materials from X-band to Ku-band, Small, 19(2023), No. 52, art. No. 2304932. doi: 10.1002/smll.202304932
      [33]
      L.H. Wang, H.T. Guan, J.Q. Hu, et al., Jute-based porous biomass carbon composited by Fe3O4 nanoparticles as an excellent microwave absorber, J. Alloys Compd., 803(2019), p. 1119. doi: 10.1016/j.jallcom.2019.06.351
      [34]
      Y. Zhang, X.H. Liu, Z.Q. Guo, et al., MXene@Co hollow spheres structure boosts interfacial polarization for broadband electromagnetic wave absorption, J. Mater. Sci. Technol., 176(2024), p. 167. doi: 10.1016/j.jmst.2023.07.061
      [35]
      L.H. Zhuo, Y.L. Cai, D. Shen, et al., Anti-oxidation polyimide-based hybrid foams assembled with bilayer coatings for efficient electromagnetic interference shielding, Chem. Eng. J., 451(2023), art. No. 138808. doi: 10.1016/j.cej.2022.138808
      [36]
      J.W. Ren, G.Q. Jiang, Z. Wang, et al., Highly thermoconductive and mechanically robust boron nitride/aramid composite dielectric films from non-covalent interfacial engineering, Adv. Compos. Hybrid Mater., 7(2023), No. 1, art. No. 5.
      [37]
      T.S. Liu, N. Liu, L.X. Gai, et al., Hierarchical carbonaceous composites with dispersed Co species prepared using the inherent nanostructural platform of biomass for enhanced microwave absorption, Microporous Mesoporous Mater., 302(2020), art. No. 110210. doi: 10.1016/j.micromeso.2020.110210
      [38]
      S.J. Zhang, B. Cheng, Z.G. Gao, et al., Two-dimensional nanomaterials for high-efficiency electromagnetic wave absorption: an overview of recent advances and prospects, J. Alloys Compd., 893(2022), art. No. 162343. doi: 10.1016/j.jallcom.2021.162343
      [39]
      Y.N. Gong, D.L. Li, C.Z. Luo, Q. Fu, and C.X. Pan, Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors, Green Chem., 19(2017), No. 17, p. 4132. doi: 10.1039/C7GC01681F
      [40]
      T.Q. Hou, Z.R. Jia, A.L. Feng, et al., Hierarchical composite of biomass derived magnetic carbon framework and phytic acid doped polyanilne with prominent electromagnetic wave absorption capacity, J. Mater. Sci. Technol., 68(2021), p. 61. doi: 10.1016/j.jmst.2020.06.046
      [41]
      X. Wang, H.T. Jiang, K.Y. Yang, A.X. Ju, C.Q. Ma, and X.L. Yu, Carbon fiber enhanced mechanical and electromagnetic absorption properties of magnetic graphene-based film, Thin Solid Films, 674(2019), p. 97. doi: 10.1016/j.tsf.2019.02.009
      [42]
      Y.X. Han, M.K. He, J.W. Hu, et al., Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band, Nano Res., 16(2023), No. 1, p. 1773. doi: 10.1007/s12274-022-5111-y
      [43]
      H. Zhao, Y. Cheng, W. Liu, et al., Biomass-derived porous carbon-based nanostructures for microwave absorption, Nano-Micro Lett., 11(2019), No. 1, art. No. 24. doi: 10.1007/s40820-019-0255-3
      [44]
      P.B. Liu, S. Gao, G.Z. Zhang, Y. Huang, W.B. You, and R.C. Che, Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption, Adv. Funct. Mater., 31(2021), No. 27, art. No. 2102812. doi: 10.1002/adfm.202102812
      [45]
      P.B. Liu, G.Z. Zhang, H.X. Xu, et al., Synergistic dielectric–magnetic enhancement via phase-evolution engineering and dynamic magnetic resonance, Adv. Funct. Mater., 33(2023), No. 13, art. No. 2211298. doi: 10.1002/adfm.202211298
      [46]
      J.M. Yang, H. Wang, Y.L. Zhang, H.X. Zhang, and J.W. Gu, Layered structural PBAT composite foams for efficient electromagnetic interference shielding, Nano-Micro Lett., 16(2023), No. 1, art. No. 31.
      [47]
      X.D. Zhou, H.B. Zhang, M.Y. Yuan, et al., Dispersing magnetic nanoparticles into staggered, porous nano-frameworks: weaving and visualizing nanoscale magnetic flux lines for enhanced electromagnetic absorption, Adv. Funct. Mater., (2024). DOI: 10.1002/adfm.202314541
      [48]
      H.L. Lv, X.D. Zhou, G.L. Wu, U.I. Kara, and X.G. Wang, Engineering defects in 2D g-C3N4 for wideband, efficient electromagnetic absorption at elevated temperature, J. Mater. Chem. A, 9(2021), No. 35, p. 19710. doi: 10.1039/D1TA02785A
      [49]
      J. Zhao, Z. Gu, and Q.G. Zhang, Stacking MoS2 flower-like microspheres on pomelo peels-derived porous carbon nanosheets for high-efficient X-band electromagnetic wave absorption, Nano Res., 17(2024), No. 3, p. 1607. doi: 10.1007/s12274-023-6090-3
      [50]
      S. Chen, Y.B. Meng, X.L. Wang, et al., Hollow tubular MnO2/MXene (Ti3C2, Nb2C, and V2C) composites as high-efficiency absorbers with synergistic anticorrosion performance, Carbon, 218(2024), art. No. 118698. doi: 10.1016/j.carbon.2023.118698
      [51]
      X.M. Huang, X.H. Liu, Z.R. Jia, B.B. Wang, X.M. Wu, and G.L. Wu, Synthesis of 3D cerium oxide/porous carbon for enhanced electromagnetic wave absorption performance, Adv. Compos. Hybrid Mater., 4(2021), No. 4, p. 1398. doi: 10.1007/s42114-021-00304-2
      [52]
      Y. Zhang, Z.H. Yang, M. Li, et al., Heterostructured CoFe@C@MnO2 nanocubes for efficient microwave absorption, Chem. Eng. J., 382(2020), art. No. 123039. doi: 10.1016/j.cej.2019.123039
      [53]
      L.Y. Yu, D. Lan, Z.Q. Guo, et al., Multi-level hollow sphere rich in heterojunctions with dual function: Efficient microwave absorption and antiseptic, J. Mater. Sci. Technol., 189(2024), p. 155. doi: 10.1016/j.jmst.2024.01.004
      [54]
      H.L. Lv, Y.X. Yao, S.C. Li, et al., Staggered circular nanoporous graphene converts electromagnetic waves into electricity, Nat. Commun., 14(2023), No. 1, art. No. 1982. doi: 10.1038/s41467-023-37436-6
      [55]
      Z.H. Zhao, L.M. Zhang, and H.J. Wu, Hydro/organo/ionogels: “controllable” electromagnetic wave absorbers, Adv. Mater., 34(2022), No. 43, art. No. 2205376. doi: 10.1002/adma.202205376
      [56]
      H.L. Lv, Z.H. Yang, B. Liu, et al., A flexible electromagnetic wave-electricity harvester, Nat. Commun., 12(2021), No. 1, art. No. 834. doi: 10.1038/s41467-021-21103-9
      [57]
      S.J. Zhang, Z.G. Gao, Z.B. Sun, et al., Solid solution strategy for bimetallic metal-polyphenolic networks deriving electromagnetic wave absorbers with regulated heterointerfaces, Appl. Surf. Sci., 611(2023), art. No. 155707. doi: 10.1016/j.apsusc.2022.155707
      [58]
      H.L. Lv, Y.X. Yao, M.Y. Yuan, et al., Functional nanoporous graphene superlattice, Nat. Commun., 15(2024), No. 1, art. No. 1295. doi: 10.1038/s41467-024-45503-9
      [59]
      X.K. Fang, K.X. Pang, G. Zhao, et al., Improving the liquid phase exfoliation efficiency of graphene based on the enhanced intermolecular and interfacial interactions, Chem. Eng. J., 480(2024), art. No. 148263. doi: 10.1016/j.cej.2023.148263
      [60]
      S.J. Zhang, D. Lan, J.J. Zheng, et al., Perspectives of nitrogen-doped carbons for electromagnetic wave absorption, Carbon, 221(2024), art. No. 118925. doi: 10.1016/j.carbon.2024.118925
      [61]
      C.P. Li, L. Zhang, S. Zhang, et al., Flexible regulation engineering of titanium nitride nanofibrous membranes for efficient electromagnetic microwave absorption in wide temperature spectrum, Nano Res., 17(2024), No. 3, p. 1666. doi: 10.1007/s12274-023-6350-2
      [62]
      Y.L. Pan, D. Lan, Z.R. Jia, et al., Multi-mode tunable electromagnetic wave absorber based on hollow nano-cage structure and self-anticorrosion performance, Adv. Compos. Hybrid Mater., 7 (2024) 40.
      [63]
      S.J. Zhang, B. Cheng, Z.R. Jia, et al., The art of framework construction: hollow-structured materials toward high-efficiency electromagnetic wave absorption, Adv. Compos. Hybrid Mater., 5(2022), No. 3, p. 1658. doi: 10.1007/s42114-022-00514-2
      [64]
      J.J. Li, Q.Q. Zhu, J.H. Zhu, et al., Inimitable 3D pyrolytic branched hollow architecture with multi-scale conductive network for microwave absorption, J. Mater. Sci. Technol., 173(2024), p. 170. doi: 10.1016/j.jmst.2023.06.066
      [65]
      Y.L. Zhang, K.P. Ruan, K. Zhou, and J.W. Gu, Controlled distributed Ti3C2T x hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding, Adv. Mater., 35(2023), No. 16, art. No. 2211642. doi: 10.1002/adma.202211642
      [66]
      S. Zhang, X.H. Liu, C.Y. Jia, et al., Integration of multiple heterointerfaces in a hierarchical 0D@2D@1D structure for lightweight, flexible, and hydrophobic multifunctional electromagnetic protective fabrics, Nano-Micro Lett., 15(2023), No. 1, art. No. 204. doi: 10.1007/s40820-023-01179-2
      [67]
      X. Li, L.M. Yu, W.K. Zhao, et al., Prism-shaped hollow carbon decorated with polyaniline for microwave absorption, Chem. Eng. J., 379(2020), art. No. 122393. doi: 10.1016/j.cej.2019.122393
      [68]
      J.B. Xi, E.Z. Zhou, Y.J. Liu, et al., Wood-based straightway channel structure for high performance microwave absorption, Carbon, 124(2017), p. 492. doi: 10.1016/j.carbon.2017.07.088
      [69]
      N.D. Wu, X.G. Liu, C.Y. Zhao, C.Y. Cui, and A.L. Xia, Effects of particle size on the magnetic and microwave absorption properties of carbon-coated nickel nanocapsules, J. Alloys Compd., 656(2016), p. 628. doi: 10.1016/j.jallcom.2015.10.027
      [70]
      L. Kong, S.Y. Zhang, Y.J. Liu, et al., Hierarchical architecture bioinspired CNTs/CNF electromagnetic wave absorbing materials, Carbon, 207(2023), p. 198. doi: 10.1016/j.carbon.2023.03.024
      [71]
      S. Zhang, D. Lan, J. Zheng, et al., Rational construction of heterointerfaces in biomass sugarcane-derived carbon for superior electromagnetic wave absorption, Int. J. Miner. Metall. Mater., (2024). DOI: 10.1007/s12613-024-2875-y
      [72]
      J.R. Zhao, H. Wang, Y. Li, Z. Wang, C.Q. Fang, and P.B. Liu, Construction of self-assembled bilayer core-shell V2O3 microspheres as absorber with superior microwave absorption performance, J. Colloid Interface Sci., 639(2023), p. 68. doi: 10.1016/j.jcis.2023.02.059
      [73]
      J.X. Xiao, B.B. Zhan, M.K. He, et al., Interfacial polarization loss improvement induced by the hollow engineering of necklace-like PAN/carbon nanofibers for boosted microwave absorption, Adv. Funct. Mater., (2024). DOI: 10.1002/adfm.202316722
      [74]
      L.Y. Yu, Q.Q. Zhu, Z.Q. Guo, Y.H. Cheng, Z.R. Jia, and G.L. Wu, Unique electromagnetic wave absorber for three-dimensional framework engineering with copious heterostructures, J. Mater. Sci. Technol., 170(2024), p. 129. doi: 10.1016/j.jmst.2023.06.024
      [75]
      Y. Han, M.J. Han, T.B. Zhao, et al., Design of morphology-controlled cobalt-based spinel oxides for efficient X-band microwave absorption, Mater. Res. Bull., 172(2024), art. No. 112670. doi: 10.1016/j.materresbull.2023.112670
      [76]
      P.Z. Liu, T.D. Gao, W.J. He, and P.B. Liu, Electrospinning of hierarchical carbon fibers with multi-dimensional magnetic configurations toward prominent microwave absorption, Carbon, 202(2023), p. 244. doi: 10.1016/j.carbon.2022.10.089
      [77]
      R.S. Li, Q. Gao, H.N. Xing, et al., Lightweight, multifunctional MXene/polymer composites with enhanced electromagnetic wave absorption and high-performance thermal conductivity, Carbon, 183(2021), p. 301. doi: 10.1016/j.carbon.2021.07.029
      [78]
      L.G. Ren, Y.Q. Wang, X. Zhang, Q.C. He, and G.L. Wu, Efficient microwave absorption achieved through in situ construction of core–shell CoFe2O4@mesoporous carbon hollow spheres, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 504. doi: 10.1007/s12613-022-2509-1
      [79]
      D. Lan, H.F. Li, M. Wang, et al., Recent advances in construction strategies and multifunctional properties of flexible electromagnetic wave absorbing materials, Mater. Res. Bull., 171(2024), art. No. 112630. doi: 10.1016/j.materresbull.2023.112630
      [80]
      W. Wang, K. Nan, H. Zheng, Q.W. Li, and Y. Wang, Ion-exchange reaction construction of carbon nanotube-modified CoNi@MoO2/C composite for ultra-intense and broad electromagnetic wave absorption, Carbon, 210(2023), art. No. 118074. doi: 10.1016/j.carbon.2023.118074
      [81]
      F. Zhang, W. Cui, B.B. Wang, et al., Morphology-control synthesis of polyaniline decorative porous carbon with remarkable electromagnetic wave absorption capabilities, Composites Part B, 204(2021), art. No. 108491. doi: 10.1016/j.compositesb.2020.108491
      [82]
      Z.R. Jia, D. Lan, M. Chang, Y. Han, and G.L. Wu, Heterogeneous interfaces and 3D foam structures synergize to build superior electromagnetic wave absorbers, Mater. Today Phys., 37(2023), art. No. 101215. doi: 10.1016/j.mtphys.2023.101215
      [83]
      Y.C. Wang, W. Zhou, G.L. Zeng, et al., Rational design of multi-shell hollow carbon submicrospheres for high-performance microwave absorbers, Carbon, 175(2021), p. 233. doi: 10.1016/j.carbon.2021.01.001
      [84]
      S.Q. Yang, L. Tang, H.J. Wei, et al. , In-situ construction of volcanic rock-like structures in Yb2O3 modified reduced graphene oxide and their boosted electromagnetic wave absorbing properties, Carbon, 215(2023), art. No. 118445. doi: 10.1016/j.carbon.2023.118445
      [85]
      Y.M. Luo, P.F. Yin, G. Wu, et al., Porous carbon sphere decorated with Co/Ni nanoparticles for strong and broadband electromagnetic dissipation, Carbon, 197(2022), p. 389. doi: 10.1016/j.carbon.2022.06.084
      [86]
      Y.L. Qi, P.F. Yin, L.M. Zhang, et al., Novel microwave absorber of Ni x Mn1– x Fe2O4/carbonized chaff ( x = 0.3, 0.5, and 0.7) based on biomass, ACS Omega, 4(2019), No. 7, p. 12376. doi: 10.1021/acsomega.9b01568
      [87]
      H.Y. Wang and D.M. Zhu, Design of radar absorbing structure using SiCf/epoxy composites for X band frequency range, Ind. Eng. Chem. Res., 57(2018), No. 6, p. 2139. doi: 10.1021/acs.iecr.7b04905
      [88]
      Q.F. Ban, Y. Li, L.W. Li, et al., Amorphous carbon engineering of hierarchical carbonaceous nanocomposites toward boosted dielectric polarization for electromagnetic wave absorption, Carbon, 201(2023), p. 1011. doi: 10.1016/j.carbon.2022.10.017
      [89]
      J.W. Wen, X.X. Li, G. Chen, Z.N. Wang, X.J. Zhou, and H.J. Wu, Controllable adjustment of cavity of core-shelled Co3O4@NiCo2O4 composites via facile etching and deposition for electromagnetic wave absorption, J. Colloid Interface Sci., 594(2021), p. 424. doi: 10.1016/j.jcis.2021.03.056
      [90]
      X.X. Luo, K.K. Zhang, Y.Y. Zhou, H.J. Wu, and H. Xie, In situ construction of Fe3Al@Al2O3 core-shell particles with excellent electromagnetic absorption, J. Colloid Interface Sci., 611(2022), p. 306. doi: 10.1016/j.jcis.2021.12.084
      [91]
      W.D. Zhang, X. Zhang, Q. Zhu, Y. Zheng, L.F. Liotta, and H.J. Wu, High-efficiency and wide-bandwidth microwave absorbers based on MoS2-coated carbon fiber, J. Colloid Interface Sci., 586(2021), p. 457. doi: 10.1016/j.jcis.2020.10.109
      [92]
      Z.D. Wang, M.L. Li, B.T. Liu, et al., Enhanced energy storage characteristics of the epoxy film with rigid phenyl-flexible etherified methylene chains, J. Mater. Sci. Technol., 183(2024), p. 12. doi: 10.1016/j.jmst.2023.10.026
      [93]
      Z.H. Wu, C. Yao, Z.Z. Meng, et al., Biomass-derived crocodile skin-like porous carbon for high-performance microwave absorption, Adv. Sustainable Syst., 6(2022), No. 6, art. No. 2100454. doi: 10.1002/adsu.202100454
      [94]
      Z.N. Xiang, Y.Q. Wang, X.M. Yin, and Q.H. He, Microwave absorption performance of porous heterogeneous SiC/SiO2 microspheres, Chem. Eng. J., 451(2023), art. No. 138742. doi: 10.1016/j.cej.2022.138742
      [95]
      Y. Liu, X.H. Liu, E. Xinyu, et al., Synthesis of MnxOy@C hybrid composites for optimal electromagnetic wave absorption capacity and wideband absorption, J. Mater. Sci. Technol., 103(2022), p. 157. doi: 10.1016/j.jmst.2021.06.034

    Catalog


    • /

      返回文章
      返回