留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 5
May  2024

图(11)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  394
  • HTML全文浏览量:  161
  • PDF下载量:  23
  • 被引次数: 0
Ting Wang, Zhangzhi Shi, Hongyong Zhong, Xiangmin Li, Jinling Sun, Wei Yin, Xiaojing Ji, Qiang Wang, Anqi Zhao, and Luning Wang, In vitro performance of a biodegradable zinc alloy adjustable-loop cortical suspension fixation for anterior cruciate ligament reconstruction, Int. J. Miner. Metall. Mater., 31(2024), No. 5, pp. 887-898. https://doi.org/10.1007/s12613-024-2889-5
Cite this article as:
Ting Wang, Zhangzhi Shi, Hongyong Zhong, Xiangmin Li, Jinling Sun, Wei Yin, Xiaojing Ji, Qiang Wang, Anqi Zhao, and Luning Wang, In vitro performance of a biodegradable zinc alloy adjustable-loop cortical suspension fixation for anterior cruciate ligament reconstruction, Int. J. Miner. Metall. Mater., 31(2024), No. 5, pp. 887-898. https://doi.org/10.1007/s12613-024-2889-5
引用本文 PDF XML SpringerLink
研究论文

用于前交叉韧带重建的生物可降解带袢锌板的体外性能

文章亮点

  • (1) 首次设计并制备出用于前交叉韧带重建的可降解带袢锌板。
  • (2) 浸泡35天后,带袢锌板均匀降解,并能保持较高的固定强度。
  • (3) 锌合金浸提液能显著促进MC3T3-E1细胞的增殖和分化,并表现出卓越的抗菌性能。
  • 膝关节前交叉韧带(ACL)损伤是最常见且严重的运动损伤之一,皮质悬吊固定是重建韧带移植物时常用的股骨固定方法。然而,广泛用于韧带重建的皮质悬吊带袢板仍为不锈钢、钛合金等永久性金属,由于长期存在于体内,可能会诱发慢性炎症,且在受伤组织愈合后需要进行第二次手术移除。本研究通过热挤压制备出可降解Zn–0.45Mn–0.2Mg(ZMM42)合金,屈服强度为300.4 MPa,抗拉强度为329.8 MPa,断裂延伸率为17.6%。并且,首次提出设计用于前交叉韧带重建的可调节袢锌合金皮质悬吊带袢板(带袢锌板)。在模拟体液中浸泡35天后,ZMM42带袢锌板整体均匀降解,降解速率稳定在43 μm/a。同时,35天后ZMM42带袢锌板与牵引线的固定强度仍能达到379 N。另外,ZMM42带袢锌板能显著促进MC3T3-E1细胞的增殖和成骨分化,并对大肠杆菌和金黄色葡萄球菌表现出很高的抗菌性。以上结果揭示了可降解锌合金在韧带修复临床应用中的巨大潜力,为未来开发多样化锌合金带袢锌板奠定了基础。
  • Research Article

    In vitro performance of a biodegradable zinc alloy adjustable-loop cortical suspension fixation for anterior cruciate ligament reconstruction

    + Author Affiliations
    • Anterior cruciate ligament (ACL) injuries of the knee are one of the most common and serious athletic injuries. The widely used cortical suspension fixation buttons for ligament reconstruction are permanent implants, particularly those made from conventional steel or titanium alloys. In this study, a biodegradable Zn–0.45Mn–0.2Mg (ZMM42) alloy with the yield strength of 300.4 MPa and tensile strength of 329.8 MPa was prepared through hot extrusion. The use of zinc alloys in the preparation of cortical suspension fixation buttons was proposed for the first time. After 35 d of immersion in simulated body fluids, the ZMM42 alloy fixation buttons were degraded at a rate of 44 μm/a, and the fixation strength was retained (379.55 N) in the traction loops. Simultaneously, the ZMM42 alloy fixation buttons exhibited an increase in MC3T3-E1 cell viability and high antibacterial activity against Escherichia coli and Staphylococcus aureus. These results reveal the potential of biodegradable zinc alloys for use as ligament reconstruction materials and for developing diverse zinc alloy cortical suspension fixation devices.
    • loading
    • [1]
      A.M. Kiapour and M.M. Murray, Basic science of anterior cruciate ligament injury and repair, Bone Joint Res., 3(2014), No. 2, p. 20. doi: 10.1302/2046-3758.32.2000241
      [2]
      R. Vaishya, A.K. Agarwal, S. Ingole, and V. Vijay, Current trends in anterior cruciate ligament reconstruction: A review, Cureus, 7(2015), No. 11, art. No. e378. doi: 10.7759/cureus.378
      [3]
      N.H. Eysturoy, K.A. Nissen, T. Nielsen, and M. Lind, The influence of graft fixation methods on revision rates after primary anterior cruciate ligament reconstruction, Am. J. Sports Med., 46(2018), No. 3, p. 524. doi: 10.1177/0363546517748924
      [4]
      J.H. Lubowitz, C.H. Ahmad, and K. Anderson, All-inside anterior cruciate ligament graft-link technique: Second-generation, no-incision anterior cruciate ligament reconstruction, Arthroscopy, 27(2011), No. 5, p. 717. doi: 10.1016/j.arthro.2011.02.008
      [5]
      R. Ranjan, S. Gaba, L. Goel, et al. , In vivo comparison of a fixed loop (EndoButton CL) with an adjustable loop (TightRope RT) device for femoral fixation of the graft in ACL reconstruction: A prospective randomized study and a literature review, J. Orthop. Surg., 26(2018), No. 3. DOI: 10.1177/2309499018799787.
      [6]
      C.T. Chasapis, P.S A. Ntoupa, C.A. Spiliopoulou, and M.E. Stefanidou, Recent aspects of the effects of zinc on human health, Arch. Toxicol., 94(2020), No. 5, p. 1443. doi: 10.1007/s00204-020-02702-9
      [7]
      S. Praharaj, M. Skalicky, S. Maitra, et al., Zinc biofortification in food crops could alleviate the zinc malnutrition in human health, Molecules, 26(2021), No. 12, art. No. 3509. doi: 10.3390/molecules26123509
      [8]
      Y.Q. Qiao, W.J. Zhang, P. Tian, et al., Stimulation of bone growth following zinc incorporation into biomaterials, Biomaterials, 35(2014), No. 25, p. 6882. doi: 10.1016/j.biomaterials.2014.04.101
      [9]
      J. Ma, N. Zhao, and D.H. Zhu, Bioabsorbable zinc ion induced biphasic cellular responses in vascular smooth muscle cells, Sci. Rep., 6(2016), art. No. 26661. doi: 10.1038/srep26661
      [10]
      M. Molenda and J. Kolmas, The role of zinc in bone tissue health and regeneration—A review, Biol. Trace Elem. Res., 201(2023), No. 12, p. 5640. doi: 10.1007/s12011-023-03631-1
      [11]
      D. Vojtěch, J. Kubásek, J. Šerák, and P. Novák, Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation, Acta Biomater., 7(2011), No. 9, p. 3515. doi: 10.1016/j.actbio.2011.05.008
      [12]
      P.K. Bowen, R.J. Guillory, E.R. Shearier, et al., Metallic zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents, Mater. Sci. Eng. C Mater. Biol. Appl., 56(2015), p. 467. doi: 10.1016/j.msec.2015.07.022
      [13]
      L.J. Liu, Y. Meng, A.A. Volinsky, H.J. Zhang, and L.N. Wang, Influences of albumin on in vitro corrosion of pure Zn in artificial plasma, Corros. Sci., 153(2019), p. 341. doi: 10.1016/j.corsci.2019.04.003
      [14]
      C. Xiao, L.Q. Wang, Y.P. Ren, et al., Indirectly extruded biodegradable Zn–0.05wt%Mg alloy with improved strength and ductility: In vitro and in vivo studies, J. Mater. Sci. Technol., 34(2018), No. 9, p. 1618. doi: 10.1016/j.jmst.2018.01.006
      [15]
      H.T. Yang, B. Jia, Z.C. Zhang, et al., Alloying design of biodegradable zinc as promising bone implants for load-bearing applications, Nat. Commun., 11(2020), No. 1, art. No. 401. doi: 10.1038/s41467-019-14153-7
      [16]
      E.A. Zimmermann, E. Schaible, B. Gludovatz, et al., Intrinsic mechanical behavior of femoral cortical bone in young, osteoporotic and bisphosphonate-treated individuals in low- and high energy fracture conditions, Sci. Rep., 6(2016), art. No. 21072. doi: 10.1038/srep21072
      [17]
      S.D. Liu, W. Li, Z. Li, et al., Preparation and in vitro degradation behavior of biodegradable porous Zn–Li–Ca alloy bone repair scaffolds, J. Mater. Res. Technol., 28(2024), p. 1177. doi: 10.1016/j.jmrt.2023.11.287
      [18]
      X.N. Gu and Y.F. Zheng, A review on magnesium alloys as biodegradable materials, Front. Mater. Sci. China, 4(2010), No. 2, p. 111. doi: 10.1007/s11706-010-0024-1
      [19]
      Z.Z. Shi, X.M. Li, S.L. Yao, et al., 300 MPa grade biodegradable high-strength ductile low-alloy (BHSDLA) Zn–Mn–Mg alloys: An in vitro study, J. Mater. Sci. Technol., 138(2023), p. 233. doi: 10.1016/j.jmst.2022.08.015
      [20]
      Z.Z. Shi, J. Yu, and X.F. Liu, Microalloyed Zn–Mn alloys: From extremely brittle to extraordinarily ductile at room temperature, Mater. Des., 144(2018), p. 343. doi: 10.1016/j.matdes.2018.02.049
      [21]
      P.S. Guo, F.X. Li, L.J. Yang, et al., Ultra-fine-grained Zn–0.5Mn alloy processed by multi-pass hot extrusion: Grain refinement mechanism and room-temperature superplasticity, Mater. Sci. Eng. A, 748(2019), p. 262. doi: 10.1016/j.msea.2019.01.089
      [22]
      X.L. Zhu, T.T. Ren, P.S. Guo, et al., Strengthening mechanism and biocompatibility of degradable Zn–Mn alloy with different Mn content, Mater. Today Commun., 31(2022), p. 103639. doi: 10.1016/j.mtcomm.2022.103639
      [23]
      B. Jia, H.T. Yang, Y. Han, et al. , In vitro and in vivo studies of Zn–Mn biodegradable metals designed for orthopedic applications, Acta Biomater., 108(2020), p. 358. doi: 10.1016/j.actbio.2020.03.009
      [24]
      X.K. Yu, X.H. Sun, D.B. Liu, G.H. Liang, F. Jin, and J.J. Gao, Study on mechanical and degradation behavior of Zn–Mn–xMg alloys under coupling effects of stress and SBF, J. Mater. Res. Technol., 28(2024), p. 3960. doi: 10.1016/j.jmrt.2024.01.012
      [25]
      L.B. Yang, X. Li, L.J. Yang, et al., Effect of Mg contents on the microstructure, mechanical properties and cytocompatibility of degradable Zn–0.5Mn–xMg alloy, J. Funct. Biomater., 14(2023), No. 4, art. No. 195. doi: 10.3390/jfb14040195
      [26]
      J. Sun, X. Zhang, Z.Z. Shi, et al., Development of a high-strength Zn–Mn–Mg alloy for ligament reconstruction fixation, Acta Biomater., 119(2021), p. 485. doi: 10.1016/j.actbio.2020.10.032
      [27]
      Z. Li, Z.Z. Shi, Y. Hao, H.F. Li, H.J. Zhang, X.F. Liu, and L.N. Wang, Insight into role and mechanism of Li on the key aspects of biodegradable Zn–Li alloys: Microstructure evolution, mechanical properties, corrosion behavior and cytotoxicity, Mater. Sci. Eng. C, 114(2020), art. No. 111049. doi: 10.1016/j.msec.2020.111049
      [28]
      N.S. Murni, M.S. Dambatta, S.K. Yeap, G.R.A. Froemming, and H. Hermawan, Cytotoxicity evaluation of biodegradable Zn–3Mg alloy toward normal human osteoblast cells, Mater. Sci. Eng. C, 49(2015), p. 560. doi: 10.1016/j.msec.2015.01.056
      [29]
      P.K. Bowen, J. Drelich, and J. Goldman, Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents, Adv. Mater., 25(2013), No. 18, p. 2577. doi: 10.1002/adma.201300226
      [30]
      J. Young and R.G. Reddy, Synthesis, mechanical properties, and in vitro corrosion behavior of biodegradable Zn–Li–Cu alloys, J. Alloys Compd., 844(2020), art. No. 156257. doi: 10.1016/j.jallcom.2020.156257
      [31]
      H.T. Yang, X.H. Qu, W.J. Lin, et al. , In vitro and in vivo studies on zinc-hydroxyapatite composites as novel biodegradable metal matrix composite for orthopedic applications, Acta Biomater., 71(2018), p. 200. doi: 10.1016/j.actbio.2018.03.007
      [32]
      J. Venezuela and M.S. Dargusch, The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: A comprehensive review, Acta Biomater., 87(2019), p. 1. doi: 10.1016/j.actbio.2019.01.035
      [33]
      X. Liu, H.T. Yang, P. Xiong, W.T. Li, H.H. Huang, and Y.F. Zheng, Comparative studies of Tris-HCl, HEPES and NaHCO3/CO2 buffer systems on the biodegradation behaviour of pure Zn in NaCl and SBF solutions, Corros. Sci., 157(2019), p. 205. doi: 10.1016/j.corsci.2019.05.018
      [34]
      L.J. Liu, Y. Meng, C.F. Dong, Y. Yan, A.A. Volinsky, and L.N. Wang, Initial formation of corrosion products on pure zinc in simulated body fluid, J. Mater. Sci. Technol., 34(2018), No. 12, p. 2271. doi: 10.1016/j.jmst.2018.05.005
      [35]
      Z. Chen, J.P. Yao, J.L. Zhao, and S.G. Wang, Injectable wound dressing based on carboxymethyl chitosan triple-network hydrogel for effective wound antibacterial and hemostasis, Int. J. Biol. Macromol., 225(2023), p. 1235. doi: 10.1016/j.ijbiomac.2022.11.184
      [36]
      J.X. Lin, X. Tong, Z.M. Shi, et al., A biodegradable Zn–1Cu–0.1Ti alloy with antibacterial properties for orthopedic applications, Acta Biomater., 106(2020), p. 410. doi: 10.1016/j.actbio.2020.02.017
      [37]
      X. Tong, Z.M. Shi, L.C. Xu, et al., Degradation behavior, cytotoxicity, hemolysis, and antibacterial properties of electro-deposited Zn–Cu metal foams as potential biodegradable bone implants, Acta Biomater., 102(2020), p. 481. doi: 10.1016/j.actbio.2019.11.031
      [38]
      S.G. Lee, B. Kim, S.S. Sohn, W.G. Kim, K.K. Um, and S. Lee, Effects of local-brittle-zone (LBZ) microstructures on crack initiation and propagation in three Mo-added high-strength low-alloy (HSLA) steels, Mater. Sci. Eng. A, 760(2019), p. 125. doi: 10.1016/j.msea.2019.05.120
      [39]
      U. Masood Chaudry, K. Hamad, and J.G. Kim, A further improvement in the room-temperature formability of magnesium alloy sheets by pre-stretching, Materials, 13(2020), No. 11, art. No. 2633. doi: 10.3390/ma13112633
      [40]
      J. Sun, X. Zhang, Z.Z. Shi, et al. Adjusting comprehensive properties of biodegradable Zn–Mn alloy through solution heat-treatment, Mater. Today Commun., 23(2020), art. No. 101150. doi: 10.1016/j.mtcomm.2020.101150
      [41]
      G. Leslie, K. Winwood, A. Sanderson, P. Zioupos, and T. Allen, Feasibility of additively manufacturing synthetic bone for sports personal protective equipment applications, Ann. 3D Print. Med., 12(2023), art. No. 100121. doi: 10.1016/j.stlm.2023.100121
      [42]
      J. Winiarski, W. Tylus, and B.Szczygieł, EIS and XPS investigations on the corrosion mechanism of ternary Zn–Co–Mo alloy coatings in NaCl solution, Appl. Surf. Sci., 364(2016), p. 455. doi: 10.1016/j.apsusc.2015.12.183
      [43]
      D. Bian, X.C. Zhou, J.N. Liu, et al., Degradation behaviors and in-vivo biocompatibility of a rare earth- and aluminum-free magnesium-based stent, Acta Biomater., 124(2021), p. 382. doi: 10.1016/j.actbio.2021.01.031
      [44]
      Q. Qu, L. Li, W. Bai, C.W. Yan, and C.N. Cao, Effects of NaCl and NH4Cl on the initial atmospheric corrosion of zinc, Corros. Sci., 47(2005), No. 11, p. 2832. doi: 10.1016/j.corsci.2004.11.010
      [45]
      X. Zhao, X. Zhou, H. Sun, et al., 3D printed Ti–5Cu alloy accelerates osteogenic differentiation of MC3T3-E1 cells by stimulating the M2 phenotype polarization of macrophages, Front. Immunol., 13(2022), art. No. 1001526. doi: 10.3389/fimmu.2022.1001526
      [46]
      J. Kubásek, D. Vojtěch, E. Jablonská, I. Pospíšilová, J. Lipov, and T. Ruml, Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn–Mg alloys, Mater. Sci. Eng. C, 58(2016), p. 24. doi: 10.1016/j.msec.2015.08.015
      [47]
      K.L. Markolf, G. O’Neill, S.R. Jackson, and D.R. McAllister, Effects of applied quadriceps and hamstrings muscle loads on forces in the anterior and posterior cruciate ligaments, Am. J. Sports Med., 32(2004), No. 5, p. 1144. doi: 10.1177/0363546503262198
      [48]
      A. Hermann, A. Jung, A. Gruen, P.U. Brucker, and V. Senner, A lower leg surrogate study to investigate the effect of quadriceps–hamstrings activation ratio on ACL tensile force, J. Sci. Med. Sport, 25(2022), No. 9, p. 770. doi: 10.1016/j.jsams.2022.05.006
      [49]
      J. Ma, N. Zhao, and D.H. Zhu, Endothelial cellular responses to biodegradable metal zinc, ACS Biomater. Sci. Eng., 1(2015), No. 11, p. 1174. doi: 10.1021/acsbiomaterials.5b00319
      [50]
      J.L. Sun, Y. Feng, Z.Z. Shi, et al., Biodegradable Zn–0.5Li alloy rib plate: Processing procedure development and in vitro performance evaluation, J. Mater. Sci. Technol., 141(2023), p. 245. doi: 10.1016/j.jmst.2022.09.017
      [51]
      Y.C. Su, K. Wang, J.L. Gao, et al., Enhanced cytocompatibility and antibacterial property of zinc phosphate coating on biodegradable zinc materials, Acta Biomater., 98(2019), p. 174. doi: 10.1016/j.actbio.2019.03.055

    Catalog


    • /

      返回文章
      返回