留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图(9)

数据统计

分享

计量
  • 文章访问数:  265
  • HTML全文浏览量:  110
  • PDF下载量:  22
  • 被引次数: 0
Yuying Huo, Zhengyan Wang, Yanlan Zhang, and Yongzhen Wang, High-entropy ferrite with tunable magnetic properties for excellent microwave absorption, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2883-y
Cite this article as:
Yuying Huo, Zhengyan Wang, Yanlan Zhang, and Yongzhen Wang, High-entropy ferrite with tunable magnetic properties for excellent microwave absorption, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2883-y
引用本文 PDF XML SpringerLink
研究论文

通过磁性能调控实现高熵铁氧体优异的微波吸收能力



  • 通讯作者:

    张妍兰    E-mail: zhangyanlan@tyut.edu.cn

    王永祯    E-mail: wangyongzhen@tyut.edu.cn

文章亮点

  • (1) 成功合成了一种新型高熵铁氧体材料。
  • (2) 系统探究了Co–Ni含量对高熵铁氧体材料微观结构、磁性能和电磁参数的影响规律。
  • (3) 获得了一种提升高熵铁氧体材料吸波性能的方法,并系统研究了吸波性能提升机制。
  • 尖晶石型铁氧体材料具有优异的磁损耗,被广泛用于电磁波吸收领域。然而,厚的匹配厚度和窄的吸收带宽限制了其作为吸波材料的独立应用。近年来,高熵材料因其具有独特的结构和前所未有的应用潜力,正引起越来越多的关注。本文通过固相反应法成功合成了一系列具有不同Co–Ni含量的新型高熵铁氧体材料:(CoNi)x/2(CuZnAl)(1−x)/3Fe2O4x = 0.25、0.34、0.40、0.50),系统地研究了Co–Ni元素含量对材料微观结构、磁性能和电磁参数的影响,并分析了其在2–18 GHz频率范围内的电磁波吸收特性。结果表明,Co–Ni含量对材料的矫顽力和自然共振频率有显著影响。当x = 0.50时,材料具有更宽的有效吸收带宽和更薄的匹配厚度。
  • Research Article

    High-entropy ferrite with tunable magnetic properties for excellent microwave absorption

    + Author Affiliations
    • High-entropy design is attracting growing interest as it offers unique structures and unprecedented application potential for materials. In this article, a novel high-entropy ferrite (CoNi)x/2(CuZnAl)(1−x)/3Fe2O4 (x = 0.25, 0.34, 0.40, 0.50) with a single spinel phase of space group $ Fd\bar{3}m $ was successfully developed by the solid-state reaction method. By tuning the Co–Ni content, the magnetic properties of the material, especially the coercivity, changed regularly, and the microwave absorption properties were improved. In particular, the effective absorption bandwidth of the material increased from 4.8 to 7.2 GHz, and the matched thickness decreased from 3.9 to 2.3 mm, while the minimum reflection loss remained below −20 dB. This study provides a practical method for modifying the properties of ferrites used to absorb electromagnetic waves.
    • loading
    • [1]
      A. Namdari and Z.J. Li, A review of entropy measures for uncertainty quantification of stochastic processes, Adv. Mech. Eng., 11(2019), No. 6, p. 1.
      [2]
      J.W. Yeh, S.K. Chen, S.J. Lin, et al., Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater., 6(2004), No. 5, p. 299. doi: 10.1002/adem.200300567
      [3]
      S. Akrami, P. Edalati, M. Fuji, and K. Edalati, High-entropy ceramics: Review of principles, production and applications, Mater. Sci. Eng. R, 146(2021), art. No. 100644. doi: 10.1016/j.mser.2021.100644
      [4]
      Y. Xue, X.Q. Zhao, Z.Y. Bu, et al., Blocking effect in Nb-engineered high-entropy oxides with strengthened grain boundary corrosion resistance, Chem. Eng. J., 457(2023), art. No. 141346. doi: 10.1016/j.cej.2023.141346
      [5]
      D. Fan, X. Zhong, Z.Z. Zhang, et al., Investigation on behavior and mechanism of enhanced water vapor corrosion resistance for (Lu0.25Yb0.25Er0.25Y0.25)2SiO5 environmental barrier coating, J. Eur. Ceram. Soc., 43(2023), No. 8, p. 3737. doi: 10.1016/j.jeurceramsoc.2023.02.063
      [6]
      S.L. Liew, X.P. Ni, F.X. Wei, et al., High-entropy fluorite oxides: Atomic stabiliser effects on thermal-mechanical properties, J. Eur. Ceram. Soc., 42(2022), No. 14, p. 6608. doi: 10.1016/j.jeurceramsoc.2022.07.026
      [7]
      T.S. Park, N.K. Adomako, A.N. Ashong, Y.K. Kim, S.M. Yang, and J.H. Kim, Interfacial structure and physical properties of high-entropy oxide coatings prepared via atmospheric plasma spraying, Coatings, 11(2021), No. 7, art. No. 755. doi: 10.3390/coatings11070755
      [8]
      D.B. Zhang, Y. Yu, X.L. Feng, Z.Y. Tian, and R.Q. Song, Thermal barrier coatings with high-entropy oxide as a top coat, Ceram. Int., 48(2022), No. 1, p. 1349. doi: 10.1016/j.ceramint.2021.09.219
      [9]
      B.B. Yue, W.H. Dai, X.L. Zhang, et al., Deformation behavior of high-entropy oxide (Mg, Co, Ni, Cu, Zn)O under extreme compression, Scripta Mater., 219(2022), art. No. 114879. doi: 10.1016/j.scriptamat.2022.114879
      [10]
      S.X. Liu, M.R. Du, Y.F. Ge, et al., Enhancement of high entropy oxide (La0.2Nd0.2Sm0.2Gd0.2Y0.2)2Zr2O7 mechanical and photocatalytic properties via Eu doping, J. Mater. Sci., 57(2022), No. 16, p. 7863. doi: 10.1007/s10853-022-07124-9
      [11]
      C.M. Rost, E. Sachet, T. Borman, et al., Entropy-stabilized oxides, Nat. Commun., 6(2015), art. No. 8485. doi: 10.1038/ncomms9485
      [12]
      X.H. Liang, J.Y. Hwang, and Y.K. Sun, Practical cathodes for sodium-ion batteries: Who will take the crown?, Adv. Energy Mater., 13(2023), No. 37, art. No. 2301975. doi: 10.1002/aenm.202301975
      [13]
      K.H. Tian, H. He, X. Li, et al., Boosting electrochemical reaction and suppressing phase transition with a high-entropy O3-type layered oxide for sodium-ion batteries, J. Mater. Chem. A, 10(2022), No. 28, p. 14943. doi: 10.1039/D2TA02451A
      [14]
      X. Li, J.X. Ma, K.P. Chen, C.W. Li, X.W. Zhang, and L.N. An, Design and investigate the electrical properties of Pb(Mg0.2Zn0.2Nb0.2Ta0.2W0.2)O3–PbTiO3 high-entropy ferroelectric ceramics, Ceram. Int., 48(2022), No. 9, p. 12848. doi: 10.1016/j.ceramint.2022.01.156
      [15]
      Q. Yang, G.Q. Wang, H.D. Wu, et al., A high-entropy perovskite cathode for solid oxide fuel cells, J. Alloys Compd., 872(2021), art. No. 159633. doi: 10.1016/j.jallcom.2021.159633
      [16]
      Q.B. An, S. Li, J.J. Zhou, S.J. Ji, Z.S. Wen, and J.C. Sun, Novel spinel multicomponent high-entropy oxide as anode for lithium-ion batteries with excellent electrochemical performance, Adv. Eng. Mater., 25(2023), No. 20, art. No. 2300585. doi: 10.1002/adem.202300585
      [17]
      C. Liu, J.Q. Bi, L.L. Xie, X.C. Gao, and L.J. Meng, Preparation and electrochemical properties of two novel high entropy spinel oxides (MgTiZnNiFe)3O4 and (CoTiZnNiFe)3O4 by solid state reaction, Mater. Today Commun., 35(2023), art. No. 106315. doi: 10.1016/j.mtcomm.2023.106315
      [18]
      C. Cui, R.H. Guo, E.H. Ren, et al., MXene-based rGO/Nb2CT x/Fe3O4 composite for high absorption of electromagnetic wave, Chem. Eng. J., 405(2021), art. No. 126626. doi: 10.1016/j.cej.2020.126626
      [19]
      M. Derakhshani, E. Taheri-Nassaj, M. Jazirehpour, and S.M. Masoudpanah, Structural, magnetic, and gigahertz-range electromagnetic wave absorption properties of bulk Ni–Zn ferrite, Sci. Rep., 11(2021), No. 1, art. No. 9468. doi: 10.1038/s41598-021-88930-0
      [20]
      B. Zhao, Y.Q. Du, Z.K. Yan, et al., Structural defects in phase-regulated high-entropy oxides toward superior microwave absorption properties, Adv. Funct. Mater., 33(2023), No. 1, art. No. 2209924. doi: 10.1002/adfm.202209924
      [21]
      J.B. Ma, B. Zhao, H.M. Xiang, et al., High-entropy spinel ferrites MFe2O4 (M = Mg, Mn, Fe, Co, Ni, Cu, Zn) with tunable electromagnetic properties and strong microwave absorption, J. Adv. Ceram., 11(2022), No. 5, p. 754. doi: 10.1007/s40145-022-0569-3
      [22]
      N. Aggarwal and S.B. Narang, Effect of co-substitution of Co–Zr on electromagnetic properties of Ni–Zn spinel ferrites at microwave frequencies, J. Alloys Compd., 866(2021), art. No. 157461. doi: 10.1016/j.jallcom.2020.157461
      [23]
      Z. Sun, Y.J. Zhao, C. Sun, Q. Ni, C.Z. Wang, and H.B. Jin, High entropy spinel-structure oxide for electrochemical application, Chem. Eng. J., 431(2022), art. No. 133448. doi: 10.1016/j.cej.2021.133448
      [24]
      H. Nakamura, K. Shinozaki, T. Okumura, K. Nomura, and T. Akai, Massive red shift of Ce3+ in Y3Al5O12 incorporating super-high content of Ce, RSC Adv., 10(2020), No. 21, p. 12535. doi: 10.1039/D0RA01381A
      [25]
      Y.Y. Zheng, Z.W. Ge, H.C. Sun, et al., The role of oxygen vacancy in CaO–Ca12Al14O33 materials derived from hydrocalumite for enhanced CO2 capture cyclic performance, Chem. Eng. J., 481(2024), art. No. 147955. doi: 10.1016/j.cej.2023.147955
      [26]
      R. Han, W. Li, W.W. Pan, M.G. Zhu, D. Zhou, and F.S. Li, 1D magnetic materials of Fe3O4 and Fe with high performance of microwave absorption fabricated by electrospinning method, Sci. Rep., 4(2014), art. No. 7493. doi: 10.1038/srep07493
      [27]
      M.K. He, J.W. Hu, H. Yan, et al., Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity, Adv. Funct. Mater., (2024), art. No. 2316691.
      [28]
      M.D. Hossain, A.T.M.K. Jamil, M.S. Hossain, et al., Investigation on structure, thermodynamic and multifunctional properties of Ni–Zn–Co ferrite for Gd3+ substitution, RSC Adv., 12(2022), No. 8, p. 4656. doi: 10.1039/D1RA04762K
      [29]
      Z.F. Tong, Q.R. Yao, J.Q. Deng,et al., Effects of Ni-doping on microstructure, magnetic and microwave absorption properties of CoFe2O4, Mater. Sci. Eng. B, 268(2021), art. No. 115092. doi: 10.1016/j.mseb.2021.115092
      [30]
      Y. Liu, X.F. Zhou, Z.R. Jia, H.J. Wu, and G.L. Wu, Oxygen vacancy-induced dielectric polarization prevails in the electromagnetic wave-absorbing mechanism for Mn-based MOFs-derived composites, Adv. Funct. Mater., 32(2022), No. 34, art. No. 2204499. doi: 10.1002/adfm.202204499
      [31]
      M. Qin, L.M. Zhang, X.R. Zhao, and H.J. Wu, Defect induced polarization loss in multi-shelled spinel hollow spheres for electromagnetic wave absorption application, Adv. Sci.,8(2021), No. 8, art. No. 2004640. doi: 10.1002/advs.202004640
      [32]
      Y. Liu, J.N. Qin, L.L. Lu, J. Xu, and X.L. Su, Enhanced microwave absorption property of silver decorated biomass ordered porous carbon composite materials with frequency selective surface incorporation, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 525. doi: 10.1007/s12613-022-2491-7
      [33]
      F.H. Mohammadabadi, S.M. Masoudpanah, S. Alamolhoda, and H.R. Koohdar, Electromagnetic microwave absorption properties of high entropy spinel ferrite ((MnNiCuZn)1− xCo xFe2O4)/graphene nanocomposites, J. Mater. Res. Technol., 14(2021), p. 1099. doi: 10.1016/j.jmrt.2021.07.018
      [34]
      P.P. Mohapatra, H.K. Singh, M.S.R.N. Kiran, and P. Dobbidi, Co substituted Ni–Zn ferrites with tunable dielectric and magnetic response for high-frequency applications, Ceram. Int., 48(2022), No. 19, p. 29217. doi: 10.1016/j.ceramint.2022.05.197
      [35]
      G.H. Dai, R.X. Deng, X. You, T. Zhang, Y. Yu, and L.X. Song, Entropy-driven phase regulation of high-entropy transition metal oxide and its enhanced high-temperature microwave absorption by in situ dual phases, J. Mater. Sci. Technol., 116(2022), p. 11. doi: 10.1016/j.jmst.2021.11.032
      [36]
      X. Feng, P.F. Yin, L.M. Zhang, et al., Innovative preparation of Co@CuFe2O4 composite via ball-milling assisted chemical precipitation and annealing for glorious electromagnetic wave absorption, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 559. doi: 10.1007/s12613-022-2488-2
      [37]
      D.D. Wu, H.X. Zhang, Z.Y. Wang, Y.L. Zhang, and Y.Z. Wang, 3D porous NiCo2(CO3)3/reduced graphene oxide aerogel with heterogeneous interfaces for high-efficiency microwave absorption, New Carbon Mater., 38(2023), No. 6, p. 1035. doi: 10.1016/S1872-5805(23)60780-2
      [38]
      G.G. Guan, G.J. Gao, J. Xiang, J.N. Yang, X.Q. Li, and K.Y. Zhang, A novel three-dimensional Fe3SnC/C hybrid nanofiber absorber for lightweight and highly-efficient microwave absorption, Phys. Chem. Chem. Phys., 22(2020), No. 45, p. 26104. doi: 10.1039/D0CP04594B
      [39]
      L. Kong, S.H. Luo, S.Y. Zhang, G.Q. Zhang, and Y. Liang, Ultralight pyrolytic carbon foam reinforced with amorphous carbon nanotubes for broadband electromagnetic absorption, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 570. doi: 10.1007/s12613-022-2476-6
      [40]
      H.J. Wu, D. Lan, B. Li, et al., High-entropy alloy@air@Ni–NiO core–shell microspheres for electromagnetic absorption applications, Composites Part B, 179(2019), art. No. 107524. doi: 10.1016/j.compositesb.2019.107524
      [41]
      M. Tahamipoor and H. Hekmatara, Superior microwave absorption ability of CuFe2O4/MWCNT at whole Ku-band and half X-band, Phys. Chem. Chem. Phys., 25(2023), No. 18, p. 13145. doi: 10.1039/D3CP00897E
      [42]
      D. Mao, Z. Zhang, M. Yang, Z.M. Wang, R.B. Yu, and D. Wang, Constructing BaTiO3/TiO2@polypyrrole composites with hollow multishelled structure for enhanced electromagnetic wave absorbing properties, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 581. doi: 10.1007/s12613-022-2556-7
      [43]
      W.M. Zhang, H.M. Xiang, F.Z. Dai, B. Zhao, S.J. Wu, and Y.C. Zhou, Achieving ultra-broadband electromagnetic wave absorption in high-entropy transition metal carbides (HE TMCs), J. Adv. Ceram., 11(2022), No. 4, p. 545. doi: 10.1007/s40145-021-0554-2
      [44]
      H.X. Zhang, Z.Y. Wang, D.D. Wu, Y.L. Zhang, and Y.Z. Wang, Carboxymethyl cellulose-derived porous carbon aerogel decorated with Fe3O4–Fe nanoparticles for tunable microwave absorption, Diam. Relat. Mater., 139(2023), art. No. 110405. doi: 10.1016/j.diamond.2023.110405
      [45]
      Y.F. Zhang, Z. Ji, K. Chen, C.C. Jia, S.W. Yang, and M.Y. Wang, Preparation and radar-absorbing properties of Al2O3/TiO2/Fe2O3/Yb2O3 composite powder, Int. J. Miner. Metall. Mater., 24(2017), No. 2, p. 216. doi: 10.1007/s12613-017-1398-1
      [46]
      F.S. Li, N.N. Wu, H. Kimura, et al., Initiating binary metal oxides microcubes electromagnetic wave absorber toward ultrabroad absorption bandwidth through interfacial and defects modulation, Nano-Micro Lett., 15(2023), art. No. 220. doi: 10.1007/s40820-023-01197-0
      [47]
      B. Quan, X.H. Liang, G.B. Ji, et al., Dielectric polarization in electromagnetic wave absorption: Review and perspective, J. Alloys Compd., 728(2017), p. 1065. doi: 10.1016/j.jallcom.2017.09.082
      [48]
      X. Meng, W.J. Lei, W.W. Yang, Y.Q. Liu, and Y.S. Yu, Fe3O4 nanoparticles coated with ultra-thin carbon layer for polarization-controlled microwave absorption performance, J. Colloid Interface Sci., 600(2021), p. 382. doi: 10.1016/j.jcis.2021.05.055
      [49]
      G.X. Tong, J.H. Yuan, W.H. Wu, et al., Flower-like Co superstructures: Morphology and phase evolution mechanism and novel microwave electromagnetic characteristics, CrystEngComm, 14(2012), No. 6, p. 2071. doi: 10.1039/c2ce05910j
      [50]
      H.P. Lv, C. Wu, F.X. Qin, H.X. Peng, and M. Yan, Extra-wide bandwidth via complementary exchange resonance and dielectric polarization of sandwiched FeNi@SnO2 nanosheets for electromagnetic wave absorption, J. Mater. Sci. Technol., 90(2021), p. 1. doi: 10.1016/j.jmst.2020.12.083
      [51]
      Y. Mu, Z.H. Ma, H.S. Liang, L.M. Zhang, and H.J. Wu, Ferrite-based composites and morphology-controlled absorbers, Rare Met., 41(2022), No. 9, p. 2943. doi: 10.1007/s12598-022-02045-7
      [52]
      X.F. Liu, C.C. Hao, L.H. He, et al., Yolk–shell structured Co–C/void/Co9S8 composites with a tunable cavity for ultrabroadband and efficient low-frequency microwave absorption, Nano Res., 11(2018), No. 8, p. 4169. doi: 10.1007/s12274-018-2006-z
      [53]
      L.Q. Jin, P.S. Yi, L. Wan, et al., Thickness-controllable synthesis of MOF-derived Ni@N-doped carbon hexagonal nanoflakes with dielectric–magnetic synergy toward wideband electromagnetic wave absorption, Chem. Eng. J., 427(2022), art. No. 130940. doi: 10.1016/j.cej.2021.130940
      [54]
      J. Gao, Z.J. Ma, F.L. Liu, X.Y. Weng, and K.Y. Meng, Preparation and microwave absorption properties of Gd–Co ferrite@silica@carbon multilayer core–shell structure composites, Chem. Eng. J., 446(2022), art. No. 137157. doi: 10.1016/j.cej.2022.137157

    Catalog


    • /

      返回文章
      返回