留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 32 Issue 1
Jan.  2025

图(6)

数据统计

分享

计量
  • 文章访问数:  705
  • HTML全文浏览量:  313
  • PDF下载量:  40
  • 被引次数: 0
Chen Chen, Hongyu Xue, Qilin Hu, Mengfan Wang, Pan Shang, Ziyan Liu, Tao Peng, Deyang Zhang, and Yongsong Luo, Construction of 3D porous Cu1.81S/nitrogen-doped carbon frameworks for ultrafast and long-cycle life sodium-ion storage, Int. J. Miner. Metall. Mater., 32(2025), No. 1, pp. 191-200. https://doi.org/10.1007/s12613-024-2890-z
Cite this article as:
Chen Chen, Hongyu Xue, Qilin Hu, Mengfan Wang, Pan Shang, Ziyan Liu, Tao Peng, Deyang Zhang, and Yongsong Luo, Construction of 3D porous Cu1.81S/nitrogen-doped carbon frameworks for ultrafast and long-cycle life sodium-ion storage, Int. J. Miner. Metall. Mater., 32(2025), No. 1, pp. 191-200. https://doi.org/10.1007/s12613-024-2890-z
引用本文 PDF XML SpringerLink
研究论文

构建3D多孔Cu1.81S/氮掺杂碳框架用于超快和长循环寿命钠离子存储



    * 共同第一作者
  • 通讯作者:

    陈琛    E-mail: chenpaper@outlook.com

    罗永松    E-mail: ysluo@xynu.edu.cn

文章亮点

  • (1) 通过简单易行的溶胶凝胶法以及退火工艺制备出三维多孔Cu1.81S/氮掺杂碳结构
  • (2) 系统的研究了硫化铜的含量对其结构和性能的影响
  • (3) 这种基于转换型储存机制的Cu1.81S/NC电极,在半电池中展现出优异的倍率性能(在20.0 A·g-1电流密度下,具有250.6 mAh·g-1的比容量)和出色的循环稳定性(在10.0 A·g-1下6000次循环保持70%的容量)
  • (4) 组装的钠离子全电池也具有较好的倍率性能(在5.0 A·g-1的电流密度下,比容量为330.5 mAh·g-1)和循环稳定性(在2.0 A·g-1下循环750次后,容量保持率为86.9 %)
  • 可充电钠离子电池(SIBs)是最重要的电化学储能装置之一,在大规模储能应用中具有广阔的发展前景。然而较大的Na+半径,会导致动力学反应迟缓、离子嵌入/脱出时体积变化引起的容量快速衰减等问题,使得钠离子电池表现出较差的可逆性、循环稳定性和倍率性能,严重限制了它的实际应用。本文以金属硫化物为研究对象,以聚乙烯吡咯烷酮(PVP)为碳源,硝酸铜和硫脲为发泡剂,采用溶胶-凝胶和退火工艺,在三维多孔氮掺杂碳基体中嵌入Cu1.81S纳米颗粒。旨在开发一种合成方法简单易行且具有优异电化学性能的金属硫化物作为钠离子电池的负极材料。通过系统的研究了硫化铜的含量对其结构和性能的影响,结果表明:当铜盐添加量为0.8 g时,此时组装的半电池展现出优异的倍率性能(在20.0 A·g−1电流密度下,具有250.6 mAh·g−1的比容量)和出色的循环稳定性(在10.0 A·g−1下6000次循环保持70%的容量) ,电极材料的电化学性能达到最佳。此外,在全电池测试中也具有较好的倍率性能和循环性能。这些优异的性能与其微观结构有关: 纳米复合材料的多孔结构,它可以缓解Cu1.81S纳米颗粒在放电/充电过程中的体积膨胀和团聚,促进电子转移和离子扩散,提高电极材料的电导率和结构稳定性。由此可知,构建合理的纳米结构能够改善钠负极材料面临的动力学反应迟缓、体积膨胀等问题,也为高倍率和超稳定转换型材料作为快速充电和长寿命SIBs负极的应用提供了可能。
  • Research Article

    Construction of 3D porous Cu1.81S/nitrogen-doped carbon frameworks for ultrafast and long-cycle life sodium-ion storage

    + Author Affiliations
    • Transition metal sulfides have great potential as anode materials for sodium-ion batteries (SIBs) due to their high theoretical specific capacities. However, the inferior intrinsic conductivity and large volume variation during sodiation–desodiation processes seriously affect its high-rate and long-cycle performance, unbeneficial for the application as fast-charging and long-cycling SIBs anode. Herein, the three-dimensional porous Cu1.81S/nitrogen-doped carbon frameworks (Cu1.81S/NC) are synthesized by the simple and facile sol–gel and annealing processes, which can accommodate the volumetric expansion of Cu1.81S nanoparticles and accelerate the transmission of ions and electrons during Na+ insertion/extraction processes, exhibiting the excellent rate capability (250.6 mAh·g−1 at 20.0 A·g−1) and outstanding cycling stability (70% capacity retention for 6000 cycles at 10.0 A·g−1) for SIBs. Moreover, the Na-ion full cells coupled with Na3V2(PO4)3/C cathode also demonstrate the satisfactory reversible specific capacity of 330.5 mAh·g−1 at 5.0 A·g−1 and long-cycle performance with the 86.9% capacity retention at 2.0 A·g−1 after 750 cycles. This work proposes a promising way for the conversion-based metal sulfides for the applications as fast-charging sodium-ion battery anode.
    • loading
    • Supplementary Information-s12613-024-2890-z.docx
    • [1]
      B. Chen, S.M. Sui, F. He, et al., Interfacial engineering of transition metal dichalcogenide/carbon heterostructures for electrochemical energy applications, Chem. Soc. Rev., 52(2023), No. 22, p. 7802. doi: 10.1039/D3CS00445G
      [2]
      J.W. Huang, K. Wu, G. Xu, M.H. Wu, S.X. Dou, and C. Wu, Recent progress and strategic perspectives of inorganic solid electrolytes: Fundamentals, modifications, and applications in sodium metal batteries, Chem. Soc. Rev., 52(2023), No. 15, p. 4933. doi: 10.1039/D2CS01029A
      [3]
      J. Xu, Y.B. Liu, P.L. Chen, et al., Interlayer-expanded VS2 nanosheet: Fast ion transport, dynamic mechanism and application in Zn2+ and Mg2+/Li+ hybrid batteries systems, J. Colloid Interface Sci., 620(2022), p. 119. doi: 10.1016/j.jcis.2022.04.009
      [4]
      H.Q. Liu, Y.N. He, K.Z. Cao, et al., Activating commercial Al pellets by replacing the passivation layer for high-performance half/full Li-ion batteries, Chem. Eng. J., 433(2022), art. No. 133572. doi: 10.1016/j.cej.2021.133572
      [5]
      J. Wang, S.Q. Zhao, L. Tang, et al., Review of the electrochemical performance and interfacial issues of high-nickel layered cathodes in inorganic all-solid-state batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 1003. doi: 10.1007/s12613-022-2453-0
      [6]
      A. Kumar Prajapati and A. Bhatnagar, A review on anode materials for lithium/sodium-ion batteries, J. Energy Chem., 83(2023), p. 509. doi: 10.1016/j.jechem.2023.04.043
      [7]
      M. Chen, F.M. Liu, S.S. Chen, et al. , In situ self-catalyzed formation of carbon nanotube wrapped and amorphous nanocarbon shell coated LiFePO4 microclew for high-power lithium ion batteries, Carbon, 203(2023), p. 661. doi: 10.1016/j.carbon.2022.12.015
      [8]
      Z. Dong, X. Wu, M.Y. Chen, et al., Self-supporting 1T-MoS2@WS2@CC composite materials for potential high-capacity sodium storage system, J. Colloid Interface Sci, 630(2023), Part B, . 426. doi: 10.1016/j.jcis.2022.10.072
      [9]
      W.H. Xie, W.J. Wang, L.F. Duan, et al., Amorphous carbon nanofibers incorporated with ultrafine GeO2 nanoparticles for enhanced lithium storage performance, J. Alloys Compd., 918(2022), art. No. 165687. doi: 10.1016/j.jallcom.2022.165687
      [10]
      D. Wang, Q. Ma, K.H. Tian, C.Q. Duan, Z.Y. Wang, and Y.G. Liu, Ultrafine nano-scale Cu2Sb alloy confined in three-dimensional porous carbon as an anode for sodium-ion and potassium-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1666. doi: 10.1007/s12613-021-2286-2
      [11]
      D. Zang, C.Y. Geng, X. Zheng, et al., Facile synthesis of the Mn3O4 polyhedron grown on N-doped honeycomb carbon as high-performance negative material for lithium-ion battery, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1152. doi: 10.1007/s12613-022-2590-5
      [12]
      X.H. Ma, Z.J. Chen, T.W. Zhang, et al., Efficient utilization of glass fiber separator for low-cost sodium-ion batteries, Int. J. Miner. Metall. Mater., 30(2023), No. 10, p. 1878. doi: 10.1007/s12613-023-2691-9
      [13]
      Y.F. Zhu, Y. Xiao, S.X. Dou, Y.M. Kang, and S.L. Chou, Spinel/post-spinel engineering on layered oxide cathodes for sodium-ion batteries, eScience, 1(2021), No. 1, p. 13. doi: 10.1016/j.esci.2021.10.003
      [14]
      Y. Liu, Y. Qing, B. Zhou, et al., Yolk−shell Sb@Void@Graphdiyne nanoboxes for high-rate and long cycle life sodium-ion batteries, ACS Nano, 17(2023), No. 3, p. 2431. doi: 10.1021/acsnano.2c09679
      [15]
      S.H. Liu, W.R. Zheng, W.H. Xie, et al., Synthesis of three-dimensional honeycomb-like Fe3N@NC composites with enhanced lithium storage properties, Carbon, 192(2022), p. 162. doi: 10.1016/j.carbon.2022.02.057
      [16]
      L.N. Wang, X. Wu, F.T. Wang, X. Chen, J. Xu, and K.J. Huang, 1T-Phase MoS2 with large layer spacing supported on carbon cloth for high-performance Na+ storage, J. Colloid Interface Sci., 583(2021), p. 579. doi: 10.1016/j.jcis.2020.09.055
      [17]
      J.S. Wang, F. Li, S. Zhao, L.T. Zheng, Y.Y. Huang, and Z.S. Hong, Uniform nanoplating of metallic magnesium film on titanium dioxide nanotubes as a skeleton for reversible Na metal anode, Int. J. Miner. Metall. Mater., 30(2023), No. 10, p. 1868. doi: 10.1007/s12613-023-2685-7
      [18]
      J. Yu, Y.B. Wei, B.C. Meng, et al., Homogeneous distributed natural pyrite-derived composite induced by modified graphite as high-performance lithium-ion batteries anode, Int. J. Miner. Metall. Mater., 30(2023), No. 7, p. 1353. doi: 10.1007/s12613-023-2598-5
      [19]
      Z. Tang, S.Y. Zhou, Y.C. Huang, et al., Improving the initial coulombic efficiency of carbonaceous materials for Li/Na-ion batteries: Origins, solutions, and perspectives, Electrochem. Energy Rev., 6(2023), No. 1, art. No. 8. doi: 10.1007/s41918-022-00178-y
      [20]
      J. Xu, Q. Liu, Z. Dong, et al., Interconnected MoS2 on 2D graphdiyne for reversible sodium storage, ACS Appl. Mater. Interfaces, 13(2021), No. 46, p. 54974. doi: 10.1021/acsami.1c15484
      [21]
      C. Chen, Q.L. Hu, H.Y. Xue, et al., Rational construction of 3D porous Fe3N@C frameworks for high-performance sodium-ion half/full batteries, J. Alloys Compd., 934(2023), art. No. 167934. doi: 10.1016/j.jallcom.2022.167934
      [22]
      X. Wu, X.C. Xie, H.H. Zhang, and K.J. Huang, Engineering stable and fast sodium diffusion route by constructing hierarchical MoS2 hollow spheres, J. Colloid Interface Sci., 595(2021), p. 43. doi: 10.1016/j.jcis.2021.03.112
      [23]
      Z.H. Wu, C.Y. Wang, Z.Y. Hui, et al., Growing single-crystalline seeds on lithiophobic substrates to enable fast-charging lithium-metal batteries, Nat. Energy, 8(2023), p. 340.
      [24]
      M.M. Yuan, H.J. Liu, and F. Ran, Fast-charging cathode materials for lithium & sodium ion batteries, Mater. Today, 63(2023), p. 360. doi: 10.1016/j.mattod.2023.02.007
      [25]
      D.P. Qiu, A. Gao, W.T. Zhao, et al., Fast-charging degradation mechanism of two-dimensional FeSe anode in sodium-ion batteries, ACS Energy Lett., 8(2023), No. 10, p. 4052. doi: 10.1021/acsenergylett.3c01086
      [26]
      Y.Y. Liu, H.D. Shi, and Z.S. Wu, Recent status, key strategies and challenging perspectives of fast-charging graphite anodes for lithium-ion batteries, Energy Environ. Sci., 16(2023), No. 11, p. 4834. doi: 10.1039/D3EE02213G
      [27]
      J. Wang, Y.F. Yuan, X.H. Rao, et al., Realizing high-performance Na3V2(PO4)2O2F cathode for sodium-ion batteries via Nb-doping, Int. J. Miner. Metall. Mater., 30(2023), No. 10, p. 1859. doi: 10.1007/s12613-023-2666-x
      [28]
      K.Y. Chen, G.J. Li, Z.H. Hu, et al., Construction of γ-MnS/α-MnS hetero-phase junction for high-performance sodium-ion batteries, Chem. Eng. J., 435(2022), art. No. 135149. doi: 10.1016/j.cej.2022.135149
      [29]
      Z.Q. Hao, X.Y. Shi, Z. Yang, L. Li, and S.L. Chou, Developing high-performance metal selenides for sodium-ion batteries, Adv. Funct. Mater., 32(2022), No. 51, art. No. 2208093. doi: 10.1002/adfm.202208093
      [30]
      Y.J. Wu, W. Shuang, Y. Wang, et al., Implementation of structural and surface engineering strategies to copper sulfide for enhanced sodium-ion storage, J. Alloys Compd., 923(2022), art. No. 166308. doi: 10.1016/j.jallcom.2022.166308
      [31]
      H.Q. Liu, Y.N. He, H. Zhang, et al., Lowering the voltage-hysteresis of CuS anode for Li-ion batteries via constructing heterostructure, Chem. Eng. J., 425(2021), art. No. 130548. doi: 10.1016/j.cej.2021.130548
      [32]
      Z. Ali, T. Zhang, M. Asif, L.N. Zhao, Y. Yu, and Y.L. Hou, Transition metal chalcogenide anodes for sodium storage, Mater. Today, 35(2020), p. 131. doi: 10.1016/j.mattod.2019.11.008
      [33]
      P.F. Huang, H.J. Ying, S.L. Zhang, Z. Zhang, and W.Q. Han, In situ fabrication of via Lewis acidic etching route for efficient sodium storage, J. Mater. Chem. A, 10(2022), No. 41, p. 22135. doi: 10.1039/D2TA06695E
      [34]
      R. Lu, S. Zhou, S.M. Chai, et al., Cu9S5 nanoparticles encapsulated in N, S co-doped carbon nanofibers as anodes for high-performance lithium-ion and sodium-ion batteries, J. Phys. D: Appl. Phys., 55(2022), No. 33, art. No. 334001. doi: 10.1088/1361-6463/ac7111
      [35]
      X.D. Ding, S. Lei, C.F. Du, Z.L. Xie, J.R. Li, and X.Y. Huang, Copper Sulfides: Small-sized CuS nanoparticles/N, S co-doped rGO composites as the anode materials for high-performance lithium-ion batteries, Adv. Mater. Interfaces, 6(2019), No. 6, art. No. 1900038. doi: 10.1002/admi.201900038
      [36]
      Y.Y. Sun, Y. Li, L.M. Sheng, et al., Universal synthesis of free-standing metal-sulfides@metal@multi-walled carbon nanotube anode for high-performance sodium ion battery, Chem. Eng. J., 414(2021), art. No. 128732. doi: 10.1016/j.cej.2021.128732
      [37]
      Y. Shang, X.X. Li, S.Z. Huang, et al., A selective reduction approach to construct robust Cu1.81S truss structures for high-performance sodium storage, Matter, 2(2020), No. 2, p. 428. doi: 10.1016/j.matt.2019.10.027
      [38]
      J.Z. Li, L.L. Wang, L. Li, C.X. Lv, I.V. Zatovsky, and W. Han, Metal sulfides@carbon microfiber networks for boosting lithium ion/sodium ion storage via a general metal – Aspergillus niger bioleaching strategy, ACS Appl. Mater. Interfaces, 11(2019), No. 8, p. 8072. doi: 10.1021/acsami.8b21976
      [39]
      J. Xia, L. Liu, S. Jamil, et al., Free-standing SnS/C nanofiber anodes for ultralong cycle-life lithium-ion batteries and sodium-ion batteries, Energy Storage Mater., 17(2019), p. 1. doi: 10.1016/j.ensm.2018.08.005
      [40]
      Y.N. Chen, Y.B. Zhao, W.J. He, et al., Cu-MOFs derived three-dimensional Cu1.81S@C for high energy storage performance, Mater. Today Commun., 37(2023), art. No. 106955. doi: 10.1016/j.mtcomm.2023.106955
      [41]
      L.X. Xie, Z. Yang, J.Y. Sun, et al., Bi2Se3/C nanocomposite as a new sodium-ion battery anode material, Nano Micro Lett., 10(2018), No. 3, art. No. 50. doi: 10.1007/s40820-018-0201-9
      [42]
      W.Q. Wang, Y.Y. Yang, Y.N. Nuli, J.J. Zhou, J. Yang, and J.L. Wang, Metal organic framework (MOF)-derived carbon-encapsulated cuprous sulfide cathode based on displacement reaction for Hybrid Mg2+/Li+ batteries, J. Power Sources, 445(2020), art. No. 227325. doi: 10.1016/j.jpowsour.2019.227325
      [43]
      X.Y. Yang, C.L. Du, Y.Q. Zhu, et al., Constructing defect-rich unconventional phase Cu7.2S4 nanotubes via microwave-induced selective etching for ultra-stable rechargeable magnesium batteries, Chem. Eng. J., 430(2022), art. No. 133108. doi: 10.1016/j.cej.2021.133108
      [44]
      C. Chen, Q.L. Hu, F. Yang, et al., A facile synthesis of CuSe nanosheets for high-performance sodium-ion hybrid capacitors, RSC Adv., 12(2022), No. 33, p. 21558. doi: 10.1039/D2RA03206F
      [45]
      Y.H. Xiao, F. Yue, Z.Q. Wen, et al., Elastic buffering layer on CuS enabling high-rate and long-life sodium-ion storage, Nanomicro Lett., 14(2022), No. 1, art. No. 193. doi: 10.1007/s40820-022-00924-3
      [46]
      Y.H. Zhao, Z. Hu, C.L. Fan, et al., Novel structural design and adsorption/insertion coordinating quasi-metallic Na storage mechanism toward high-performance hard carbon anode derived from carboxymethyl cellulose, Small, 19(2023), No. 41, art. No. e2303296. doi: 10.1002/smll.202303296
      [47]
      Y. Jiang, F. Wu, Z.Q. Ye, et al., Confining CoTe2–ZnTe heterostructures on petal-like nitrogen-doped carbon for fast and robust sodium storage, Chem. Eng. J., 451(2023), art. No. 138430. doi: 10.1016/j.cej.2022.138430
      [48]
      G.Z. Fang, Z.X. Wu, J. Zhou, et al., Observation of pseudocapacitive effect and fast ion diffusion in bimetallic sulfides as an advanced sodium-ion battery anode, Adv. Energy Mater., 8(2018), No. 19, art. No. 1703155. doi: 10.1002/aenm.201703155
      [49]
      Z.H. Pan, X.H. Zhang, S.T. Xu, M.Z. Gu, X.H. Rui, and X.J. Zhang, Chloride-doping, defect and interlayer engineering of copper sulfide for superior sodium-ion batteries, J. Mater. Chem. A, 11(2023), No. 8, p. 4102. doi: 10.1039/D2TA09612A
      [50]
      M.J. Jing, F.Y. Li, M.J. Chen, et al., Facile synthetic strategy to uniform Cu9S5 embedded into carbon: A novel anode for sodium-ion batteries, J. Alloys Compd., 762(2018), p. 473. doi: 10.1016/j.jallcom.2018.05.224
      [51]
      Y.H. Wang, Y. Yang, D.Y. Zhang, et al., Inter-overlapped MoS2/C composites with large-interlayer-spacing for high-performance sodium-ion batteries, Nanoscale Horiz., 5(2020), No. 7, p. 1127. doi: 10.1039/D0NH00152J
      [52]
      H. Li, Y.H. Wang, J.L. Jiang, Y.Y. Zhang, Y.Y. Peng, and J.B. Zhao, CuS microspheres as high-performance anode material for Na-ion batteries, Electrochim. Acta, 247(2017), p. 851. doi: 10.1016/j.electacta.2017.07.018
      [53]
      R.H. Liu, Y.H. Zhang, D.D. Wang, et al., Microwave-assisted synthesis of self-assembled camellia-like CuS superstructure of ultra-thin nanosheets and exploration of its sodium ion storage properties, J. Electroanal. Chem., 898(2021), art. No. 115607. doi: 10.1016/j.jelechem.2021.115607
      [54]
      J.B. Wang, J. Okabe, K. Urita, I. Moriguchi, and M.D. Wei, Cu2S hollow spheres as an anode for high-rate sodium storage performance, J. Electroanal. Chem., 874(2020), art. No. 114523. doi: 10.1016/j.jelechem.2020.114523
      [55]
      L.F. Zhang, Y. Hu, Y. Liu, J.X. Bai, H. Ruan, and S.W. Guo, Tunable CuS nanocables with hierarchical nanosheet-assembly for ultrafast and long-cycle life sodium-ion storage, Ceram. Int., 47(2021), No. 10, p. 14138. doi: 10.1016/j.ceramint.2021.01.284
      [56]
      Y.H. Xiao, D.C. Su, X.Z. Wang, et al., CuS Microspheres with Tunable Interlayer space and micropore as a high-rate and long-life anode for sodium-ion batteries, Adv. Energy Mater., 8(2018), No. 22, art. No. 1800930. doi: 10.1002/aenm.201800930
      [57]
      Zulkifli, S. Lee, G. Alfaza, A.N. Fahri, et al., Encapsulation of Cu2S with a nitrogen-doped carbon boosts Na+ storage with a reversible Na2S conversion reaction, Mater. Today Sustain., 22(2023), art. No. 100348. doi: 10.1016/j.mtsust.2023.100348
      [58]
      H. Qi, Y. Hou, W.J. Wang, W. Deng, L. Tang, and C.Y. Zhang, Single-crystalline nanoflakes assembled CuS microspheres with improved sodium ion storage, J. Alloys Compd., 942(2023), art. No. 168884. doi: 10.1016/j.jallcom.2023.168884
      [59]
      X. Pei, Y.Q. Zhu, C.L. Du, et al., Single-crystal copper sulfide anode with fast ion diffusion for high-rate sodium-ion batteries, ACS Appl. Energy Mater., 6(2023), No. 15, p. 8132. doi: 10.1021/acsaem.3c01234
      [60]
      X.Y. Tong, Z. Wang, Z.Y. Liu, et al., Phosphorus-doped copper sulfide microspheres with a hollow structure for high-performance sodium-ion batteries, New J. Chem., 47(2023), No. 20, p. 9861. doi: 10.1039/D3NJ00709J
      [61]
      C. Chen, Q.L. Hu, H.Y. Xue, et al., Achieving high-rate capacity FeSe2@N-doped carbon decorated with Ti3C2T x MXenes for sodium ion batteries, Mater. Today Chem., 34(2023), art. No. 101796. doi: 10.1016/j.mtchem.2023.101796
      [62]
      A.N. Wang, W.W. Hong, L. Li, et al., Bi3Se4 nanodots in porous carbon: A new anode candidate for fast lithium/sodium storage, Energy Storage Mater., 53(2022), p. 1. doi: 10.1016/j.ensm.2022.08.042
      [63]
      B. Yan, L.C. Lin, H. Sun, et al., Double-shelled NiS/SnS@N-doped carbon nanoboxes engineered from NiSn(OH)6 cube templates for advanced sodium-ion battery anodes, Chem. Eng. J., 477(2023), art. No. 146950. doi: 10.1016/j.cej.2023.146950
      [64]
      C. Chen, Q.L. Hu, H.Y. Xue, et al., Ultrafast and ultrastable FeSe2 embedded in nitrogen-doped carbon nanofibers anode for sodium-ion half/full batteries, Nanotechnology, 35(2023), No. 5, art. No. 055404. doi: 10.1088/1361-6528/ad06d7
      [65]
      Y.J. Liu, M. Qiu, X. Hu, et al., Anion defects engineering of ternary Nb-based chalcogenide anodes toward high-performance sodium-based dual-ion batteries, Nano Micro Lett., 15(2023), No. 1, art. No. 104. doi: 10.1007/s40820-023-01070-0
      [66]
      Z. Wang, S.M. Chen, J.M. Qiu, et al., Full-cell presodiation strategy to enable high-performance Na-ion batteries, Adv. Energy Mater., 13(2023), No. 45, art. No. 2302514. doi: 10.1002/aenm.202302514

    Catalog


    • /

      返回文章
      返回