Cite this article as: |
Ting Wang, Zhangzhi Shi, Hongyong Zhong, Xiangmin Li, Jinling Sun, Wei Yin, Xiaojing Ji, Qiang Wang, Anqi Zhao, and Luning Wang, In vitro performance of a biodegradable zinc alloy adjustable-loop cortical suspension fixation for anterior cruciate ligament reconstruction, Int. J. Miner. Metall. Mater., 31(2024), No. 5, pp. 887-898. https://doi.org/10.1007/s12613-024-2889-5 |
赵安琪 E-mail: zhaoanqi@ustb.edu.cn
王鲁宁 E-mail: luning.wang@ustb.edu.cn
[1] |
A.M. Kiapour and M.M. Murray, Basic science of anterior cruciate ligament injury and repair, Bone Joint Res., 3(2014), No. 2, p. 20. doi: 10.1302/2046-3758.32.2000241
|
[2] |
R. Vaishya, A.K. Agarwal, S. Ingole, and V. Vijay, Current trends in anterior cruciate ligament reconstruction: A review, Cureus, 7(2015), No. 11, art. No. e378. doi: 10.7759/cureus.378
|
[3] |
N.H. Eysturoy, K.A. Nissen, T. Nielsen, and M. Lind, The influence of graft fixation methods on revision rates after primary anterior cruciate ligament reconstruction, Am. J. Sports Med., 46(2018), No. 3, p. 524. doi: 10.1177/0363546517748924
|
[4] |
J.H. Lubowitz, C.H. Ahmad, and K. Anderson, All-inside anterior cruciate ligament graft-link technique: Second-generation, no-incision anterior cruciate ligament reconstruction, Arthroscopy, 27(2011), No. 5, p. 717. doi: 10.1016/j.arthro.2011.02.008
|
[5] |
R. Ranjan, S. Gaba, L. Goel, et al. , In vivo comparison of a fixed loop (EndoButton CL) with an adjustable loop (TightRope RT) device for femoral fixation of the graft in ACL reconstruction: A prospective randomized study and a literature review, J. Orthop. Surg., 26(2018), No. 3. DOI: 10.1177/2309499018799787.
|
[6] |
C.T. Chasapis, P.S A. Ntoupa, C.A. Spiliopoulou, and M.E. Stefanidou, Recent aspects of the effects of zinc on human health, Arch. Toxicol., 94(2020), No. 5, p. 1443. doi: 10.1007/s00204-020-02702-9
|
[7] |
S. Praharaj, M. Skalicky, S. Maitra, et al., Zinc biofortification in food crops could alleviate the zinc malnutrition in human health, Molecules, 26(2021), No. 12, art. No. 3509. doi: 10.3390/molecules26123509
|
[8] |
Y.Q. Qiao, W.J. Zhang, P. Tian, et al., Stimulation of bone growth following zinc incorporation into biomaterials, Biomaterials, 35(2014), No. 25, p. 6882. doi: 10.1016/j.biomaterials.2014.04.101
|
[9] |
J. Ma, N. Zhao, and D.H. Zhu, Bioabsorbable zinc ion induced biphasic cellular responses in vascular smooth muscle cells, Sci. Rep., 6(2016), art. No. 26661. doi: 10.1038/srep26661
|
[10] |
M. Molenda and J. Kolmas, The role of zinc in bone tissue health and regeneration—A review, Biol. Trace Elem. Res., 201(2023), No. 12, p. 5640. doi: 10.1007/s12011-023-03631-1
|
[11] |
D. Vojtěch, J. Kubásek, J. Šerák, and P. Novák, Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation, Acta Biomater., 7(2011), No. 9, p. 3515. doi: 10.1016/j.actbio.2011.05.008
|
[12] |
P.K. Bowen, R.J. Guillory, E.R. Shearier, et al., Metallic zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents, Mater. Sci. Eng. C Mater. Biol. Appl., 56(2015), p. 467. doi: 10.1016/j.msec.2015.07.022
|
[13] |
L.J. Liu, Y. Meng, A.A. Volinsky, H.J. Zhang, and L.N. Wang, Influences of albumin on in vitro corrosion of pure Zn in artificial plasma, Corros. Sci., 153(2019), p. 341. doi: 10.1016/j.corsci.2019.04.003
|
[14] |
C. Xiao, L.Q. Wang, Y.P. Ren, et al., Indirectly extruded biodegradable Zn–0.05wt%Mg alloy with improved strength and ductility: In vitro and in vivo studies, J. Mater. Sci. Technol., 34(2018), No. 9, p. 1618. doi: 10.1016/j.jmst.2018.01.006
|
[15] |
H.T. Yang, B. Jia, Z.C. Zhang, et al., Alloying design of biodegradable zinc as promising bone implants for load-bearing applications, Nat. Commun., 11(2020), No. 1, art. No. 401. doi: 10.1038/s41467-019-14153-7
|
[16] |
E.A. Zimmermann, E. Schaible, B. Gludovatz, et al., Intrinsic mechanical behavior of femoral cortical bone in young, osteoporotic and bisphosphonate-treated individuals in low- and high energy fracture conditions, Sci. Rep., 6(2016), art. No. 21072. doi: 10.1038/srep21072
|
[17] |
S.D. Liu, W. Li, Z. Li, et al., Preparation and in vitro degradation behavior of biodegradable porous Zn–Li–Ca alloy bone repair scaffolds, J. Mater. Res. Technol., 28(2024), p. 1177. doi: 10.1016/j.jmrt.2023.11.287
|
[18] |
X.N. Gu and Y.F. Zheng, A review on magnesium alloys as biodegradable materials, Front. Mater. Sci. China, 4(2010), No. 2, p. 111. doi: 10.1007/s11706-010-0024-1
|
[19] |
Z.Z. Shi, X.M. Li, S.L. Yao, et al., 300 MPa grade biodegradable high-strength ductile low-alloy (BHSDLA) Zn–Mn–Mg alloys: An in vitro study, J. Mater. Sci. Technol., 138(2023), p. 233. doi: 10.1016/j.jmst.2022.08.015
|
[20] |
Z.Z. Shi, J. Yu, and X.F. Liu, Microalloyed Zn–Mn alloys: From extremely brittle to extraordinarily ductile at room temperature, Mater. Des., 144(2018), p. 343. doi: 10.1016/j.matdes.2018.02.049
|
[21] |
P.S. Guo, F.X. Li, L.J. Yang, et al., Ultra-fine-grained Zn–0.5Mn alloy processed by multi-pass hot extrusion: Grain refinement mechanism and room-temperature superplasticity, Mater. Sci. Eng. A, 748(2019), p. 262. doi: 10.1016/j.msea.2019.01.089
|
[22] |
X.L. Zhu, T.T. Ren, P.S. Guo, et al., Strengthening mechanism and biocompatibility of degradable Zn–Mn alloy with different Mn content, Mater. Today Commun., 31(2022), p. 103639. doi: 10.1016/j.mtcomm.2022.103639
|
[23] |
B. Jia, H.T. Yang, Y. Han, et al. , In vitro and in vivo studies of Zn–Mn biodegradable metals designed for orthopedic applications, Acta Biomater., 108(2020), p. 358. doi: 10.1016/j.actbio.2020.03.009
|
[24] |
X.K. Yu, X.H. Sun, D.B. Liu, G.H. Liang, F. Jin, and J.J. Gao, Study on mechanical and degradation behavior of Zn–Mn–xMg alloys under coupling effects of stress and SBF, J. Mater. Res. Technol., 28(2024), p. 3960. doi: 10.1016/j.jmrt.2024.01.012
|
[25] |
L.B. Yang, X. Li, L.J. Yang, et al., Effect of Mg contents on the microstructure, mechanical properties and cytocompatibility of degradable Zn–0.5Mn–xMg alloy, J. Funct. Biomater., 14(2023), No. 4, art. No. 195. doi: 10.3390/jfb14040195
|
[26] |
J. Sun, X. Zhang, Z.Z. Shi, et al., Development of a high-strength Zn–Mn–Mg alloy for ligament reconstruction fixation, Acta Biomater., 119(2021), p. 485. doi: 10.1016/j.actbio.2020.10.032
|
[27] |
Z. Li, Z.Z. Shi, Y. Hao, H.F. Li, H.J. Zhang, X.F. Liu, and L.N. Wang, Insight into role and mechanism of Li on the key aspects of biodegradable Zn–Li alloys: Microstructure evolution, mechanical properties, corrosion behavior and cytotoxicity, Mater. Sci. Eng. C, 114(2020), art. No. 111049. doi: 10.1016/j.msec.2020.111049
|
[28] |
N.S. Murni, M.S. Dambatta, S.K. Yeap, G.R.A. Froemming, and H. Hermawan, Cytotoxicity evaluation of biodegradable Zn–3Mg alloy toward normal human osteoblast cells, Mater. Sci. Eng. C, 49(2015), p. 560. doi: 10.1016/j.msec.2015.01.056
|
[29] |
P.K. Bowen, J. Drelich, and J. Goldman, Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents, Adv. Mater., 25(2013), No. 18, p. 2577. doi: 10.1002/adma.201300226
|
[30] |
J. Young and R.G. Reddy, Synthesis, mechanical properties, and in vitro corrosion behavior of biodegradable Zn–Li–Cu alloys, J. Alloys Compd., 844(2020), art. No. 156257. doi: 10.1016/j.jallcom.2020.156257
|
[31] |
H.T. Yang, X.H. Qu, W.J. Lin, et al. , In vitro and in vivo studies on zinc-hydroxyapatite composites as novel biodegradable metal matrix composite for orthopedic applications, Acta Biomater., 71(2018), p. 200. doi: 10.1016/j.actbio.2018.03.007
|
[32] |
J. Venezuela and M.S. Dargusch, The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: A comprehensive review, Acta Biomater., 87(2019), p. 1. doi: 10.1016/j.actbio.2019.01.035
|
[33] |
X. Liu, H.T. Yang, P. Xiong, W.T. Li, H.H. Huang, and Y.F. Zheng, Comparative studies of Tris-HCl, HEPES and NaHCO3/CO2 buffer systems on the biodegradation behaviour of pure Zn in NaCl and SBF solutions, Corros. Sci., 157(2019), p. 205. doi: 10.1016/j.corsci.2019.05.018
|
[34] |
L.J. Liu, Y. Meng, C.F. Dong, Y. Yan, A.A. Volinsky, and L.N. Wang, Initial formation of corrosion products on pure zinc in simulated body fluid, J. Mater. Sci. Technol., 34(2018), No. 12, p. 2271. doi: 10.1016/j.jmst.2018.05.005
|
[35] |
Z. Chen, J.P. Yao, J.L. Zhao, and S.G. Wang, Injectable wound dressing based on carboxymethyl chitosan triple-network hydrogel for effective wound antibacterial and hemostasis, Int. J. Biol. Macromol., 225(2023), p. 1235. doi: 10.1016/j.ijbiomac.2022.11.184
|
[36] |
J.X. Lin, X. Tong, Z.M. Shi, et al., A biodegradable Zn–1Cu–0.1Ti alloy with antibacterial properties for orthopedic applications, Acta Biomater., 106(2020), p. 410. doi: 10.1016/j.actbio.2020.02.017
|
[37] |
X. Tong, Z.M. Shi, L.C. Xu, et al., Degradation behavior, cytotoxicity, hemolysis, and antibacterial properties of electro-deposited Zn–Cu metal foams as potential biodegradable bone implants, Acta Biomater., 102(2020), p. 481. doi: 10.1016/j.actbio.2019.11.031
|
[38] |
S.G. Lee, B. Kim, S.S. Sohn, W.G. Kim, K.K. Um, and S. Lee, Effects of local-brittle-zone (LBZ) microstructures on crack initiation and propagation in three Mo-added high-strength low-alloy (HSLA) steels, Mater. Sci. Eng. A, 760(2019), p. 125. doi: 10.1016/j.msea.2019.05.120
|
[39] |
U. Masood Chaudry, K. Hamad, and J.G. Kim, A further improvement in the room-temperature formability of magnesium alloy sheets by pre-stretching, Materials, 13(2020), No. 11, art. No. 2633. doi: 10.3390/ma13112633
|
[40] |
J. Sun, X. Zhang, Z.Z. Shi, et al. Adjusting comprehensive properties of biodegradable Zn–Mn alloy through solution heat-treatment, Mater. Today Commun., 23(2020), art. No. 101150. doi: 10.1016/j.mtcomm.2020.101150
|
[41] |
G. Leslie, K. Winwood, A. Sanderson, P. Zioupos, and T. Allen, Feasibility of additively manufacturing synthetic bone for sports personal protective equipment applications, Ann. 3D Print. Med., 12(2023), art. No. 100121. doi: 10.1016/j.stlm.2023.100121
|
[42] |
J. Winiarski, W. Tylus, and B.Szczygieł, EIS and XPS investigations on the corrosion mechanism of ternary Zn–Co–Mo alloy coatings in NaCl solution, Appl. Surf. Sci., 364(2016), p. 455. doi: 10.1016/j.apsusc.2015.12.183
|
[43] |
D. Bian, X.C. Zhou, J.N. Liu, et al., Degradation behaviors and in-vivo biocompatibility of a rare earth- and aluminum-free magnesium-based stent, Acta Biomater., 124(2021), p. 382. doi: 10.1016/j.actbio.2021.01.031
|
[44] |
Q. Qu, L. Li, W. Bai, C.W. Yan, and C.N. Cao, Effects of NaCl and NH4Cl on the initial atmospheric corrosion of zinc, Corros. Sci., 47(2005), No. 11, p. 2832. doi: 10.1016/j.corsci.2004.11.010
|
[45] |
X. Zhao, X. Zhou, H. Sun, et al., 3D printed Ti–5Cu alloy accelerates osteogenic differentiation of MC3T3-E1 cells by stimulating the M2 phenotype polarization of macrophages, Front. Immunol., 13(2022), art. No. 1001526. doi: 10.3389/fimmu.2022.1001526
|
[46] |
J. Kubásek, D. Vojtěch, E. Jablonská, I. Pospíšilová, J. Lipov, and T. Ruml, Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn–Mg alloys, Mater. Sci. Eng. C, 58(2016), p. 24. doi: 10.1016/j.msec.2015.08.015
|
[47] |
K.L. Markolf, G. O’Neill, S.R. Jackson, and D.R. McAllister, Effects of applied quadriceps and hamstrings muscle loads on forces in the anterior and posterior cruciate ligaments, Am. J. Sports Med., 32(2004), No. 5, p. 1144. doi: 10.1177/0363546503262198
|
[48] |
A. Hermann, A. Jung, A. Gruen, P.U. Brucker, and V. Senner, A lower leg surrogate study to investigate the effect of quadriceps–hamstrings activation ratio on ACL tensile force, J. Sci. Med. Sport, 25(2022), No. 9, p. 770. doi: 10.1016/j.jsams.2022.05.006
|
[49] |
J. Ma, N. Zhao, and D.H. Zhu, Endothelial cellular responses to biodegradable metal zinc, ACS Biomater. Sci. Eng., 1(2015), No. 11, p. 1174. doi: 10.1021/acsbiomaterials.5b00319
|
[50] |
J.L. Sun, Y. Feng, Z.Z. Shi, et al., Biodegradable Zn–0.5Li alloy rib plate: Processing procedure development and in vitro performance evaluation, J. Mater. Sci. Technol., 141(2023), p. 245. doi: 10.1016/j.jmst.2022.09.017
|
[51] |
Y.C. Su, K. Wang, J.L. Gao, et al., Enhanced cytocompatibility and antibacterial property of zinc phosphate coating on biodegradable zinc materials, Acta Biomater., 98(2019), p. 174. doi: 10.1016/j.actbio.2019.03.055
|