留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 11
Nov.  2024

图(7)

数据统计

分享

计量
  • 文章访问数:  598
  • HTML全文浏览量:  234
  • PDF下载量:  77
  • 被引次数: 0
Yifan Zhao, Zhiyuan Li, Shijie Li, Weili Song,  and Shuqiang Jiao, A review of in-situ high-temperature characterizations for understanding the processes in metallurgical engineering, Int. J. Miner. Metall. Mater., 31(2024), No. 11, pp. 2327-2344. https://doi.org/10.1007/s12613-024-2891-y
Cite this article as:
Yifan Zhao, Zhiyuan Li, Shijie Li, Weili Song,  and Shuqiang Jiao, A review of in-situ high-temperature characterizations for understanding the processes in metallurgical engineering, Int. J. Miner. Metall. Mater., 31(2024), No. 11, pp. 2327-2344. https://doi.org/10.1007/s12613-024-2891-y
引用本文 PDF XML SpringerLink
综述

冶金工程过程中的高温原位表征综述


  • 通讯作者:

    李世杰    E-mail: sli@ustb.edu.cn

    宋维力    E-mail: weilis@bit.edu.cn

文章亮点

  • (1) 讨论了原位高温表征技术的最新进展。
  • (2) 阐述了高温化学/电化学冶金过程的各种原位表征方法的重要性。
  • (3) 总结了对冶金工程过程认识的进展。
  • 为了合理控制高温冶金工程的生产质量,需要了解黑箱化学/电化学的反应过程。为克服这一问题,近年来开发了各种原位表征方法,以用来研究高温电化学电极和熔盐的成分、微观结构和固–液界面之间的相互作用。本综述讨论了原位高温表征技术的最新进展,总结了冶金工程中反应过程的进展。原位高温技术和分析方法主要包括同步辐射X射线衍射 (s-XRD)、激光共聚焦显微镜 (LSCM) 和 X 射线计算显微层析成像 (X-ray µ-CT),是分析电极结构和形态的重要平台,可揭示电极界面的复杂性和变化性。此外,激光诱导击穿光谱(LIBS)、高温拉曼显微光谱和紫外–可见光谱(UV–Vis)可提供熔盐成分和结构的微观表征。更重要的是,X-ray µ-CT 和 s-XRD 技术的结合可以研究两相界面的化学反应机制。因此,这些原位方法对于分析高温反应过程的化学/电化学动力学至关重要,可为化学/电化学冶金过程的高效稳定运行建立理论原则。
  • Review

    A review of in-situ high-temperature characterizations for understanding the processes in metallurgical engineering

    + Author Affiliations
    • For the rational manipulation of the production quality of high-temperature metallurgical engineering, there are many challenges in understanding the processes involved because of the black box chemical/electrochemical reactors. To overcome this issue, various in-situ characterization methods have been recently developed to analyze the interactions between the composition, microstructure, and solid–liquid interface of high-temperature electrochemical electrodes and molten salts. In this review, recent progress of in-situ high-temperature characterization techniques is discussed to summarize the advances in understanding the processes in metallurgical engineering. In-situ high-temperature technologies and analytical methods mainly include synchrotron X-ray diffraction (s-XRD), laser scanning confocal microscopy, and X-ray computed microtomography (X-ray µ-CT), which are important platforms for analyzing the structure and morphology of the electrodes to reveal the complexity and variability of their interfaces. In addition, laser-induced breakdown spectroscopy, high-temperature Raman spectroscopy, and ultraviolet–visible absorption spectroscopy provide microscale characterizations of the composition and structure of molten salts. More importantly, the combination of X-ray µ-CT and s-XRD techniques enables the investigation of the chemical reaction mechanisms at the two-phase interface. Therefore, these in-situ methods are essential for analyzing the chemical/electrochemical kinetics of high-temperature reaction processes and establishing the theoretical principles for the efficient and stable operation of chemical/electrochemical metallurgical processes.
    • loading
    • [1]
      G.Z. Chen, D.J. Fray, and T.W. Farthing, Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride, Nature, 407(2000), p. 361. doi: 10.1038/35030069
      [2]
      X.L. Zou, L. Ji, J.B. Ge, D.R. Sadoway, E.T. Yu, and A.J. Bard, Electrodeposition of crystalline silicon films from silicon dioxide for low-cost photovoltaic applications, Nat. Commun., 10(2019), art. No. 5772. doi: 10.1038/s41467-019-13065-w
      [3]
      H.Y. Yin, B. Chung, F. Chen, T. Ouchi, J. Zhao, N. Tanaka, and D.R. Sadoway, Faradaically selective membrane for liquid metal displacement batteries, Nat. Energy, 3(2018), p. 127. doi: 10.1038/s41560-017-0072-1
      [4]
      K.L. Wang, K. Jiang, B. Chung, et al., Lithium–antimony–lead liquid metal battery for grid-level energy storage, Nature, 514(2014), p. 348. doi: 10.1038/nature13700
      [5]
      P. Sarfo, A. Das, and C. Young, Extraction and optimization of neodymium from molten fluoride electrolysis, Sep. Purif. Technol., 256(2021), art. No. 117770. doi: 10.1016/j.seppur.2020.117770
      [6]
      H.D. Jiao, W.L. Song, H.S. Chen, M.Y. Wang, S.Q. Jiao, and D.N. Fang, Sustainable recycling of titanium scraps and purity titanium production via molten salt electrolysis, J. Cleaner Prod., 261(2020), art. No. 121314. doi: 10.1016/j.jclepro.2020.121314
      [7]
      H.Y. Yin, X.H. Mao, D.Y. Tang, et al., Capture and electrochemical conversion of CO2 to value-added carbon and oxygen by molten salt electrolysis, Energy Environ. Sci., 6(2013), No. 5, p. 1538. doi: 10.1039/c3ee24132g
      [8]
      D.R. MacFarlane, M. Forsyth, P.C. Howlett, et al., Ionic liquids and their solid-state analogues as materials for energy generation and storage, Nat. Rev. Mater., 1(2016), No. 2, art. No. 15005. doi: 10.1038/natrevmats.2015.5
      [9]
      M.E. Wagner and A. Allanore, Electrochemical separation of Ag2S and Cu2S from molten sulfide electrolyte, J. Electrochem. Soc., 169(2022), No. 6, art. No. 063511. doi: 10.1149/1945-7111/ac7101
      [10]
      S.Q. Jiao, H.D. Jiao, W.L. Song, M.Y. Wang, and J.G. Tu, A review on liquid metals as cathodes for molten salt/oxide electrolysis, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1588. doi: 10.1007/s12613-020-1971-x
      [11]
      K. Sun, J.H. Wu, and Y.Y. Ma, The state-of-the-art of nonferrous extractive metallurgy and its development trend, Nonferrous Met., 4(1999) , p. 76.
      [12]
      R. Yuan, H.D. Jiao, H.M. Zhu, D.N. Fang, and S.Q. Jiao, In situ characterization techniques and methodologies for high-temperature electrochemistry, Chem, 9(2023), No. 9, p. 2481. doi: 10.1016/j.chempr.2023.06.018
      [13]
      S.Q. Jiao, M.Y. Wang, and W.L. Song, Editorial for special issue on high-temperature molten salt chemistry and technology, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1569. doi: 10.1007/s12613-020-2225-7
      [14]
      Y. Ito, A bright future for molten salts in science and technology, Electrochemistry, 67(1999), No. 6, art. No. 528. doi: 10.5796/electrochemistry.67.528
      [15]
      W. Xiao, J. Zhou, L. Yu, D.H. Wang, and X.W.D. Lou, Electrolytic formation of crystalline silicon/germanium alloy nanotubes and hollow particles with enhanced lithium-storage properties, Angew. Chem. Int. Ed., 55(2016), No. 26, p. 7427. doi: 10.1002/anie.201602653
      [16]
      Y.F. Chen, B. Gao, M.Y. Wang, X. Xiao, A.J. Lv, S.Q. Jiao, and P.K. Chu, Dual-phase MoC−Mo2C nanosheets prepared by molten salt electrochemical conversion of CO2 as excellent electrocatalysts for the hydrogen evolution reaction, Nano Energy, 90(2021), art. No. 106533. doi: 10.1016/j.nanoen.2021.106533
      [17]
      T. Wang, Y.R. Zhang, B.T. Huang, et al., Enhancing oxygen reduction electrocatalysis by tuning interfacial hydrogen bonds, Nat. Catal., 4(2021), No. 9, p. 753. doi: 10.1038/s41929-021-00668-0
      [18]
      D. Prasai, J.C. Tuberquia, R.R. Harl, G.K. Jennings, and K.I. Bolotin, Graphene: Corrosion-inhibiting coating, ACS Nano, 6(2012), No. 2, p. 1102. doi: 10.1021/nn203507y
      [19]
      W. Xiao and D.H. Wang, The electrochemical reduction processes of solid compounds in high temperature molten salts, Chem. Soc. Rev., 43(2014), No. 10, p. 3215. doi: 10.1039/c3cs60327j
      [20]
      K. Carlson, L. Gardner, J. Moon, B. Riley, J. Amoroso, and D. Chidambaram, Molten salt reactors and electrochemical reprocessing: Synthesis and chemical durability of potential waste forms for metal and salt waste streams, Int. Mater. Rev., 66(2021), No. 5, p. 339. doi: 10.1080/09506608.2020.1801229
      [21]
      Z.Y. Pang, X.L. Zou, S.S. Li, W. Tang, Q. Xu, and X.G. Lu, Molten salt electrochemical synthesis of ternary carbide Ti3AlC2 from titanium-rich slag, Adv. Eng. Mater., 22(2020), No. 5, art. No. 1901300. doi: 10.1002/adem.201901300
      [22]
      X. Lu, Z.Y. Zhang, T. Hiraki, O. Takeda, H.M. Zhu, K. Matsubae, and T. Nagasaka, A solid-state electrolysis process for upcycling aluminium scrap, Nature, 606(2022), p. 511. doi: 10.1038/s41586-022-04748-4
      [23]
      A. Allanore, L. Yin, and D.R. Sadoway, A new anode material for oxygen evolution in molten oxide electrolysis, Nature, 497(2013), p. 353. doi: 10.1038/nature12134
      [24]
      J.A. Hoffman, M.H. Hecht, D. Rapp, et al., Mars Oxygen ISRU Experiment (MOXIE)-Preparing for human Mars exploration, Sci. Adv., 8(2022), No. 35, art. No. eabp8636. doi: 10.1126/sciadv.abp8636
      [25]
      J.K. Li and J.L. Gong, Operando characterization techniques for electrocatalysis, Energy Environ. Sci., 13(2020), No. 11, p. 3748. doi: 10.1039/D0EE01706J
      [26]
      Q. Meyer, Y. Zeng, and C. Zhao, In situ and operando characterization of proton exchange membrane fuel cells, Adv Mater, 31(2019), No. 40, art. No. e1901900. doi: 10.1002/adma.201901900
      [27]
      A.D. Handoko, F.X. Wei, Jenndy, B.S. Yeo, and Z.W. Seh, Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques, Nat. Catal., 1(2018), p. 922. doi: 10.1038/s41929-018-0182-6
      [28]
      Z.F. Lin, P.L. Taberna, and P. Simon, Advanced analytical techniques to characterize materials for electrochemical capacitors, Curr. Opin. Electrochem., 9(2018), p. 18. doi: 10.1016/j.coelec.2018.03.004
      [29]
      X. Liu, Y. Tong, Y. Wu, J. Zheng, Y. Sun, and H. Li, In-depth mechanism understanding for potassium-ion batteries by electroanalytical methods and advanced in situ characterization techniques, Small Meth., 5(2021), No. 12, art. No. e2101130. doi: 10.1002/smtd.202101130
      [30]
      R. Yuan, C. Lv, H.L. Wan, et al., Electrochemical behavior of vanadium ions in molten LiCl−KCl, J. Electroanal. Chem., 891(2021), art. No. 115259. doi: 10.1016/j.jelechem.2021.115259
      [31]
      B.W. Deng, J.J. Tang, X.H. Mao, Y.Q. Song, H. Zhu, W. Xiao, and D.H. Wang, Kinetic and thermodynamic characterization of enhanced carbon dioxide absorption process with lithium oxide-containing ternary molten carbonate, Environ. Sci. Technol., 50(2016), No. 19, p. 10588. doi: 10.1021/acs.est.6b02955
      [32]
      M.R. Rowles, N.V.Y. Scarlett, I.C. Madsen, and K. McGregor, Characterization of rutile passivation layers formed on Magnéli-phase titanium oxide inert anodes, J. Appl. Crystallogr., 44(2011), No. 4, p. 853. doi: 10.1107/S0021889811021315
      [33]
      B. Feng, P. Wu, and Y.L. Li, In situ XRD analysis of reduction mechanism of Fe2O3, Nat. Gas Chem. Ind., 46(2021), No. 1, p. 66.
      [34]
      T.Y. Guo, S.Y. Liu, M. Qing, et al. , In situ XRD study of the effect of H2O on Fe5C2 phase and Fischer-Tropsch performance, J. Fuel Chem. Technol., 48(2020), No. 1, p. 75. doi: 10.1016/S1872-5813(20)30005-0
      [35]
      Y.L. Xu, M.B. Xu, and S.J. Yang, Application of X-ray powder diffraction in phase analysis of inorganic synthesis, J. Hubei Normal Univ., 33(2013), No. 4, p. 40.
      [36]
      M.L. Wang, G.H. Shi, X.H. Zhang, Z.Y. Yang, and Y.M. Xing, Experimental study on high-temperature phase transformation of calcite, Spectrosc. Spect. Anal., 43(2023), No. 4, p. 1205.
      [37]
      S.H. Tong, Y. Li, M.W. Yan, P. Jiang, J.J. Ma, and D.D. Yue, In situ reaction mechanism of MgAlON in Al–Al2O3–MgO composites at 1700°C under flowing N2, Int. J. Miner. Metall. Mater., 24(2017), No. 9, p. 1061. doi: 10.1007/s12613-017-1496-0
      [38]
      M. Clancy, M.J. Styles, C.J. Bettles, N. Birbilis, J.A. Kimpton, and N.A.S. Webster, In situ XRD investigation of the evolution of surface layers on Pb-alloy anodes, Powder Diffr., 32(2017), No. S2, p. S54. doi: 10.1017/S0885715617000793
      [39]
      A. Rasooli, M. Divandari, H.R. Shahverdi, and M. Ali Boutorabi, Kinetics and mechanism of titanium hydride powder and aluminum melt reaction, Int. J. Miner. Metall. Mater., 19(2012), No. 2, p. 165. doi: 10.1007/s12613-012-0533-2
      [40]
      F. Nikkhou, F. Xia, X.Z. Yao, I.A. Adegoke, Q.F. Gu, and J.A. Kimpton, A flow-through reaction cell for studying minerals leaching by In-situ synchrotron powder X-ray diffraction, Minerals, 10(2020), No. 11, art. No. 990. doi: 10.3390/min10110990
      [41]
      A. Mukherjee, J. Van Dyck, B. Blanpain, and M.X. Guo, CSLM study on the interaction of Nd2O3 with CaCl2 and CaF2–LiF molten melts, J. Mater. Sci., 52(2017), No. 3, p. 1717. doi: 10.1007/s10853-016-0463-x
      [42]
      Y.M. Lee, J.K. Yang, D.J. Min, and J.H. Park, Mechanism of MgO dissolution in MgF2–CaF2–MF (M=Li or Na) melts: Kinetic analysis via in situ high temperature confocal scanning laser microscopy (HT-CSLM), Ceram. Int., 45(2019), No. 16, p. 20251. doi: 10.1016/j.ceramint.2019.06.298
      [43]
      X.J. Zhao, Z.N. Yang, and F.C. Zhang, In situ observation of the effect of AIN particles on bainitic transformation in a carbide-free medium carbon steel, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 620. doi: 10.1007/s12613-019-1911-9
      [44]
      N. Fuchs and C. Bernhard, Potential and limitations of direct austenite grain growth measurement by means of HT-LSCM, Mater. Today Commun., 28(2021), art. No. 102468. doi: 10.1016/j.mtcomm.2021.102468
      [45]
      H. Liu, W.F. Li, C.Y. Ren, L.F. Zhang, and Y. Ren, Inclusion evolution in Al-killed Ca-treated steels at heat treatment temperature in situ observed using confocal scanning laser microscope, Metall. Mater. Trans. B, 53(2022), No. 3, p. 1323. doi: 10.1007/s11663-022-02472-y
      [46]
      C.Y. Ren, C.D. Huang, L.F. Zhang, and Y. Ren, In situ observation of the dissolution kinetics of Al2O3 particles in CaO–Al2O3–SiO2 slags using laser confocal scanning microscopy, Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. 345. doi: 10.1007/s12613-021-2347-6
      [47]
      H. Yao, Q. Ren, W. Yang, and L.F. Zhang, In situ observation and prediction of the transformation of acicular ferrites in Ti-containing HLSA steel, Metall. Mater. Trans. B, 53(2022), No. 3, p. 1827. doi: 10.1007/s11663-022-02492-8
      [48]
      A. Ale, V. Ermolayev, E. Herzog, C. Cohrs, M.H. de Angelis, and V. Ntziachristos, FMT–XCT: In vivo animal studies with hybrid fluorescence molecular tomography–X-ray computed tomography, Nat. Meth., 9(2012), p. 615. doi: 10.1038/nmeth.2014
      [49]
      X. Zhang, C. Wang, K. He, et al., Transport performance of molten salt electrolyte in a fractal porous FeS2 electrode: Mesoscale modeling and experimental characterization, ACS Appl. Energy Mater., 4(2021), No. 12, p. 14363. doi: 10.1021/acsaem.1c03033
      [50]
      Y.T. Jee, M. Park, S. Cho, and J.I. Yun, Selective morphological analysis of cerium metal in electrodeposit recovered from molten LiCl–KCl eutectic by radiography and computed tomography, Sci. Rep., 9(2019), art. No. 1346. doi: 10.1038/s41598-018-38022-3
      [51]
      X.K. Lu, A. Bertei, D.P. Finegan, et al., 3D microstructure design of lithium-ion battery electrodes assisted by X-ray nano-computed tomography and modelling, Nat. Commun., 11(2020), art. No. 2079. doi: 10.1038/s41467-020-15811-x
      [52]
      T.M.M. Heenan, A.V. Llewellyn, A.S. Leach, et al., Resolving Li-ion battery electrode particles using rapid lab-based X-ray nano-computed tomography for high-throughput quantification, Adv Sci Weinh, 7(2020), No. 12, art. No. 2000362. doi: 10.1002/advs.202000362
      [53]
      X.Y. Liu, A. Ronne, L.C. Yu, et al., Formation of three-dimensional bicontinuous structures via molten salt dealloying studied in real-time by in situ synchrotron X-ray nano-tomography, Nat. Commun., 12(2021), No. 1, art. No. 3441. doi: 10.1038/s41467-021-23598-8
      [54]
      H. Lusic and M.W. Grinstaff, X-ray-computed tomography contrast agents, Chem Rev, 113(2013), No. 3, p. 1641. doi: 10.1021/cr200358s
      [55]
      Z.Y. Ding, N.F. Zhang, L. Yu, W.Q. Lu, J.G. Li, and Q.D. Hu, Recent progress in metallurgical bonding mechanisms at the liquid/solid interface of dissimilar metals investigated via in situ X-ray imaging technologies, Acta Metall. Sin. Engl. Lett., 34(2021), No. 2, p. 145. doi: 10.1007/s40195-021-01193-6
      [56]
      H. Jiao, Z. Qu, S. Jiao, et al., A 4D X-ray computer microtomography for high-temperature electrochemistry, Sci. Adv., 8(2022), No. 6, art. No. eabm5678. doi: 10.1126/sciadv.abm5678
      [57]
      S.W. Hudson, J. Craparo, R. De Saro, and D. Apelian, Applications of laser-induced breakdown spectroscopy (LIBS) in molten metal processing, Metall. Mater. Trans. B, 48(2017), No. 5, p. 2731. doi: 10.1007/s11663-017-1032-7
      [58]
      F.Z. Dong, X.L. Chen, Q. Wang, et al., Recent progress on the application of LIBS for metallurgical online analysis in China, Front. Phys., 7(2012), No. 6, p. 679. doi: 10.1007/s11467-012-0263-y
      [59]
      L.X. Sun, H.B. Yu, Z.B. Cong, et al., Applications of laser-induced breakdown spectroscopy in the aluminum electrolysis industry, Spectrochim. Acta, 142(2018), p. 29. doi: 10.1016/j.sab.2018.02.005
      [60]
      J. Gruber, J. Heitz, H. Strasser, D. Bäuerle, and N. Ramaseder, Rapid in situ analysis of liquid steel by laser-induced breakdown spectroscopy, Spectrochim. Acta, 56(2001), No. 6, p. 685. doi: 10.1016/S0584-8547(01)00182-3
      [61]
      J. Gruber, J. Heitz, N. Arnold, et al. , In situ analysis of metal melts in metallurgic vacuum devices by laser-induced breakdown spectroscopy, Appl. Spectrosc., 58(2004), No. 4, p. 457. doi: 10.1366/000370204773580310
      [62]
      L. Peter, V. Sturm, and R. Noll, Liquid steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet, Appl. Opt., 42(2003), No. 30, p. 6199. doi: 10.1364/AO.42.006199
      [63]
      V. Sturm, H.U. Schmitz, T. Reuter, R. Fleige, and R. Noll, Fast vacuum slag analysis in a steel works by laser-induced breakdown spectroscopy, Spectrochim. Acta Part B, 63(2008), No. 10, p. 1167. doi: 10.1016/j.sab.2008.08.004
      [64]
      P. Zhang, L. Sun, H. Yu, P. Zeng, L. Qi, and Y. Xin, An image auxiliary method for quantitative analysis of laser-induced breakdown spectroscopy, Anal. Chem., 90(2018), No. 7, p. 4686. doi: 10.1021/acs.analchem.7b05284
      [65]
      F. Gao, X.D. Tian, J.S. Lin, J.C. Dong, X.M. Lin, and J.F. Li, In situ Raman, FTIR, and XRD spectroscopic studies in fuel cells and rechargeable batteries, Nano Res., 16(2023), No. 4, p. 4855. doi: 10.1007/s12274-021-4044-1
      [66]
      X. Li, Z.Y. Pang, W. Tang, et al., Electrodeposition of Si films from SiO2 in molten CaCl2–CaO: The dissolution-electrodeposition mechanism and its epitaxial growth behavior, Metall. Mater. Trans. B, 53(2022), No. 5, p. 2800. doi: 10.1007/s11663-022-02565-8
      [67]
      W.T. Zhou, J.S. Zhang, and Y.F. Wang, Review—Modeling electrochemical processing for applications in pyroprocessing, J. Electrochem. Soc., 165(2018), No. 13, p. E712. doi: 10.1149/2.1021813jes
      [68]
      J.Y. Yu, C.Y. Liu, X.W. Hu, T. Yuan, Y.F. Zhang, Z.W. Wang, and W.R. Ji, Preparation of aAu SERS substrate and its application in the in situ Raman spectroelectrochemistry study of Li2CO3–K2CO3 molten salt, Int. J. Electrochem. Sci., 16(2021), No. 11, art. No. 211131. doi: 10.20964/2021.11.46
      [69]
      I. Novoselova, S.V. Kuleshov, A.A. Omel’chuk, V.V. Soloviev, and N.V. Solovyova, Cationic catalysis during the discharge of carbonate anions in molten salts, ECS Trans., 98(2020), No. 10, p. 317. doi: 10.1149/09810.0317ecst
      [70]
      N. Ma, J.L. You, L.M. Lu, Y.F. Xie, and S.M. Wan, Quantitative analysis on the microstructure of molten binary KF-AlF3 system by in situ Raman spectroscopy assisted with first principles method, J. Raman Spectrosc., 51(2020), No. 1, p. 187. doi: 10.1002/jrs.5751
      [71]
      L.J. Chen, X. Cheng, C.J. Lin, and C.M. Huang, In-situ Raman spectroscopic studies on the oxide species in molten Li/K2CO3, Electrochim. Acta, 47(2002), No. 9, p. 1475. doi: 10.1016/S0013-4686(01)00872-6
      [72]
      N. Ma, J.L. You, L.M. Lu, J. Wang, M. Wang, and S.M. Wan, Micro-structure studies of the molten binary K3AlF6–Al2O3 system by in situ high temperature Raman spectroscopy and theoretical simulation, Inorg. Chem. Front., 5(2018), No. 8, p. 1861. doi: 10.1039/C8QI00226F
      [73]
      X.W. Hu, W.T. Deng, Z.N. Shi, Z.X. Wang, B.L. Gao, and Z.W. Wang, Solubility of CO2 in molten Li2O–LiCl system: A Raman spectroscopy study, J. Chem. Eng. Data, 64(2019), No. 1, p. 202. doi: 10.1021/acs.jced.8b00722
      [74]
      R. Zhang, Y. Wang, X. Zhao, J.X. Jia, C.J. Liu, and Y. Min, Structure and viscosity of molten CaO–SiO2–Fe xO slag during the early period of basic oxygen steelmaking, Metall. Mater. Trans. B, 51(2020), No. 5, p. 2021. doi: 10.1007/s11663-020-01888-8
      [75]
      H.D. Jiao, J.L. An, Y.Z. Jia, et al., Operando probing and adjusting of the complicated electrode process of multivalent metals at extreme temperature, Proc. Natl. Acad. Sci. U.S.A., 120(2023), No. 28, art. No. e2301780120. doi: 10.1073/pnas.2301780120
      [76]
      Y.Y. Liu, Y.L. Song, H. Ai, et al., Corrosion of Cr in molten salts with different fluoroacidity in the presence of CrF3, Corros. Sci., 169(2020), art. No. 108636. doi: 10.1016/j.corsci.2020.108636
      [77]
      B.R. Sundheim and J. Greenberg, Absorption spectra of molten salts, J. Chem. Phys., 28(1958), No. 3, p. 439. doi: 10.1063/1.1744154
      [78]
      C. Hardacre, Application of EXAFS to molten salts and ionic liquid technology, Annu. Rev. Mater. Res., 35(2005), No. 5, p. 29. doi: 10.1146/annurev.matsci.35.100303.121832
      [79]
      E.D. Crozier, N. Alberding, and B.R. Sundheim, EXAFS study of bromomanganate ions in molten salts, J. Chem. Phys., 79(1983), No. 2, p. 939. doi: 10.1063/1.445871
      [80]
      A. Di Cicco, M. Taglienti, M. Minicucci, and A. Filipponi, Short-range structure of solid and liquid AgBr determined by multiple-edge X-ray absorption spectroscopy, Phys. Rev. B, 62(2000), No. 18, p. 12001. doi: 10.1103/PhysRevB.62.12001
      [81]
      T.J. Kim, A. Uehara, T. Nagai, T. Fujii, and H. Yamana, Quantitative analysis of Eu2+ and Eu3+ in LiCl–KCl eutectic melt by spectrophotometry and electrochemistry, J. Nucl. Mater., 409(2011), No. 3, p. 188. doi: 10.1016/j.jnucmat.2010.12.004
      [82]
      B.Y. Kim and J.I. Yun, Reduction of trivalent europium in molten LiCl-KCl eutectic observed by In-situ laser spectroscopic techniques, ECS Electrochem. Lett., 2(2013), No. 11, p. H54. doi: 10.1149/2.013311eel
      [83]
      C. Bessada and E.M. Anghel, 11B, 23Na, 27Al, and 19F NMR study of solid and molten Na3AlF6–Na2B4O7, Inorg. Chem., 42(2003), No. 12, p. 3884. doi: 10.1021/ic026074o
      [84]
      Y.F. Cui, Y. He, W.T. Yu, W.X. Shang, Y.Y. Ma, and P. Tan, In-situ observation of the Zn electrodeposition on the planar electrode in the alkaline electrolytes with different viscosities, Electrochim. Acta, 418(2022), art. No. 140344. doi: 10.1016/j.electacta.2022.140344
      [85]
      H.D. Jiao, M.J. Liu, Y. Gao, J.X. Song, and S.Q. Jiao, Dynamic evolution of high-temperature molten salt electrolysis of titanium under different operational conditions, Inorg. Chem. Front., 10(2023), No. 2, p. 529. doi: 10.1039/D2QI02192G
      [86]
      S. Fortin, M. Gerhardt, and A.J. Gesing, Physical modelling of bubble behaviour and gas release from aluminum reduction cell anodes, [in] G. Bearne, M. Dupuis, and G. Tarcy, eds., Essential Readings in Light Metals, Springer, Cham, 2016, p. 385.
      [87]
      Z.B. Zhao, Z.W. Wang, B.L. Gao, Y.Q. Feng, Z.N. Shi, and X.W. Hu, Anodic bubble behavior and voltage drop in a laboratory transparent aluminum electrolytic cell, Metall. Mater. Trans. B, 47(2016), No. 3, p. 1962. doi: 10.1007/s11663-016-0598-9
      [88]
      T. Utigard, J. Toguri, and S. Ip, Direct observation of the anode effect by radiography, [in] G. Bearne, M. Dupuis, G. Tarcy, eds., Essential Readings in Light Metals, Springer, Cham, 2016, p. 167.
      [89]
      Z.Y. Ding, Q.D. Hu, W.Q. Lu, et al. , In-situ study on hydrogen bubble evolution in the liquid Al/solid Ni interconnection by synchrotron radiation X-ray radiography, J. Mater. Sci. Technol., 35(2019), No. 7, p. 1388. doi: 10.1016/j.jmst.2019.03.007
      [90]
      S.S. Liu, S.L. Li, C.H. Liu, J.L. He, and J.X. Song, Effect of fluoride ions on coordination structure of titanium in molten NaCl-KCl, Int. J. Miner. Metall. Mater., 30(2023), No. 5, p. 868. doi: 10.1007/s12613-022-2527-z
      [91]
      M. Yang, R.Y. Bi, J.Y. Wang, R.B. Yu, and D. Wang, Decoding lithium batteries through advanced in situ characterization techniques, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 965. doi: 10.1007/s12613-022-2461-0
      [92]
      X. Song, S.L. Li, S.S. Liu, Y. Fan, J.L. He, and J.X. Song, Coordination states of metal ions in molten salts and their characterization methods, Int. J. Miner. Metall. Mater., 30(2023), No. 7, p. 1261. doi: 10.1007/s12613-023-2608-7
      [93]
      X.Q. He, H.D. Fu, and J.X. Xie, Microstructure and properties evolution of in-situ fiber-reinforced Ag–Cu–Ni–Ce alloy during deformation and heat treatment, Int. J. Miner. Metall. Mater., 29(2022), No. 11, p. 2000. doi: 10.1007/s12613-022-2412-9
      [94]
      J.C. Li, G.X. Li, F. Qiu, et al., Nucleation and growth control for iron- and phosphorus-rich phases from a modified steelmaking waste slag, Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. 378. doi: 10.1007/s12613-022-2553-x
      [95]
      B. Sun, J.T. Dai, K.K. Huang, C.H. Yang, and W.H. Gui, Smart manufacturing of nonferrous metallurgical processes: Review and perspectives, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 611. doi: 10.1007/s12613-022-2448-x

    Catalog


    • /

      返回文章
      返回