Cite this article as: |
Chen Chen, Hongyu Xue, Qilin Hu, Mengfan Wang, Pan Shang, Ziyan Liu, Tao Peng, Deyang Zhang, and Yongsong Luo, Construction of 3D porous Cu1.81S/nitrogen-doped carbon frameworks for ultrafast and long-cycle life sodium-ion storage, Int. J. Miner. Metall. Mater., 32(2025), No. 1, pp. 191-200. https://doi.org/10.1007/s12613-024-2890-z |
陈琛 E-mail: chenpaper@outlook.com
罗永松 E-mail: ysluo@xynu.edu.cn
Supplementary Information-s12613-024-2890-z.docx |
[1] |
B. Chen, S.M. Sui, F. He, et al., Interfacial engineering of transition metal dichalcogenide/carbon heterostructures for electrochemical energy applications, Chem. Soc. Rev., 52(2023), No. 22, p. 7802. doi: 10.1039/D3CS00445G
|
[2] |
J.W. Huang, K. Wu, G. Xu, M.H. Wu, S.X. Dou, and C. Wu, Recent progress and strategic perspectives of inorganic solid electrolytes: Fundamentals, modifications, and applications in sodium metal batteries, Chem. Soc. Rev., 52(2023), No. 15, p. 4933. doi: 10.1039/D2CS01029A
|
[3] |
J. Xu, Y.B. Liu, P.L. Chen, et al., Interlayer-expanded VS2 nanosheet: Fast ion transport, dynamic mechanism and application in Zn2+ and Mg2+/Li+ hybrid batteries systems, J. Colloid Interface Sci., 620(2022), p. 119. doi: 10.1016/j.jcis.2022.04.009
|
[4] |
H.Q. Liu, Y.N. He, K.Z. Cao, et al., Activating commercial Al pellets by replacing the passivation layer for high-performance half/full Li-ion batteries, Chem. Eng. J., 433(2022), art. No. 133572. doi: 10.1016/j.cej.2021.133572
|
[5] |
J. Wang, S.Q. Zhao, L. Tang, et al., Review of the electrochemical performance and interfacial issues of high-nickel layered cathodes in inorganic all-solid-state batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 1003. doi: 10.1007/s12613-022-2453-0
|
[6] |
A. Kumar Prajapati and A. Bhatnagar, A review on anode materials for lithium/sodium-ion batteries, J. Energy Chem., 83(2023), p. 509. doi: 10.1016/j.jechem.2023.04.043
|
[7] |
M. Chen, F.M. Liu, S.S. Chen, et al. , In situ self-catalyzed formation of carbon nanotube wrapped and amorphous nanocarbon shell coated LiFePO4 microclew for high-power lithium ion batteries, Carbon, 203(2023), p. 661. doi: 10.1016/j.carbon.2022.12.015
|
[8] |
Z. Dong, X. Wu, M.Y. Chen, et al., Self-supporting 1T-MoS2@WS2@CC composite materials for potential high-capacity sodium storage system, J. Colloid Interface Sci, 630(2023), Part B, . 426. doi: 10.1016/j.jcis.2022.10.072
|
[9] |
W.H. Xie, W.J. Wang, L.F. Duan, et al., Amorphous carbon nanofibers incorporated with ultrafine GeO2 nanoparticles for enhanced lithium storage performance, J. Alloys Compd., 918(2022), art. No. 165687. doi: 10.1016/j.jallcom.2022.165687
|
[10] |
D. Wang, Q. Ma, K.H. Tian, C.Q. Duan, Z.Y. Wang, and Y.G. Liu, Ultrafine nano-scale Cu2Sb alloy confined in three-dimensional porous carbon as an anode for sodium-ion and potassium-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1666. doi: 10.1007/s12613-021-2286-2
|
[11] |
D. Zang, C.Y. Geng, X. Zheng, et al., Facile synthesis of the Mn3O4 polyhedron grown on N-doped honeycomb carbon as high-performance negative material for lithium-ion battery, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1152. doi: 10.1007/s12613-022-2590-5
|
[12] |
X.H. Ma, Z.J. Chen, T.W. Zhang, et al., Efficient utilization of glass fiber separator for low-cost sodium-ion batteries, Int. J. Miner. Metall. Mater., 30(2023), No. 10, p. 1878. doi: 10.1007/s12613-023-2691-9
|
[13] |
Y.F. Zhu, Y. Xiao, S.X. Dou, Y.M. Kang, and S.L. Chou, Spinel/post-spinel engineering on layered oxide cathodes for sodium-ion batteries, eScience, 1(2021), No. 1, p. 13. doi: 10.1016/j.esci.2021.10.003
|
[14] |
Y. Liu, Y. Qing, B. Zhou, et al., Yolk−shell Sb@Void@Graphdiyne nanoboxes for high-rate and long cycle life sodium-ion batteries, ACS Nano, 17(2023), No. 3, p. 2431. doi: 10.1021/acsnano.2c09679
|
[15] |
S.H. Liu, W.R. Zheng, W.H. Xie, et al., Synthesis of three-dimensional honeycomb-like Fe3N@NC composites with enhanced lithium storage properties, Carbon, 192(2022), p. 162. doi: 10.1016/j.carbon.2022.02.057
|
[16] |
L.N. Wang, X. Wu, F.T. Wang, X. Chen, J. Xu, and K.J. Huang, 1T-Phase MoS2 with large layer spacing supported on carbon cloth for high-performance Na+ storage, J. Colloid Interface Sci., 583(2021), p. 579. doi: 10.1016/j.jcis.2020.09.055
|
[17] |
J.S. Wang, F. Li, S. Zhao, L.T. Zheng, Y.Y. Huang, and Z.S. Hong, Uniform nanoplating of metallic magnesium film on titanium dioxide nanotubes as a skeleton for reversible Na metal anode, Int. J. Miner. Metall. Mater., 30(2023), No. 10, p. 1868. doi: 10.1007/s12613-023-2685-7
|
[18] |
J. Yu, Y.B. Wei, B.C. Meng, et al., Homogeneous distributed natural pyrite-derived composite induced by modified graphite as high-performance lithium-ion batteries anode, Int. J. Miner. Metall. Mater., 30(2023), No. 7, p. 1353. doi: 10.1007/s12613-023-2598-5
|
[19] |
Z. Tang, S.Y. Zhou, Y.C. Huang, et al., Improving the initial coulombic efficiency of carbonaceous materials for Li/Na-ion batteries: Origins, solutions, and perspectives, Electrochem. Energy Rev., 6(2023), No. 1, art. No. 8. doi: 10.1007/s41918-022-00178-y
|
[20] |
J. Xu, Q. Liu, Z. Dong, et al., Interconnected MoS2 on 2D graphdiyne for reversible sodium storage, ACS Appl. Mater. Interfaces, 13(2021), No. 46, p. 54974. doi: 10.1021/acsami.1c15484
|
[21] |
C. Chen, Q.L. Hu, H.Y. Xue, et al., Rational construction of 3D porous Fe3N@C frameworks for high-performance sodium-ion half/full batteries, J. Alloys Compd., 934(2023), art. No. 167934. doi: 10.1016/j.jallcom.2022.167934
|
[22] |
X. Wu, X.C. Xie, H.H. Zhang, and K.J. Huang, Engineering stable and fast sodium diffusion route by constructing hierarchical MoS2 hollow spheres, J. Colloid Interface Sci., 595(2021), p. 43. doi: 10.1016/j.jcis.2021.03.112
|
[23] |
Z.H. Wu, C.Y. Wang, Z.Y. Hui, et al., Growing single-crystalline seeds on lithiophobic substrates to enable fast-charging lithium-metal batteries, Nat. Energy, 8(2023), p. 340.
|
[24] |
M.M. Yuan, H.J. Liu, and F. Ran, Fast-charging cathode materials for lithium & sodium ion batteries, Mater. Today, 63(2023), p. 360. doi: 10.1016/j.mattod.2023.02.007
|
[25] |
D.P. Qiu, A. Gao, W.T. Zhao, et al., Fast-charging degradation mechanism of two-dimensional FeSe anode in sodium-ion batteries, ACS Energy Lett., 8(2023), No. 10, p. 4052. doi: 10.1021/acsenergylett.3c01086
|
[26] |
Y.Y. Liu, H.D. Shi, and Z.S. Wu, Recent status, key strategies and challenging perspectives of fast-charging graphite anodes for lithium-ion batteries, Energy Environ. Sci., 16(2023), No. 11, p. 4834. doi: 10.1039/D3EE02213G
|
[27] |
J. Wang, Y.F. Yuan, X.H. Rao, et al., Realizing high-performance Na3V2(PO4)2O2F cathode for sodium-ion batteries via Nb-doping, Int. J. Miner. Metall. Mater., 30(2023), No. 10, p. 1859. doi: 10.1007/s12613-023-2666-x
|
[28] |
K.Y. Chen, G.J. Li, Z.H. Hu, et al., Construction of γ-MnS/α-MnS hetero-phase junction for high-performance sodium-ion batteries, Chem. Eng. J., 435(2022), art. No. 135149. doi: 10.1016/j.cej.2022.135149
|
[29] |
Z.Q. Hao, X.Y. Shi, Z. Yang, L. Li, and S.L. Chou, Developing high-performance metal selenides for sodium-ion batteries, Adv. Funct. Mater., 32(2022), No. 51, art. No. 2208093. doi: 10.1002/adfm.202208093
|
[30] |
Y.J. Wu, W. Shuang, Y. Wang, et al., Implementation of structural and surface engineering strategies to copper sulfide for enhanced sodium-ion storage, J. Alloys Compd., 923(2022), art. No. 166308. doi: 10.1016/j.jallcom.2022.166308
|
[31] |
H.Q. Liu, Y.N. He, H. Zhang, et al., Lowering the voltage-hysteresis of CuS anode for Li-ion batteries via constructing heterostructure, Chem. Eng. J., 425(2021), art. No. 130548. doi: 10.1016/j.cej.2021.130548
|
[32] |
Z. Ali, T. Zhang, M. Asif, L.N. Zhao, Y. Yu, and Y.L. Hou, Transition metal chalcogenide anodes for sodium storage, Mater. Today, 35(2020), p. 131. doi: 10.1016/j.mattod.2019.11.008
|
[33] |
P.F. Huang, H.J. Ying, S.L. Zhang, Z. Zhang, and W.Q. Han, In situ fabrication of via Lewis acidic etching route for efficient sodium storage, J. Mater. Chem. A, 10(2022), No. 41, p. 22135. doi: 10.1039/D2TA06695E
|
[34] |
R. Lu, S. Zhou, S.M. Chai, et al., Cu9S5 nanoparticles encapsulated in N, S co-doped carbon nanofibers as anodes for high-performance lithium-ion and sodium-ion batteries, J. Phys. D: Appl. Phys., 55(2022), No. 33, art. No. 334001. doi: 10.1088/1361-6463/ac7111
|
[35] |
X.D. Ding, S. Lei, C.F. Du, Z.L. Xie, J.R. Li, and X.Y. Huang, Copper Sulfides: Small-sized CuS nanoparticles/N, S co-doped rGO composites as the anode materials for high-performance lithium-ion batteries, Adv. Mater. Interfaces, 6(2019), No. 6, art. No. 1900038. doi: 10.1002/admi.201900038
|
[36] |
Y.Y. Sun, Y. Li, L.M. Sheng, et al., Universal synthesis of free-standing metal-sulfides@metal@multi-walled carbon nanotube anode for high-performance sodium ion battery, Chem. Eng. J., 414(2021), art. No. 128732. doi: 10.1016/j.cej.2021.128732
|
[37] |
Y. Shang, X.X. Li, S.Z. Huang, et al., A selective reduction approach to construct robust Cu1.81S truss structures for high-performance sodium storage, Matter, 2(2020), No. 2, p. 428. doi: 10.1016/j.matt.2019.10.027
|
[38] |
J.Z. Li, L.L. Wang, L. Li, C.X. Lv, I.V. Zatovsky, and W. Han, Metal sulfides@carbon microfiber networks for boosting lithium ion/sodium ion storage via a general metal – Aspergillus niger bioleaching strategy, ACS Appl. Mater. Interfaces, 11(2019), No. 8, p. 8072. doi: 10.1021/acsami.8b21976
|
[39] |
J. Xia, L. Liu, S. Jamil, et al., Free-standing SnS/C nanofiber anodes for ultralong cycle-life lithium-ion batteries and sodium-ion batteries, Energy Storage Mater., 17(2019), p. 1. doi: 10.1016/j.ensm.2018.08.005
|
[40] |
Y.N. Chen, Y.B. Zhao, W.J. He, et al., Cu-MOFs derived three-dimensional Cu1.81S@C for high energy storage performance, Mater. Today Commun., 37(2023), art. No. 106955. doi: 10.1016/j.mtcomm.2023.106955
|
[41] |
L.X. Xie, Z. Yang, J.Y. Sun, et al., Bi2Se3/C nanocomposite as a new sodium-ion battery anode material, Nano Micro Lett., 10(2018), No. 3, art. No. 50. doi: 10.1007/s40820-018-0201-9
|
[42] |
W.Q. Wang, Y.Y. Yang, Y.N. Nuli, J.J. Zhou, J. Yang, and J.L. Wang, Metal organic framework (MOF)-derived carbon-encapsulated cuprous sulfide cathode based on displacement reaction for Hybrid Mg2+/Li+ batteries, J. Power Sources, 445(2020), art. No. 227325. doi: 10.1016/j.jpowsour.2019.227325
|
[43] |
X.Y. Yang, C.L. Du, Y.Q. Zhu, et al., Constructing defect-rich unconventional phase Cu7.2S4 nanotubes via microwave-induced selective etching for ultra-stable rechargeable magnesium batteries, Chem. Eng. J., 430(2022), art. No. 133108. doi: 10.1016/j.cej.2021.133108
|
[44] |
C. Chen, Q.L. Hu, F. Yang, et al., A facile synthesis of CuSe nanosheets for high-performance sodium-ion hybrid capacitors, RSC Adv., 12(2022), No. 33, p. 21558. doi: 10.1039/D2RA03206F
|
[45] |
Y.H. Xiao, F. Yue, Z.Q. Wen, et al., Elastic buffering layer on CuS enabling high-rate and long-life sodium-ion storage, Nanomicro Lett., 14(2022), No. 1, art. No. 193. doi: 10.1007/s40820-022-00924-3
|
[46] |
Y.H. Zhao, Z. Hu, C.L. Fan, et al., Novel structural design and adsorption/insertion coordinating quasi-metallic Na storage mechanism toward high-performance hard carbon anode derived from carboxymethyl cellulose, Small, 19(2023), No. 41, art. No. e2303296. doi: 10.1002/smll.202303296
|
[47] |
Y. Jiang, F. Wu, Z.Q. Ye, et al., Confining CoTe2–ZnTe heterostructures on petal-like nitrogen-doped carbon for fast and robust sodium storage, Chem. Eng. J., 451(2023), art. No. 138430. doi: 10.1016/j.cej.2022.138430
|
[48] |
G.Z. Fang, Z.X. Wu, J. Zhou, et al., Observation of pseudocapacitive effect and fast ion diffusion in bimetallic sulfides as an advanced sodium-ion battery anode, Adv. Energy Mater., 8(2018), No. 19, art. No. 1703155. doi: 10.1002/aenm.201703155
|
[49] |
Z.H. Pan, X.H. Zhang, S.T. Xu, M.Z. Gu, X.H. Rui, and X.J. Zhang, Chloride-doping, defect and interlayer engineering of copper sulfide for superior sodium-ion batteries, J. Mater. Chem. A, 11(2023), No. 8, p. 4102. doi: 10.1039/D2TA09612A
|
[50] |
M.J. Jing, F.Y. Li, M.J. Chen, et al., Facile synthetic strategy to uniform Cu9S5 embedded into carbon: A novel anode for sodium-ion batteries, J. Alloys Compd., 762(2018), p. 473. doi: 10.1016/j.jallcom.2018.05.224
|
[51] |
Y.H. Wang, Y. Yang, D.Y. Zhang, et al., Inter-overlapped MoS2/C composites with large-interlayer-spacing for high-performance sodium-ion batteries, Nanoscale Horiz., 5(2020), No. 7, p. 1127. doi: 10.1039/D0NH00152J
|
[52] |
H. Li, Y.H. Wang, J.L. Jiang, Y.Y. Zhang, Y.Y. Peng, and J.B. Zhao, CuS microspheres as high-performance anode material for Na-ion batteries, Electrochim. Acta, 247(2017), p. 851. doi: 10.1016/j.electacta.2017.07.018
|
[53] |
R.H. Liu, Y.H. Zhang, D.D. Wang, et al., Microwave-assisted synthesis of self-assembled camellia-like CuS superstructure of ultra-thin nanosheets and exploration of its sodium ion storage properties, J. Electroanal. Chem., 898(2021), art. No. 115607. doi: 10.1016/j.jelechem.2021.115607
|
[54] |
J.B. Wang, J. Okabe, K. Urita, I. Moriguchi, and M.D. Wei, Cu2S hollow spheres as an anode for high-rate sodium storage performance, J. Electroanal. Chem., 874(2020), art. No. 114523. doi: 10.1016/j.jelechem.2020.114523
|
[55] |
L.F. Zhang, Y. Hu, Y. Liu, J.X. Bai, H. Ruan, and S.W. Guo, Tunable CuS nanocables with hierarchical nanosheet-assembly for ultrafast and long-cycle life sodium-ion storage, Ceram. Int., 47(2021), No. 10, p. 14138. doi: 10.1016/j.ceramint.2021.01.284
|
[56] |
Y.H. Xiao, D.C. Su, X.Z. Wang, et al., CuS Microspheres with Tunable Interlayer space and micropore as a high-rate and long-life anode for sodium-ion batteries, Adv. Energy Mater., 8(2018), No. 22, art. No. 1800930. doi: 10.1002/aenm.201800930
|
[57] |
Zulkifli, S. Lee, G. Alfaza, A.N. Fahri, et al., Encapsulation of Cu2S with a nitrogen-doped carbon boosts Na+ storage with a reversible Na2S conversion reaction, Mater. Today Sustain., 22(2023), art. No. 100348. doi: 10.1016/j.mtsust.2023.100348
|
[58] |
H. Qi, Y. Hou, W.J. Wang, W. Deng, L. Tang, and C.Y. Zhang, Single-crystalline nanoflakes assembled CuS microspheres with improved sodium ion storage, J. Alloys Compd., 942(2023), art. No. 168884. doi: 10.1016/j.jallcom.2023.168884
|
[59] |
X. Pei, Y.Q. Zhu, C.L. Du, et al., Single-crystal copper sulfide anode with fast ion diffusion for high-rate sodium-ion batteries, ACS Appl. Energy Mater., 6(2023), No. 15, p. 8132. doi: 10.1021/acsaem.3c01234
|
[60] |
X.Y. Tong, Z. Wang, Z.Y. Liu, et al., Phosphorus-doped copper sulfide microspheres with a hollow structure for high-performance sodium-ion batteries, New J. Chem., 47(2023), No. 20, p. 9861. doi: 10.1039/D3NJ00709J
|
[61] |
C. Chen, Q.L. Hu, H.Y. Xue, et al., Achieving high-rate capacity FeSe2@N-doped carbon decorated with Ti3C2T x MXenes for sodium ion batteries, Mater. Today Chem., 34(2023), art. No. 101796. doi: 10.1016/j.mtchem.2023.101796
|
[62] |
A.N. Wang, W.W. Hong, L. Li, et al., Bi3Se4 nanodots in porous carbon: A new anode candidate for fast lithium/sodium storage, Energy Storage Mater., 53(2022), p. 1. doi: 10.1016/j.ensm.2022.08.042
|
[63] |
B. Yan, L.C. Lin, H. Sun, et al., Double-shelled NiS/SnS@N-doped carbon nanoboxes engineered from NiSn(OH)6 cube templates for advanced sodium-ion battery anodes, Chem. Eng. J., 477(2023), art. No. 146950. doi: 10.1016/j.cej.2023.146950
|
[64] |
C. Chen, Q.L. Hu, H.Y. Xue, et al., Ultrafast and ultrastable FeSe2 embedded in nitrogen-doped carbon nanofibers anode for sodium-ion half/full batteries, Nanotechnology, 35(2023), No. 5, art. No. 055404. doi: 10.1088/1361-6528/ad06d7
|
[65] |
Y.J. Liu, M. Qiu, X. Hu, et al., Anion defects engineering of ternary Nb-based chalcogenide anodes toward high-performance sodium-based dual-ion batteries, Nano Micro Lett., 15(2023), No. 1, art. No. 104. doi: 10.1007/s40820-023-01070-0
|
[66] |
Z. Wang, S.M. Chen, J.M. Qiu, et al., Full-cell presodiation strategy to enable high-performance Na-ion batteries, Adv. Energy Mater., 13(2023), No. 45, art. No. 2302514. doi: 10.1002/aenm.202302514
|