留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 6
Jun.  2024

图(9)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  670
  • HTML全文浏览量:  108
  • PDF下载量:  32
  • 被引次数: 0
Xu Yang, Dezhi Chen, Li Feng, Gang Qin, Shiping Wu,  and Ruirun Chen, Enhancing the mechanical properties of casting eutectic high-entropy alloys via W addition, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1364-1372. https://doi.org/10.1007/s12613-024-2892-x
Cite this article as:
Xu Yang, Dezhi Chen, Li Feng, Gang Qin, Shiping Wu,  and Ruirun Chen, Enhancing the mechanical properties of casting eutectic high-entropy alloys via W addition, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1364-1372. https://doi.org/10.1007/s12613-024-2892-x
引用本文 PDF XML SpringerLink
研究论文

通过添加W元素提升铸态共晶高熵合金的力学性能


  • 通讯作者:

    陈德志    E-mail: chendezhi383@163.com

    陈瑞润    E-mail: ruirunchen@hit.edu.cn

文章亮点

  • (1) 设计并制备了Al1.25CoCrFeNi3-xWx高熵合金,通过调节W的含量,实现了强度和塑性的平衡
  • (2) 探究了W元素对于微观组织转变的影响
  • (3) 分析了微观组织转变与力学性能之间的关系,计算了强化机制
  • (4) 通过理论分析和实验总结了合金的变形和断裂机制
  • 共晶高熵合金由于其优异的物理和化学性能,近年了引发了人们的广泛关注。然而共晶高熵合金在力学强度方面仍有较大的提升空间。为了进一步提升共晶高熵合金的性能,本实验设计并制备了Al1.25CoCrFeNi3−xWx高熵合金,并深入探究W元素对共晶高熵合金组织演变和力学性能的影响。研究结果表明,Al1.25CoCrFeNi3−xWx高熵合金由面心立方相和体心立方(BCC)相组成。随着W含量的增加,微观结构由共晶结构转变为树枝晶结构。W的加入降低了BCC相的形核障碍,减小了合金体系的价电子浓度,并替换了BCC相中的Al元素,从而促进了BCC相的形核。拉伸测试结果表明W的加入明显提升了合金的拉伸性能,固溶强化、异质界面强化和第二相强化是主要的强化机制。Al1.25CoCrFeNi2.95W0.05高熵合金实现了强度和塑性的匹配,屈服强度、抗拉强度和延伸率分别为601.44 MPa, 1132.26 MPa和15.94%。Al1.25CoCrFeNi3−xWx高熵合金的断裂方式为韧-脆混合型断裂,裂纹在BCC相内萌生和扩展。共晶组织的片层结构延缓了裂纹的扩展,进而提升了合金的塑性。
  • Research Article

    Enhancing the mechanical properties of casting eutectic high-entropy alloys via W addition

    + Author Affiliations
    • The effect of W element on the microstructure evolution and mechanical properties of Al1.25CoCrFeNi3 eutectic high-entropy alloy and Al1.25CoCrFeNi3−xWx (x = 0, 0.05, 0.1, 0.3, and 0.5; atomic ratio) high-entropy alloys (HEAs) were explored. Results show that the Al1.25CoCrFeNi3−xWx HEAs are composed of face-centered cubic and body-centered cubic (BCC) phases. As W content increases, the microstructure changes from eutectic to dendritic. The addition of W lowers the nucleation barrier of the BCC phase, decreases the valence electron concentration of the HEAs, and replaces Al in the BCC phase, thus facilitating the nucleation of the BCC phase. Tensile results show that the addition of W greatly improves the mechanical properties, and solid-solution, heterogeneous-interface, and second-phase strengthening are the main strengthening mechanisms. The yield strength, tensile strength, and elongation of the Al1.25CoCrFeNi2.95W0.05 HEA are 601.44 MPa, 1132.26 MPa, and 15.94%, respectively, realizing a balance between strength and plasticity. The fracture mode of the Al1.25CoCrFeNi3−xWx HEAs is ductile–brittle mixed fracture, and the crack propagates and initiates in the BCC phase. The eutectic lamellar structure impedes crack propagation and maintains plasticity.
    • loading
    • [1]
      S.T. Zhang, X. Ding, X.F. Gao, et al., Dual enhancement in strength and ductility of Ti–V–Zr medium entropy alloy by fracture mode transformation via a heterogeneous structure, Int. J. Plast., 160(2023), art. No. 103505. doi: 10.1016/j.ijplas.2022.103505
      [2]
      J.H. Liu, X.M. Zhao, S.M. Zhang, Y.W. Sheng, and Q. Hu, Microstructure and mechanical properties of MoNbTaW refractory high-entropy alloy prepared by spark plasma sintering, J. Mater. Res., 38(2023), No. 2, p. 484. doi: 10.1557/s43578-022-00833-6
      [3]
      H. Ren, R.R. Chen, T. Liu, et al., Unraveling the oxidation mechanism of Y-doped AlCoCrFeNi high-entropy alloy at 1100°C, Appl. Surf. Sci., 652(2024), art. No. 159316. doi: 10.1016/j.apsusc.2024.159316
      [4]
      Y.S. Li, W.B. Liao, H.C. Chen, et al., A low-density high-entropy dual-phase alloy with hierarchical structure and exceptional specific yield strength, Sci. China Mater., 66(2023), No. 2, p. 780. doi: 10.1007/s40843-022-2178-x
      [5]
      Z. Cheng, S.Z. Wang, G.L. Wu, J.H. Gao, X.S. Yang, and H.H. Wu, Tribological properties of high-entropy alloys: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 389. doi: 10.1007/s12613-021-2373-4
      [6]
      I. Basu and J.Th.M. de Hosson, Strengthening mechanisms in high entropy alloys: Fundamental issues, Scripta Mater., 187(2020), p. 148. doi: 10.1016/j.scriptamat.2020.06.019
      [7]
      D.B. Miracle and O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater., 122(2017), p. 448. doi: 10.1016/j.actamat.2016.08.081
      [8]
      J. Wu, H.G. Zhu, and Z.H. Xie, Strength and ductility synergy of Nb-alloyed Ni0.6CoFe1.4 alloys, Int. J. Miner. Metall. Mater., 30(2023), No. 4, p.707. doi: 10.1007/s12613-022-2567-4
      [9]
      B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science, 345(2014), No. 6201, p. 1153. doi: 10.1126/science.1254581
      [10]
      L. Fan, T. Yang, Y.L. Zhao, et al., Ultrahigh strength and ductility in newly developed materials with coherent nanolamellar architectures, Nat. Commun., 11(2020), No. 1, art. No. 6240. doi: 10.1038/s41467-020-20109-z
      [11]
      O.N. Senkov, S. Gorsse, and D.B. Miracle, High temperature strength of refractory complex concentrated alloys, Acta Mater., 175(2019), p. 394. doi: 10.1016/j.actamat.2019.06.032
      [12]
      C. Lee, G. Kim, Y. Chou, et al., Temperature dependence of elastic and plastic deformation behavior of a refractory high-entropy alloy, Sci. Adv., 6(2020), No. 37, art. No. eaaz4748. doi: 10.1126/sciadv.aaz4748
      [13]
      N. Xiao, X. Guan, D. Wang, et al., Impact of W alloying on microstructure, mechanical property and corrosion resistance of face-centered cubic high entropy alloys: A review, Int. J. Miner. Metall. Mater., 30(2023), No. 9, p. 1667 doi: 10.1007/s12613-023-2641-6
      [14]
      Y.C. Wu and J.L. Shao, FCC–BCC phase transformation induced simultaneous enhancement of tensile strength and ductility at high strain rate in high-entropy alloy, Int. J. Plast., 169(2023), art. No. 103730. doi: 10.1016/j.ijplas.2023.103730
      [15]
      L.L. Han, X.D. Xu, Z.M. Li, B. Liu, C.T. Liu, and Y. Liu, A novel equiaxed eutectic high-entropy alloy with excellent mechanical properties at elevated temperatures, Mater. Res. Lett., 8(2020), No. 10, p. 373. doi: 10.1080/21663831.2020.1772395
      [16]
      J. Ren, M. Wu, C.Y. Li, et al., Deformation mechanisms in an additively manufactured dual-phase eutectic high-entropy alloy, Acta Mater., 257(2023), art. No. 119179. doi: 10.1016/j.actamat.2023.119179
      [17]
      Y.P. Lu, Y. Dong, S. Guo, et al., A promising new class of high-temperature alloys: Eutectic high-entropy alloys, Sci. Rep., 4(2014), art. No. 6200. doi: 10.1038/srep06200
      [18]
      J.W. Miao, H.W. Yao, J. Wang, Y.P. Lu, T.M. Wang, and T.J. Li, Surface modification for AlCoCrFeNi2.1 eutectic high-entropy alloy via laser remelting technology and subsequent aging heat treatment, J. Alloys Compd., 894(2022), art. No. 162380. doi: 10.1016/j.jallcom.2021.162380
      [19]
      T. Xiong, W.F. Yang, S.J. Zheng, et al., Faceted Kurdjumov-Sachs interface-induced slip continuity in the eutectic high-entropy alloy, AlCoCrFeNi2.1, J. Mater. Sci. Technol., 65(2021), p. 216. doi: 10.1016/j.jmst.2020.04.073
      [20]
      J.J. Shen, J.G. Lopes, Z. Zeng, et al., Deformation behavior and strengthening effects of an eutectic AlCoCrFeNi2.1 high entropy alloy probed by in situ synchrotron X-ray diffraction and post-mortem EBSD, Mater. Sci. Eng. A, 872(2023), art. No. 144946. doi: 10.1016/j.msea.2023.144946
      [21]
      X.T. Duan, T.Z. Han, X. Guan, et al., Cooperative effect of Cr and Al elements on passivation enhancement of eutectic high-entropy alloy AlCoCrFeNi2.1 with precipitates, J. Mater. Sci. Technol., 136(2023), p. 97. doi: 10.1016/j.jmst.2022.07.023
      [22]
      X. Wang, W. Zhai, J.Y. Wang, and B. Wei, Strength and ductility enhancement of high-entropy FeCoNi2Al0.9 alloy by ultrasonically refining eutectic structures, Scripta Mater., 225(2023), art. No. 115154. doi: 10.1016/j.scriptamat.2022.115154
      [23]
      Z.Z. Mao, X. Jin, Z. Xue, M. Zhang, and J.W. Qiao, Understanding the yield strength difference in dual-phase eutectic high-entropy alloys, Mater. Sci. Eng. A, 867(2023), art. No. 144725. doi: 10.1016/j.msea.2023.144725
      [24]
      D. Yun, H. Chae, T. Lee, et al., Stress contribution of B2 phase in Al0.7CoCrFeNi eutectic high entropy alloy, J. Alloys Compd., 918(2022), art. No. 165673. doi: 10.1016/j.jallcom.2022.165673
      [25]
      Q.Q. Liu, X.S. Liu, X.F. Fan, et al., Designing novel AlCoCrNi eutectic high entropy alloys, J. Alloys Compd., 904(2022), art. No. 163775. doi: 10.1016/j.jallcom.2022.163775
      [26]
      C. Liu, Y. Gao, K. Chong, F.Q. Guo, D.T. Wu, and Y. Zou, Effect of Nb content on the microstructure and corrosion resistance of FeCoCrNiNb x high-entropy alloys in chloride ion environment, J. Alloys Compd., 935(2023), art. No. 168013. doi: 10.1016/j.jallcom.2022.168013
      [27]
      D. Fang, X. Wu, W.Q. Xu, et al., Microstructure and properties of a novel cost-effective FeNi-based eutectic high entropy alloys, Mater. Sci. Eng. A, 870(2023), art. No. 144919. doi: 10.1016/j.msea.2023.144919
      [28]
      X.C. Ye, J.Y. Xiong, X. Wu, et al., A new infinite solid solution strategy to design eutectic high entropy alloys with B2 and BCC structure, Scripta Mater., 199(2021), art. No. 113886. doi: 10.1016/j.scriptamat.2021.113886
      [29]
      L. Wang, C. Yao, J. Shen, et al., A new method to design eutectic high-entropy alloys by determining the formation of single-phase solid solution and calculating solidification paths, Mater. Sci. Eng. A, 830(2022), art. No. 142325. doi: 10.1016/j.msea.2021.142325
      [30]
      L. Wang, Y.N. Su, C.L. Yao, et al., Microstructure and mechanical property of novel NiAl-based hypoeutectic/eutectic/hypereutectic high-entropy alloy, Intermetallics, 143(2022), art. No. 107476. doi: 10.1016/j.intermet.2022.107476
      [31]
      Z.S. Yang, Z.J. Wang, Q.F. Wu, et al., Enhancing the mechanical properties of casting eutectic high entropy alloys with Mo addition, Appl. Phys. A, 125(2019), No. 3, art. No. 208. doi: 10.1007/s00339-019-2506-z
      [32]
      X.H. Chen, W.Y. Xie, J. Zhu, et al., Influences of Ti additions on the microstructure and tensile properties of AlCoCrFeNi2.1 eutectic high entropy alloy, Intermetallics, 128(2021), art. No. 107024. doi: 10.1016/j.intermet.2020.107024
      [33]
      Q.F. Wu, Z.J. Wang, T. Zheng, et al., A casting eutectic high entropy alloy with superior strength-ductility combination, Mater. Lett., 253(2019), p. 268. doi: 10.1016/j.matlet.2019.06.067
      [34]
      Q.F. Wu, F. He, J.J. Li, H.S. Kim, Z.J. Wang, and J.C. Wang, Phase-selective recrystallization makes eutectic high-entropy alloys ultra-ductile, Nat. Commun., 13(2022), No. 1, art. No. 4697. doi: 10.1038/s41467-022-32444-4
      [35]
      Y. Dong and Y.P. Lu, Effects of tungsten addition on the microstructure and mechanical properties of near-eutectic AlCoCrFeNi2 high-entropy alloy, J. Mater. Eng. Perform., 27(2018), No. 1, p. 109. doi: 10.1007/s11665-017-3096-6
      [36]
      N. Malatji, T. Lengopeng, S. Pityana, and A.P.I. Popoola, Microstructural, mechanical and electrochemical properties of AlCrFeCuNiW x high entropy alloys, J. Mater. Res. Technol., 11(2021), p. 1594. doi: 10.1016/j.jmrt.2021.01.103
      [37]
      X. Yang, L. Feng, T. Liu, R.R. Chen, G. Qin, and S.P. Wu, Tensile properties and strengthening mechanisms of eutectic high-entropy alloys induced by heterostructure, Mater. Charact., 208(2024), art. No. 113464. doi: 10.1016/j.matchar.2023.113464
      [38]
      A. Takeuchi and A. Inoue, Quantitative evaluation of critical cooling rate for metallic glasses, Mater. Sci. Eng. A, 304-306(2001), p. 446. doi: 10.1016/S0921-5093(00)01446-5
      [39]
      V. Soni, O.N. Senkov, B. Gwalani, D.B. Miracle, and R. Banerjee, Microstructural design for improving ductility of an initially brittle refractory high entropy alloy, Sci. Rep., 8(2018), No. 1, art. No. 8816. doi: 10.1038/s41598-018-27144-3
      [40]
      K.S. Ming, X.F. Bi, and J. Wang, Strength and ductility of CrFeCoNiMo alloy with hierarchical microstructures, Int. J. Plast., 113(2019), p. 255. doi: 10.1016/j.ijplas.2018.10.005
      [41]
      R.R. Chen, G. Qin, H.T. Zheng, et al., Composition design of high entropy alloys using the valence electron concentration to balance strength and ductility, Acta Mater., 144(2018), p. 129. doi: 10.1016/j.actamat.2017.10.058
      [42]
      S. Guo, C. Ng, J. Lu, and C.T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, J. Appl. Phys., 109(2011), No. 10, p. 103505. doi: 10.1063/1.3587228
      [43]
      H. Jiang, L. Jiang, K.M. Han, et al., Effects of tungsten on microstructure and mechanical properties of CrFeNiV0.5W x and CrFeNi2V0.5W x high-entropy alloys, J. Mater. Eng. Perform., 24(2015), No. 12, p. 4594. doi: 10.1007/s11665-015-1767-8
      [44]
      B. Chanda, G. Potnis, P.P. Jana, and J. Das, A review on nano-/ ultrafine advanced eutectic alloys, J. Alloys Compd., 827(2020), art. No. 154226. doi: 10.1016/j.jallcom.2020.154226
      [45]
      X. Jin, J. Bi, L. Zhang, et al., A new CrFeNi2Al eutectic high entropy alloy system with excellent mechanical properties, J. Alloys Compd., 770(2019), p. 655. doi: 10.1016/j.jallcom.2018.08.176
      [46]
      X. Jin, Y. Zhou, L. Zhang, X.Y. Du, and B.S. Li, A new pseudo binary strategy to design eutectic high entropy alloys using mixing enthalpy and valence electron concentration, Mater. Des., 143(2018), p. 49. doi: 10.1016/j.matdes.2018.01.057
      [47]
      L.L. Ma, J.N. Wang, Z.H. Lai, Z.C. Wu, B.T. Yang, and P.P. Zhao, Microstructure and mechanical property of Al56− xCo24Cr20Ni eutectic high-entropy alloys with an ordered FCC/BCT phase structure, J. Alloys Compd., 936(2023), art. No. 168194. doi: 10.1016/j.jallcom.2022.168194
      [48]
      X. Jin, Y.X. Liang, J. Bi, and B.S. Li, Enhanced strength and ductility of Al0.9CoCrNi2.1 eutectic high entropy alloy by thermomechanical processing, Materialia, 10(2020), art. No. 100639. doi: 10.1016/j.mtla.2020.100639
      [49]
      Q.W. Tian, G.J. Zhang, K.X. Yin, W.L. Cheng, Y.N. Wang, and J.C. Huang, Effect of Ni content on the phase formation, tensile properties and deformation mechanisms of the Ni-rich AlCoCrFeNi x (x = 2, 3, 4) high entropy alloys, Mater. Charact., 176(2021), art. No. 111148. doi: 10.1016/j.matchar.2021.111148
      [50]
      X.X. Liu, S.G. Ma, W.D. Song, D. Zhao, and Z.H. Wang, Microstructure evolution and mechanical response of Co-free Ni2CrFeAl0.3Ti x high-entropy alloys, J. Alloys Compd., 931(2023), art. No. 167523. doi: 10.1016/j.jallcom.2022.167523
      [51]
      I. Basu, V. Ocelík, and J.Th.M. de Hosson, BCC–FCC interfacial effects on plasticity and strengthening mechanisms in high entropy alloys, Acta Mater., 157(2018), p. 83. doi: 10.1016/j.actamat.2018.07.031
      [52]
      C.X. Huang, Y.F. Wang, X.L. Ma, et al., Interface affected zone for optimal strength and ductility in heterogeneous laminate, Mater. Today, 21(2018), No. 7, p. 713. doi: 10.1016/j.mattod.2018.03.006
      [53]
      Y.T. Zhu and X.L. Wu, Perspective on hetero-deformation induced (HDI) hardening and back stress, Mater. Res. Lett., 7(2019), No. 10, p. 393. doi: 10.1080/21663831.2019.1616331
      [54]
      P.J. Shi, Y.B. Zhong, Y. Li, et al., Multistage work hardening assisted by multi-type twinning in ultrafine-grained heterostructural eutectic high-entropy alloys, Mater. Today, 41(2020), p. 62. doi: 10.1016/j.mattod.2020.09.029
      [55]
      D.H. Chung, J. Lee, Q.F. He, et al., Hetero-deformation promoted strengthening and toughening in BCC rich eutectic and near eutectic high entropy alloys, J. Mater. Sci. Technol., 146(2023), p. 1. doi: 10.1016/j.jmst.2022.10.036

    Catalog


    • /

      返回文章
      返回