留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 12
Dec.  2024

图(18)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  310
  • HTML全文浏览量:  133
  • PDF下载量:  24
  • 被引次数: 0
Shuaishuai Xiao, Jialong Shen, Jianing Zhao, Jie Fang, Caiyu Liang,  and Lei Zhou, Electromagnetic responses on microstructures of duplex stainless steels based on 3D cellular and electromagnetic sensor finite element models, Int. J. Miner. Metall. Mater., 31(2024), No. 12, pp. 2681-2691. https://doi.org/10.1007/s12613-024-2894-8
Cite this article as:
Shuaishuai Xiao, Jialong Shen, Jianing Zhao, Jie Fang, Caiyu Liang,  and Lei Zhou, Electromagnetic responses on microstructures of duplex stainless steels based on 3D cellular and electromagnetic sensor finite element models, Int. J. Miner. Metall. Mater., 31(2024), No. 12, pp. 2681-2691. https://doi.org/10.1007/s12613-024-2894-8
引用本文 PDF XML SpringerLink
研究论文

基于三维元胞和多频电磁传感器有限元模型的双相不锈钢电磁响应研究


  • 通讯作者:

    申嘉龙    E-mail: Jialong.Shen@glut.edu.cn

文章亮点

  • (1) 提出了一种计算三维双相不锈钢微观结构有限元模型相对磁导率的方法
  • (2) 构建了多频电磁传感器模型,通过相对磁导率建立微观组织参数和电磁传感器输出之间的映射关系
  • (3) 提取多频电磁传感器的低频电感作为区分不同钢铁微观结构的特征参数
  • 生产过程中对钢铁材料微观结构实时在线检测是保证产品质量、提高产品性能的关键。但目前缺少应用于钢铁生产检测的高精度,快响应的在线检测方法。多频电磁传感器检测技术能利用电磁场与铁磁性材料之间的电磁感应来识别和表征材料微观结构,获取材料内部微观结构特征和宏观性质信息。本文从研究多频电磁传感器对钢铁微观组织的表征技术出发,通过建立三维钢铁微观结构模型和宏观电磁传感器模型,探究钢铁微观组织与电磁传感器输出之间的关系。本文提出一种计算双相不锈钢微观结构有限元模型相对磁导率的方法,通过电磁感应云图分析了不同晶粒、相、晶界等内部结构在磁场作用下的行为,并通过相对磁导率建立微观组织参数和电磁传感器输出之间的定量关系。构建了三维宏观多频电磁传感器模型,将不同微观结构模型计算出的相对磁导率赋值给多频电磁传感器的检测试样,得到不同微观结构模型的多频电磁响应,将钢铁微观结构的参数与电磁传感器输出电感建立映射关系。提取多频电磁传感器的低频电感作为区分不同钢铁微观结构的特征参数。发现在10 Hz频率时或者相对较低频率时,晶粒尺寸对传感器输出电感影响最小,相位分布对传感器输出电感的影响次之,相分数对传感器输出电感的影响最大。
  • Research Article

    Electromagnetic responses on microstructures of duplex stainless steels based on 3D cellular and electromagnetic sensor finite element models

    + Author Affiliations
    • Microstructures determine mechanical properties of steels, but in actual steel product process it is difficult to accurately control the microstructure to meet the requirements. General microstructure characterization methods are time consuming and results are not representative for overall quality level as only a fraction of steel sample was selected to be examined. In this paper, a macro and micro coupled 3D model was developed for nondestructively characterization of steel microstructures. For electromagnetic signals analysis, the relative permeability value computed by the micro cellular model can be used in the macro electromagnetic sensor model. The effects of different microstructure components on the relative permeability of duplex stainless steel (grain size, phase fraction, and phase distribution) were discussed. The output inductance of an electromagnetic sensor was determined by relative permeability values and can be validated experimentally. The findings indicate that the inductance value of an electromagnetic sensor at low frequency can distinguish different microstructures. This method can be applied to real-time on-line characterize steel microstructures in process of steel rolling.
    • loading
    • [1]
      A. Vinoth Jebaraj, L. Ajaykumar, C.R. Deepak, and K.V.V. Aditya, Weldability, machinability and surfacing of commercial duplex stainless steel AISI2205 for marine applications–A recent review, J. Adv. Res., 8(2017), No. 3, p. 183. doi: 10.1016/j.jare.2017.01.002
      [2]
      M. Rabi, R. Shamass, and K.A. Cashell, Structural performance of stainless steel reinforced concrete members: A review, Constr. Build. Mater., 325(2022), art. No. 126673. doi: 10.1016/j.conbuildmat.2022.126673
      [3]
      K. Yıldızlı, Investigation on the microstructure and toughness properties of austenitic and duplex stainless steels weldments under cryogenic conditions, Mater. Des., 77(2015), p. 83. doi: 10.1016/j.matdes.2015.04.008
      [4]
      S.L. Sheng, Y.X. Qiao, R.Z. Zhai, M.Y. Sun, and B. Xu, Processing map and dynamic recrystallization behaviours of 316LN-Mn austenitic stainless steel, Int. J. Miner. Metall. Mater., 30(2023), No. 12, p. 2386. doi: 10.1007/s12613-023-2714-6
      [5]
      Q.X. Ran, J.Y. Guo, Z.L. Zhao, B.Y. Duan, L.N. Fang, and L. Li, Study on microstructure and corrosion resistance of duplex stainless steel 2205 in real seawater rich containing mold, Int. J. Electrochem. Sci., 17(2022), No. 7, art. No. 220723. doi: 10.20964/2022.07.19
      [6]
      S.Y. Cai, K.K. Lu, X.N. Li, L. Wen, F.F. Huang, and Y. Jin, Quantitative micro-electrochemical study of duplex stainless steel 2205 in 3.5wt% NaCl solution, Int. J. Miner. Metall. Mater., 29(2022), No. 11, p. 2053. doi: 10.1007/s12613-021-2291-5
      [7]
      M.M. Pan, X.M. Zhang, P. Chen, X.B. Su, and R.D.K. Misra, The effect of chemical composition and annealing condition on the microstructure and tensile properties of a resource-saving duplex stainless steel, Mater. Sci. Eng. A, 788(2020), art. No. 139540. doi: 10.1016/j.msea.2020.139540
      [8]
      L. Zhou, R. Hall, and C.L. Davis, Measured and modelled low field relative permeability for dual phase steels at high temperature, J. Magn. Magn. Mater., 475(2019), p. 38. doi: 10.1016/j.jmmm.2018.11.096
      [9]
      X.J. Hao, W. Yin, M. Strangwood, A.J. Peyton, P.F. Morris, and C.L. Davis, Characterization of decarburization of steels using a multifrequency electromagnetic sensor: Experiment and modeling, Metall. Mater. Trans. A, 40(2009), No. 4, p. 745. doi: 10.1007/s11661-008-9776-y
      [10]
      S.M. Thompson and B.K. Tanner, The magnetic properties of pearlitic steels as a function of carbon content, J. Magn. Magn. Mater., 123(1993), No. 3, p. 283. doi: 10.1016/0304-8853(93)90454-A
      [11]
      P.J. Wang, L.W. Ma, X.Q. Cheng, and X.G. Li, Influence of grain refinement on the corrosion behavior of metallic materials: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1112. doi: 10.1007/s12613-021-2308-0
      [12]
      J. Liu, J. Wilson, C.L. Davis, and A. Peyton, Magnetic characterisation of grain size and precipitate distribution by major and minor BH loop measurements, J. Magn. Magn. Mater., 481(2019), p. 55. doi: 10.1016/j.jmmm.2019.02.088
      [13]
      S.Z. Wang, Z.J. Gao, G.L. Wu, and X.P. Mao, Titanium microalloying of steel: A review of its effects on processing, microstructure and mechanical properties, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 645. doi: 10.1007/s12613-021-2399-7
      [14]
      D. Chatterjee, Effect of repeated warm rolling cold rolling and annealing on the microstructure and mechanical properties of AISI 301LN grade austenitic stainless steel, Mater. Today Proc., 46(2021), p. 10604. doi: 10.1016/j.matpr.2021.01.341
      [15]
      Q.Z. Li, Carbon nanotube reinforced porous magnesium composite: 3D nondestructive microstructure characterization using X-ray micro-computed tomography, Mater. Lett., 133(2014), No., p. 83.
      [16]
      X.L. Yan, H.P. Wang, and X.Z. Fan, Research progress in nonlinear ultrasonic testing for early damage in metal materials, Materials, 16(2023), No. 6, art. No. 2161. doi: 10.3390/ma16062161
      [17]
      M.B. Kishore, D.G. Park, C.S. Angani, and D.H. Lee, Characterization of pulsed eddy current signals to discriminate cladding change over wall thinning of ferromagnetic pipes, Mater. Today Proc., 5(2018), No. 12, p. 25843. doi: 10.1016/j.matpr.2018.06.577
      [18]
      L. Li, Y. Yang, X. Cai, and Y.H. Kang, Investigation on the formation mechanism of crack indications and the influences of related parameters in magnetic particle inspection, Appl. Sci., 10(2020), No. 19, art. No. 6805. doi: 10.3390/app10196805
      [19]
      A. Srivastava, A. Awale, M. Vashista, and M.Z. Khan Yusufzai, Characterization of ground steel using nondestructive magnetic Barkhausen noise technique, J. Mater. Eng. Perform., 29(2020), No. 7, p. 4617. doi: 10.1007/s11665-020-04993-6
      [20]
      F. Peng, Z.R. Feng, Y. Zhao, and J.Z. Long, A novel reticular retained austenite on the weld fusion line of low carbon martensitic stainless steel 06Cr13Ni4Mo and the influence on the mechanical properties, Metals, 12(2022), No. 3, art. No. 432. doi: 10.3390/met12030432
      [21]
      J. Xie, C.H. Xu, G.M. Chen, W.P. Huang, and G.B. Song, Automated identification of front/rear surface cracks in ferromagnetic metals based on eddy current pulsed thermography, Infrared Phys. Technol., 126(2022), art. No. 104345. doi: 10.1016/j.infrared.2022.104345
      [22]
      J.W. Wilson, N. Karimian, J. Liu, W. Yin, C.L. Davis, and A.J. Peyton, Measurement of the magnetic properties of P9 and T22 steel taken from service in power station, J. Magn. Magn. Mater., 360(2014), p. 52. doi: 10.1016/j.jmmm.2014.01.057
      [23]
      W. Yin, S.J. Dickinson, and A.J. Peyton, A multi-frequency impedance analysing instrument for eddy current testing, Meas. Sci. Technol., 17(2006), No. 2, p. 393. doi: 10.1088/0957-0233/17/2/022
      [24]
      M. Aghadavoudi Jolfaei, L. Zhou, and C. Davis, Consideration of magnetic measurements for characterisation of ferrite–martensite commercial dual-phase (DP) steel and basis for optimisation of the operating magnetic field for open loop deployable sensors, Metals, 11(2021), No. 3, art. No. 490. doi: 10.3390/met11030490
      [25]
      F.H. Yang, A. Luinenburg, C. Bos, et al., In-line quantitative measurement of transformed phase fraction by EM sensors during controlled cooling on the run-out table of a hot strip mill, [in] The 19th World Conference on Non-Destructive Testing, Munich, 2016, p. 1.
      [26]
      H. Yang, F.D. van den Berg, C. Bos, et al., Em sensor array system and performance evaluation for in-line measurement of phase transformation in steel, Insight, 61(2019), No. 3, p. 153. doi: 10.1784/insi.2019.61.3.153
      [27]
      W. Zhu, H. Yang, A. Luinenburg, et al., Development and deployment of online multifrequency electromagnetic system to monitor steel hot transformation on runout table of hot strip mill, Ironmaking Steelmaking, 41(2014), No. 9, p. 685. doi: 10.1179/1743281214Y.0000000183
      [28]
      L. Zhou, J. Liu, X.J. Hao, M. Strangwood, A.J. Peyton, and C.L. Davis, Quantification of the phase fraction in steel using an electromagnetic sensor, NDT & E Int., 67(2014), p. 31.
      [29]
      L. Zhou, C. Davis, and P. Kok, Steel microstructure–magnetic permeability modelling: The effect of ferrite grain size and phase fraction, J. Magn. Magn. Mater., 519(2021), art. No. 167439. doi: 10.1016/j.jmmm.2020.167439
      [30]
      J. Liu, X.J. Hao, L. Zhou, M. Strangwood, C.L. Davis, and A.J. Peyton, Measurement of microstructure changes in 9Cr–1Mo and 2.25Cr–1Mo steels using an electromagnetic sensor, Scripta Mater., 66(2012), No. 6, p. 367. doi: 10.1016/j.scriptamat.2011.11.032
      [31]
      D.M. Escriba, E. Materna-Morris, R.L. Plaut, and A.F. Padilha, Chi-phase precipitation in a duplex stainless steel, Mater. Charact., 60(2009), No. 11, p. 1214. doi: 10.1016/j.matchar.2009.04.013
      [32]
      S.S. Xiao, J.L. Shen, J.N. Zhao, et al., Non-destructive characterization on multiphase structures of duplex stainless steel using multi-frequency electromagnetic sensor, NDT & E Int., 138(2023), art. No. 102892.
      [33]
      Z. Guo, J.X. Zhou, Y.J. Yin, X. Shen, and X.Y. Ji, Numerical simulation of three-dimensional mesoscopic grain evolution: Model development, validation, and application to nickel-based superalloys, Metals, 9(2019), No. 1, art. No. 57. doi: 10.3390/met9010057
      [34]
      J.L. Shen, L. Zhou, W. Jacobs, P. Hunt, and C. Davis, Real-time in-line steel microstructure control through magnetic properties using an EM sensor, J. Magn. Magn. Mater., 490(2019), art. No. 165504. doi: 10.1016/j.jmmm.2019.165504
      [35]
      J.W. Wilson, L. Zhou, C.L. Davis, and A.J. Peyton, High temperature magnetic characterisation of structural steels using Epstein frame, Meas. Sci. Technol., 32(2021), No. 12, art. No. 125601. doi: 10.1088/1361-6501/ac17fa

    Catalog


    • /

      返回文章
      返回