Cite this article as: |
Xu Yang, Dezhi Chen, Li Feng, Gang Qin, Shiping Wu, and Ruirun Chen, Enhancing the mechanical properties of casting eutectic high-entropy alloys via W addition, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1364-1372. https://doi.org/10.1007/s12613-024-2892-x |
陈德志 E-mail: chendezhi383@163.com
陈瑞润 E-mail: ruirunchen@hit.edu.cn
[1] |
S.T. Zhang, X. Ding, X.F. Gao, et al., Dual enhancement in strength and ductility of Ti–V–Zr medium entropy alloy by fracture mode transformation via a heterogeneous structure, Int. J. Plast., 160(2023), art. No. 103505. doi: 10.1016/j.ijplas.2022.103505
|
[2] |
J.H. Liu, X.M. Zhao, S.M. Zhang, Y.W. Sheng, and Q. Hu, Microstructure and mechanical properties of MoNbTaW refractory high-entropy alloy prepared by spark plasma sintering, J. Mater. Res., 38(2023), No. 2, p. 484. doi: 10.1557/s43578-022-00833-6
|
[3] |
H. Ren, R.R. Chen, T. Liu, et al., Unraveling the oxidation mechanism of Y-doped AlCoCrFeNi high-entropy alloy at 1100°C, Appl. Surf. Sci., 652(2024), art. No. 159316. doi: 10.1016/j.apsusc.2024.159316
|
[4] |
Y.S. Li, W.B. Liao, H.C. Chen, et al., A low-density high-entropy dual-phase alloy with hierarchical structure and exceptional specific yield strength, Sci. China Mater., 66(2023), No. 2, p. 780. doi: 10.1007/s40843-022-2178-x
|
[5] |
Z. Cheng, S.Z. Wang, G.L. Wu, J.H. Gao, X.S. Yang, and H.H. Wu, Tribological properties of high-entropy alloys: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 389. doi: 10.1007/s12613-021-2373-4
|
[6] |
I. Basu and J.Th.M. de Hosson, Strengthening mechanisms in high entropy alloys: Fundamental issues, Scripta Mater., 187(2020), p. 148. doi: 10.1016/j.scriptamat.2020.06.019
|
[7] |
D.B. Miracle and O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater., 122(2017), p. 448. doi: 10.1016/j.actamat.2016.08.081
|
[8] |
J. Wu, H.G. Zhu, and Z.H. Xie, Strength and ductility synergy of Nb-alloyed Ni0.6CoFe1.4 alloys, Int. J. Miner. Metall. Mater., 30(2023), No. 4, p.707. doi: 10.1007/s12613-022-2567-4
|
[9] |
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science, 345(2014), No. 6201, p. 1153. doi: 10.1126/science.1254581
|
[10] |
L. Fan, T. Yang, Y.L. Zhao, et al., Ultrahigh strength and ductility in newly developed materials with coherent nanolamellar architectures, Nat. Commun., 11(2020), No. 1, art. No. 6240. doi: 10.1038/s41467-020-20109-z
|
[11] |
O.N. Senkov, S. Gorsse, and D.B. Miracle, High temperature strength of refractory complex concentrated alloys, Acta Mater., 175(2019), p. 394. doi: 10.1016/j.actamat.2019.06.032
|
[12] |
C. Lee, G. Kim, Y. Chou, et al., Temperature dependence of elastic and plastic deformation behavior of a refractory high-entropy alloy, Sci. Adv., 6(2020), No. 37, art. No. eaaz4748. doi: 10.1126/sciadv.aaz4748
|
[13] |
N. Xiao, X. Guan, D. Wang, et al., Impact of W alloying on microstructure, mechanical property and corrosion resistance of face-centered cubic high entropy alloys: A review, Int. J. Miner. Metall. Mater., 30(2023), No. 9, p. 1667 doi: 10.1007/s12613-023-2641-6
|
[14] |
Y.C. Wu and J.L. Shao, FCC–BCC phase transformation induced simultaneous enhancement of tensile strength and ductility at high strain rate in high-entropy alloy, Int. J. Plast., 169(2023), art. No. 103730. doi: 10.1016/j.ijplas.2023.103730
|
[15] |
L.L. Han, X.D. Xu, Z.M. Li, B. Liu, C.T. Liu, and Y. Liu, A novel equiaxed eutectic high-entropy alloy with excellent mechanical properties at elevated temperatures, Mater. Res. Lett., 8(2020), No. 10, p. 373. doi: 10.1080/21663831.2020.1772395
|
[16] |
J. Ren, M. Wu, C.Y. Li, et al., Deformation mechanisms in an additively manufactured dual-phase eutectic high-entropy alloy, Acta Mater., 257(2023), art. No. 119179. doi: 10.1016/j.actamat.2023.119179
|
[17] |
Y.P. Lu, Y. Dong, S. Guo, et al., A promising new class of high-temperature alloys: Eutectic high-entropy alloys, Sci. Rep., 4(2014), art. No. 6200. doi: 10.1038/srep06200
|
[18] |
J.W. Miao, H.W. Yao, J. Wang, Y.P. Lu, T.M. Wang, and T.J. Li, Surface modification for AlCoCrFeNi2.1 eutectic high-entropy alloy via laser remelting technology and subsequent aging heat treatment, J. Alloys Compd., 894(2022), art. No. 162380. doi: 10.1016/j.jallcom.2021.162380
|
[19] |
T. Xiong, W.F. Yang, S.J. Zheng, et al., Faceted Kurdjumov-Sachs interface-induced slip continuity in the eutectic high-entropy alloy, AlCoCrFeNi2.1, J. Mater. Sci. Technol., 65(2021), p. 216. doi: 10.1016/j.jmst.2020.04.073
|
[20] |
J.J. Shen, J.G. Lopes, Z. Zeng, et al., Deformation behavior and strengthening effects of an eutectic AlCoCrFeNi2.1 high entropy alloy probed by in situ synchrotron X-ray diffraction and post-mortem EBSD, Mater. Sci. Eng. A, 872(2023), art. No. 144946. doi: 10.1016/j.msea.2023.144946
|
[21] |
X.T. Duan, T.Z. Han, X. Guan, et al., Cooperative effect of Cr and Al elements on passivation enhancement of eutectic high-entropy alloy AlCoCrFeNi2.1 with precipitates, J. Mater. Sci. Technol., 136(2023), p. 97. doi: 10.1016/j.jmst.2022.07.023
|
[22] |
X. Wang, W. Zhai, J.Y. Wang, and B. Wei, Strength and ductility enhancement of high-entropy FeCoNi2Al0.9 alloy by ultrasonically refining eutectic structures, Scripta Mater., 225(2023), art. No. 115154. doi: 10.1016/j.scriptamat.2022.115154
|
[23] |
Z.Z. Mao, X. Jin, Z. Xue, M. Zhang, and J.W. Qiao, Understanding the yield strength difference in dual-phase eutectic high-entropy alloys, Mater. Sci. Eng. A, 867(2023), art. No. 144725. doi: 10.1016/j.msea.2023.144725
|
[24] |
D. Yun, H. Chae, T. Lee, et al., Stress contribution of B2 phase in Al0.7CoCrFeNi eutectic high entropy alloy, J. Alloys Compd., 918(2022), art. No. 165673. doi: 10.1016/j.jallcom.2022.165673
|
[25] |
Q.Q. Liu, X.S. Liu, X.F. Fan, et al., Designing novel AlCoCrNi eutectic high entropy alloys, J. Alloys Compd., 904(2022), art. No. 163775. doi: 10.1016/j.jallcom.2022.163775
|
[26] |
C. Liu, Y. Gao, K. Chong, F.Q. Guo, D.T. Wu, and Y. Zou, Effect of Nb content on the microstructure and corrosion resistance of FeCoCrNiNb x high-entropy alloys in chloride ion environment, J. Alloys Compd., 935(2023), art. No. 168013. doi: 10.1016/j.jallcom.2022.168013
|
[27] |
D. Fang, X. Wu, W.Q. Xu, et al., Microstructure and properties of a novel cost-effective FeNi-based eutectic high entropy alloys, Mater. Sci. Eng. A, 870(2023), art. No. 144919. doi: 10.1016/j.msea.2023.144919
|
[28] |
X.C. Ye, J.Y. Xiong, X. Wu, et al., A new infinite solid solution strategy to design eutectic high entropy alloys with B2 and BCC structure, Scripta Mater., 199(2021), art. No. 113886. doi: 10.1016/j.scriptamat.2021.113886
|
[29] |
L. Wang, C. Yao, J. Shen, et al., A new method to design eutectic high-entropy alloys by determining the formation of single-phase solid solution and calculating solidification paths, Mater. Sci. Eng. A, 830(2022), art. No. 142325. doi: 10.1016/j.msea.2021.142325
|
[30] |
L. Wang, Y.N. Su, C.L. Yao, et al., Microstructure and mechanical property of novel NiAl-based hypoeutectic/eutectic/hypereutectic high-entropy alloy, Intermetallics, 143(2022), art. No. 107476. doi: 10.1016/j.intermet.2022.107476
|
[31] |
Z.S. Yang, Z.J. Wang, Q.F. Wu, et al., Enhancing the mechanical properties of casting eutectic high entropy alloys with Mo addition, Appl. Phys. A, 125(2019), No. 3, art. No. 208. doi: 10.1007/s00339-019-2506-z
|
[32] |
X.H. Chen, W.Y. Xie, J. Zhu, et al., Influences of Ti additions on the microstructure and tensile properties of AlCoCrFeNi2.1 eutectic high entropy alloy, Intermetallics, 128(2021), art. No. 107024. doi: 10.1016/j.intermet.2020.107024
|
[33] |
Q.F. Wu, Z.J. Wang, T. Zheng, et al., A casting eutectic high entropy alloy with superior strength-ductility combination, Mater. Lett., 253(2019), p. 268. doi: 10.1016/j.matlet.2019.06.067
|
[34] |
Q.F. Wu, F. He, J.J. Li, H.S. Kim, Z.J. Wang, and J.C. Wang, Phase-selective recrystallization makes eutectic high-entropy alloys ultra-ductile, Nat. Commun., 13(2022), No. 1, art. No. 4697. doi: 10.1038/s41467-022-32444-4
|
[35] |
Y. Dong and Y.P. Lu, Effects of tungsten addition on the microstructure and mechanical properties of near-eutectic AlCoCrFeNi2 high-entropy alloy, J. Mater. Eng. Perform., 27(2018), No. 1, p. 109. doi: 10.1007/s11665-017-3096-6
|
[36] |
N. Malatji, T. Lengopeng, S. Pityana, and A.P.I. Popoola, Microstructural, mechanical and electrochemical properties of AlCrFeCuNiW x high entropy alloys, J. Mater. Res. Technol., 11(2021), p. 1594. doi: 10.1016/j.jmrt.2021.01.103
|
[37] |
X. Yang, L. Feng, T. Liu, R.R. Chen, G. Qin, and S.P. Wu, Tensile properties and strengthening mechanisms of eutectic high-entropy alloys induced by heterostructure, Mater. Charact., 208(2024), art. No. 113464. doi: 10.1016/j.matchar.2023.113464
|
[38] |
A. Takeuchi and A. Inoue, Quantitative evaluation of critical cooling rate for metallic glasses, Mater. Sci. Eng. A, 304-306(2001), p. 446. doi: 10.1016/S0921-5093(00)01446-5
|
[39] |
V. Soni, O.N. Senkov, B. Gwalani, D.B. Miracle, and R. Banerjee, Microstructural design for improving ductility of an initially brittle refractory high entropy alloy, Sci. Rep., 8(2018), No. 1, art. No. 8816. doi: 10.1038/s41598-018-27144-3
|
[40] |
K.S. Ming, X.F. Bi, and J. Wang, Strength and ductility of CrFeCoNiMo alloy with hierarchical microstructures, Int. J. Plast., 113(2019), p. 255. doi: 10.1016/j.ijplas.2018.10.005
|
[41] |
R.R. Chen, G. Qin, H.T. Zheng, et al., Composition design of high entropy alloys using the valence electron concentration to balance strength and ductility, Acta Mater., 144(2018), p. 129. doi: 10.1016/j.actamat.2017.10.058
|
[42] |
S. Guo, C. Ng, J. Lu, and C.T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, J. Appl. Phys., 109(2011), No. 10, p. 103505. doi: 10.1063/1.3587228
|
[43] |
H. Jiang, L. Jiang, K.M. Han, et al., Effects of tungsten on microstructure and mechanical properties of CrFeNiV0.5W x and CrFeNi2V0.5W x high-entropy alloys, J. Mater. Eng. Perform., 24(2015), No. 12, p. 4594. doi: 10.1007/s11665-015-1767-8
|
[44] |
B. Chanda, G. Potnis, P.P. Jana, and J. Das, A review on nano-/ ultrafine advanced eutectic alloys, J. Alloys Compd., 827(2020), art. No. 154226. doi: 10.1016/j.jallcom.2020.154226
|
[45] |
X. Jin, J. Bi, L. Zhang, et al., A new CrFeNi2Al eutectic high entropy alloy system with excellent mechanical properties, J. Alloys Compd., 770(2019), p. 655. doi: 10.1016/j.jallcom.2018.08.176
|
[46] |
X. Jin, Y. Zhou, L. Zhang, X.Y. Du, and B.S. Li, A new pseudo binary strategy to design eutectic high entropy alloys using mixing enthalpy and valence electron concentration, Mater. Des., 143(2018), p. 49. doi: 10.1016/j.matdes.2018.01.057
|
[47] |
L.L. Ma, J.N. Wang, Z.H. Lai, Z.C. Wu, B.T. Yang, and P.P. Zhao, Microstructure and mechanical property of Al56− xCo24Cr20Ni eutectic high-entropy alloys with an ordered FCC/BCT phase structure, J. Alloys Compd., 936(2023), art. No. 168194. doi: 10.1016/j.jallcom.2022.168194
|
[48] |
X. Jin, Y.X. Liang, J. Bi, and B.S. Li, Enhanced strength and ductility of Al0.9CoCrNi2.1 eutectic high entropy alloy by thermomechanical processing, Materialia, 10(2020), art. No. 100639. doi: 10.1016/j.mtla.2020.100639
|
[49] |
Q.W. Tian, G.J. Zhang, K.X. Yin, W.L. Cheng, Y.N. Wang, and J.C. Huang, Effect of Ni content on the phase formation, tensile properties and deformation mechanisms of the Ni-rich AlCoCrFeNi x (x = 2, 3, 4) high entropy alloys, Mater. Charact., 176(2021), art. No. 111148. doi: 10.1016/j.matchar.2021.111148
|
[50] |
X.X. Liu, S.G. Ma, W.D. Song, D. Zhao, and Z.H. Wang, Microstructure evolution and mechanical response of Co-free Ni2CrFeAl0.3Ti x high-entropy alloys, J. Alloys Compd., 931(2023), art. No. 167523. doi: 10.1016/j.jallcom.2022.167523
|
[51] |
I. Basu, V. Ocelík, and J.Th.M. de Hosson, BCC–FCC interfacial effects on plasticity and strengthening mechanisms in high entropy alloys, Acta Mater., 157(2018), p. 83. doi: 10.1016/j.actamat.2018.07.031
|
[52] |
C.X. Huang, Y.F. Wang, X.L. Ma, et al., Interface affected zone for optimal strength and ductility in heterogeneous laminate, Mater. Today, 21(2018), No. 7, p. 713. doi: 10.1016/j.mattod.2018.03.006
|
[53] |
Y.T. Zhu and X.L. Wu, Perspective on hetero-deformation induced (HDI) hardening and back stress, Mater. Res. Lett., 7(2019), No. 10, p. 393. doi: 10.1080/21663831.2019.1616331
|
[54] |
P.J. Shi, Y.B. Zhong, Y. Li, et al., Multistage work hardening assisted by multi-type twinning in ultrafine-grained heterostructural eutectic high-entropy alloys, Mater. Today, 41(2020), p. 62. doi: 10.1016/j.mattod.2020.09.029
|
[55] |
D.H. Chung, J. Lee, Q.F. He, et al., Hetero-deformation promoted strengthening and toughening in BCC rich eutectic and near eutectic high entropy alloys, J. Mater. Sci. Technol., 146(2023), p. 1. doi: 10.1016/j.jmst.2022.10.036
|