留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 10
Oct.  2024

图(10)  / 表(5)

数据统计

分享

计量
  • 文章访问数:  504
  • HTML全文浏览量:  152
  • PDF下载量:  26
  • 被引次数: 0
Enyu Liu, Qingshuang Ma, Xintong Li, Aoxue Gao, Jing Bai, Liming Yu, Qiuzhi Gao,  and Huijun Li, Effect of two-step solid solution on microstructure and δ phase precipitation of Inconel 718 alloy, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2199-2207. https://doi.org/10.1007/s12613-024-2887-7
Cite this article as:
Enyu Liu, Qingshuang Ma, Xintong Li, Aoxue Gao, Jing Bai, Liming Yu, Qiuzhi Gao,  and Huijun Li, Effect of two-step solid solution on microstructure and δ phase precipitation of Inconel 718 alloy, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2199-2207. https://doi.org/10.1007/s12613-024-2887-7
引用本文 PDF XML SpringerLink
研究论文

两步固溶对Inconel 718合金组织和δ相析出的影响


    * 共同第一作者
  • 通讯作者:

    高秋志    E-mail: neuqgao@163.com

    李会军    E-mail: huijun@uow.edu.au

文章亮点

  • (1) 通过改变第二步固溶温度,研究了两步固溶处理对δ相和微观结构的影响。
  • (2) 通过层错切过理论解释了γ″–δ转变机理。
  • (3) 在晶界处采用短棒状δ相可以有效钉扎晶界,提高Inconel 718合金的硬度。
  • Inconel 718合金是目前最受欢迎的镍基高温合金,因其卓越的热机械性能,在航空航天、汽车和能源工业中得到了广泛的应用。以锻造态的Inconel 718合金棒材为研究对象,采用X射线衍射、扫描电子显微镜和透射电子显微镜等表征手段与硬度测试研究了该合金经两步固溶加双级时效处理后组织与硬度的变化,重点研究了两步固溶过程中析出相的演变规律,阐述了γ″亚稳相向δ相的转变机理。通过XRD相分析及Image Pro图像分析软件分别对析出相进行分析,结果表明,随着第二步固溶温度的升高,δ相含量呈先升高后降低的趋势。通过扫描电子显微镜和透射电子显微镜研究了微观结构和δ相的变化,在第二步固溶温度为925°C的样品中发现了晶内δ相,其与γ基体的取向关系为${[\bar 100]_{\text δ} }$//${[01\bar 1]_{\text γ} }$与(010)δ//(111)γ,通过层错切过理论解释了这种晶内δ相的形成,即γ″亚稳相向δ相的转变过程。通过维氏硬度计对各热处理状态的Inconel 718合金进行硬度测试,研究了析出相含量变化对硬度的影响,第二步固溶处理温度在1010°C时样品硬度最高,最大硬度为HV 446.84。
  • Research Article

    Effect of two-step solid solution on microstructure and δ phase precipitation of Inconel 718 alloy

    + Author Affiliations
    • Inconel 718 is the most popular nickel-based superalloy and is extensively used in aerospace, automotive, and energy industries owing to its extraordinary thermomechanical properties. The effects of different two-step solid solution treatments on microstructure and δ phase precipitation of Inconel 718 alloy were studied, and the transformation mechanism from γ″ metastable phase to δ phase was clarified. The precipitates were statistically analyzed by X-ray diffractometry. The results show that the δ phase content firstly increased, and then decreased with the temperature of the second-step solid solution. The changes in microstructure and δ phase were studied by scanning electron microscopy and transmission electron microscopy. An intragranular δ phase formed in Inconel 718 alloy at the second-step solid solution temperature of 925°C, and its orientation relationship with γ matrix was determined as ${[\bar 100]_{\text δ} }$//${[01\bar 1]_{\text γ} }$ and (010)δ//(111)γ. Furthermore, the Vickers hardness of different heat treatment samples was measured, and the sample treated by second-step solid solution at 1010°C reached the maximum hardness of HV 446.84.
    • loading
    • [1]
      F. Theska, A. Stanojevic, B. Oberwinkler, and S. Primig, Microstructure-property relationships in directly aged Alloy 718 turbine disks, Mater. Sci. Eng. A, 776(2020), art. No. 138967. doi: 10.1016/j.msea.2020.138967
      [2]
      A. Balan, M. Perez, T. Chaise, et al., Precipitation of γ″ in Inconel 718 alloy from microstructure to mechanical properties, Materialia, 20(2021), art. No. 101187. doi: 10.1016/j.mtla.2021.101187
      [3]
      H. He, L. Yu, C. Liu, H. Li, Q. Gao, and Y. Liu, Research progress of a novel martensitic heat-resistant steel G115, Acta Metall. Sin., 58(2022), No. 3, p. 311.
      [4]
      A. De Bartolomeis, S.T. Newman, I.S. Jawahir, D. Biermann, and A. Shokrani, Future research directions in the machining of Inconel 718, J. Mater. Process. Technol., 297(2021), art. No. 117260. doi: 10.1016/j.jmatprotec.2021.117260
      [5]
      E.M. Fayed, D. Shahriari, M. Saadati, V. Brailovski, M. Jahazi, and M. Medraj, Influence of homogenization and solution treatments time on the microstructure and hardness of inconel 718 fabricated by laser powder bed fusion process, Materials, 13(2020), No. 11, art. No. 2574. doi: 10.3390/ma13112574
      [6]
      H.J. Zhang, C. Li, Q.Y. Guo, et al., Hot tensile behavior of cold-rolled Inconel 718 alloy at 650 °C: The role of δ phase, Mater. Sci. Eng. A, 722(2018), p. 136. doi: 10.1016/j.msea.2018.02.093
      [7]
      Q.Z. Gao, Z.Y. Liu, L.L. Sun, et al., Review on precipitates and high-temperature properties of alumina-forming austenitic stainless steel, J. Mater. Res. Technol., 25(2023), p. 5372. doi: 10.1016/j.jmrt.2023.07.030
      [8]
      J. Ding, S. Xue, Z. Shang, et al., Characterization of precipitation in gradient Inconel 718 superalloy, Mater. Sci. Eng. A, 804(2021), art. No. 140718. doi: 10.1016/j.msea.2020.140718
      [9]
      G.H. Cao, T.Y. Sun, C.H. Wang, et al., Investigations of γ′, γ″ and δ precipitates in heat-treated Inconel 718 alloy fabricated by selective laser melting, Mater. Charact., 136(2018), p. 398. doi: 10.1016/j.matchar.2018.01.006
      [10]
      D. Sindhura, M.V. Sravya, and G.V.S. Murthy, Comprehensive microstructural evaluation of precipitation in Inconel 718, Metallogr. Microstruct. Anal., 8(2019), No. 2, p. 233. doi: 10.1007/s13632-018-00513-0
      [11]
      D. Srinivasan, Effect of long-time exposure on the evolution of minor phases in Alloy 718, Mater. Sci. Eng. A, 364(2004), No. 1-2, p. 27. doi: 10.1016/j.msea.2003.06.003
      [12]
      S.A. Mantri, S. Dasari, A. Sharma, et al., Effect of micro-segregation of alloying elements on the precipitation behaviour in laser surface engineered Alloy 718, Acta Mater., 210(2021), art. No. 116844. doi: 10.1016/j.actamat.2021.116844
      [13]
      Y.P. Mei, Y.C. Liu, C.X. Liu, et al., Effects of cold rolling on the precipitation kinetics and the morphology evolution of intermediate phases in Inconel 718 alloy, J. Alloys Compd., 649(2015), p. 949. doi: 10.1016/j.jallcom.2015.07.149
      [14]
      S. Azadian, L.Y. Wei, and R. Warren, Delta phase precipitation in Inconel 718, Mater. Charact., 53(2004), No. 1, p. 7. doi: 10.1016/j.matchar.2004.07.004
      [15]
      D.H. Ping, Y.F. Gu, C.Y. Cui, and H. Harada, Grain boundary segregation in a Ni–Fe-based (Alloy 718) superalloy, Mater. Sci. Eng. A, 456(2007), No. 1-2, p. 99. doi: 10.1016/j.msea.2007.01.090
      [16]
      M. Anderson, A.L. Thielin, F. Bridier, P. Bocher, and J. Savoie, δ Phase precipitation in Inconel 718 and associated mechanical properties, Mater. Sci. Eng. A, 679(2017), p. 48. doi: 10.1016/j.msea.2016.09.114
      [17]
      R.S. Huang, Y.A. Sun, L.L. Xing, G.L. Song, W. Liu, and Q.L. Li, Effect of gradient microstructure pinned by δ phase on elevated temperature performances of GH4169, Mater. Sci. Eng. A, 774(2020), art. No. 138913. doi: 10.1016/j.msea.2020.138913
      [18]
      E.M. Fayed, M. Saadati, D. Shahriari, V. Brailovski, M. Jahazi, and M. Medraj, Effect of homogenization and solution treatments time on the elevated-temperature mechanical behavior of Inconel 718 fabricated by laser powder bed fusion, Sci. Rep., 11(2021), art. No. 2020. doi: 10.1038/s41598-021-81618-5
      [19]
      K.S. Prasad, S.K. Panda, S.K. Kar, S.V.S.N. Murty, and S.C. Sharma, Prediction of fracture and deep drawing behavior of solution treated Inconel-718 sheets: Numerical modeling and experimental validation, Mater. Sci. Eng. A, 733(2018), p. 393. doi: 10.1016/j.msea.2018.07.007
      [20]
      W.D. Song, M.L. Hu, H.S. Zhang, and Y.X. Jin, Effects of different heat treatments on the dynamic shear response and shear localization in Inconel 718 alloy, Mater. Sci. Eng. A, 725(2018), p. 76. doi: 10.1016/j.msea.2018.04.010
      [21]
      N.Y. Ye, M. Cheng, S.H. Zhang, H.W. Song, and H.W. Zhou, Influence of delta phase precipitation on static recrystallization of cold-rolled Inconel 718 alloy in solid solution treatment, J. Iron Steel Res. Int., 26(2019), No. 2, p. 148. doi: 10.1007/s42243-018-0219-8
      [22]
      X.G. You, Y. Tan, S. Shi, et al., Effect of solution heat treatment on the precipitation behavior and strengthening mechanisms of electron beam smelted Inconel 718 superalloy, Mater. Sci. Eng. A, 689(2017), p. 257. doi: 10.1016/j.msea.2017.01.093
      [23]
      X.G. You, Y. Tan, L.H. Zhao, et al., Effect of solution heat treatment on microstructure and electrochemical behavior of electron beam smelted Inconel 718 superalloy, J. Alloys Compd., 741(2018), p. 792. doi: 10.1016/j.jallcom.2018.01.159
      [24]
      P.K. Bai, P.C. Huo, J. Wang, et al., Microstructural evolution and mechanical properties of Inconel 718 alloy manufactured by selective laser melting after solution and double aging treatments, J. Alloys Compd., 911(2022), art. No. 164988. doi: 10.1016/j.jallcom.2022.164988
      [25]
      G.A. Rao, M. Srinivas, and D.S. Sarma, Effect of solution treatment temperature on microstructure and mechanical properties of hot isostatically pressed superalloy Inconel* 718, Mater. Sci. Technol., 20(2004), No. 9, p. 1161. doi: 10.1179/026708304225022124
      [26]
      X.L. An, L. Zhou, B. Zhang, et al., Inconel 718 treated with two-stage solution and aging processes: Microstructure evolution and enhanced properties, Mater. Res. Express, 6(2019), No. 7, art. No. 075803. doi: 10.1088/2053-1591/ab1290
      [27]
      F. Theska, K. Nomoto, F. Godor, et al., On the early stages of precipitation during direct ageing of alloy 718, Acta Mater., 188(2020), p. 492. doi: 10.1016/j.actamat.2020.02.034
      [28]
      M. Sundararaman, P. Mukhopadhyay, and S. Banerjee, Precipitation of the δ-Ni3Nb phase in two nickel base superalloys, Metall. Trans. A, 19(1988), No. 3, p. 453. doi: 10.1007/BF02649259
      [29]
      C.H. Xiang, P.Z. Wang, X. Yang, and S.H. An, Effect of secondary solid solution treatment on microstructure and properties of IN718 alloy, Heat Treat. Met., 46(2021), No. 6, p. 132.
      [30]
      W. Le, Z.W. Chen, K. Yan, et al., Early evolution of δ phase and coarse γ″ phase in Inconel 718 alloy with high temperature ageing, Mater. Charact., 180(2021), art. No. 111403. doi: 10.1016/j.matchar.2021.111403
      [31]
      S.H. Chang, In situ TEM observation of γ′, γ″ and δ precipitations on Inconel 718 superalloy through HIP treatment, J. Alloys Compd., 486(2009), No. 1-2, p. 716. doi: 10.1016/j.jallcom.2009.07.046
      [32]
      M. Dehmas, J. Lacaze, A. Niang, and B. Viguier, TEM study of high-temperature precipitation of delta phase in Inconel 718 alloy, Adv. Mater. Sci. Eng., 2011(2011), No. 1, art. No. 940634.
      [33]
      Y.R. Sun, J. Wang, J. Yang, S.L. Wang, L. Liu, and L. Wei, Effect of heat treatment on microstructure and mechanical properties of IN718 deformed alloy, Heat Treat. Met., 43(2018), No. 12, p. 152.
      [34]
      W.C. Liu, F.R. Xiao, M. Yao, Z.L. Chen, S.G. Wang, and W.H. Li, Quantitative phase analysis of Inconel 718 by X-ray diffraction, J. Mater. Sci. Lett., 16(1997), No. 9, p. 769. doi: 10.1023/A:1018553703030
      [35]
      W.C. Liu, F.R. Xiao, M. Yao, Z.L. Chen, Z.Q. Jiang, and S.G. Wang, Relationship between the lattice constant of ϒ phase and the content of δ phase, γ″ and γ′ phases in inconel 718, Scripta Mater., 37(1997), No. 1, p. 59. doi: 10.1016/S1359-6462(97)00064-X
      [36]
      D.Y. Cai, W.C. Liu, R.B. Li, W.H. Zhang, and M. Yao, On the accuracy of the X-ray diffraction quantitative phases analysis method in Inconel 718, J. Mater. Sci., 39(2004), No. 2, p. 719. doi: 10.1023/B:JMSC.0000011540.61546.73
      [37]
      W.C. Liu, M. Yao, Z.L. Chen, Z.Q. Jiang, S.G. Wang, and W.H. Li, Quantitative phase analysis of Inconel 718 alloy, J. Aeronaut. Mater., 17(1997), No. 1, p. 17.
      [38]
      K. Kusabiraki, S. Saji, and T. Tsutsumi, Effects of cold rolling and annealing on the structure of γ″ precipitates in a Ni–18Cr–16Fe–5Nb–3Mo alloy, Metall. Mater. Trans. A, 30(1999), No. 8, p. 1923. doi: 10.1007/s11661-999-0003-2
      [39]
      H.L. Qin, Z.N. Bi, H.Y. Yu, G. Feng, J.H. Du, and J. Zhang, Influence of stress on γ″ precipitation behavior in Inconel 718 during aging, J. Alloys Compd., 740(2018), p. 997. doi: 10.1016/j.jallcom.2018.01.030
      [40]
      H.J. Zhang, C. Li, Y.C. Liu, et al., Effect of hot deformation on γ″ and δ phase precipitation of Inconel 718 alloy during deformation&isothermal treatment, J. Alloys Compd., 716(2017), p. 65. doi: 10.1016/j.jallcom.2017.05.042
      [41]
      H.J. Zhang, C. Li, Q.Y. Guo, et al., Delta precipitation in wrought Inconel 718 alloy; the role of dynamic recrystallization, Mater. Charact., 133(2017), p. 138. doi: 10.1016/j.matchar.2017.09.032

    Catalog


    • /

      返回文章
      返回