留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 32 Issue 1
Jan.  2025

图(10)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  237
  • HTML全文浏览量:  94
  • PDF下载量:  13
  • 被引次数: 0
Qiang Liu, Xiang Li, Shen Du, Ming Gao, Yanbin Yin, and Jiongming Zhang, Investigation of bubbles escape behavior from low basicity mold flux for high-Mn high-Al steels using 3D X-ray microscope, Int. J. Miner. Metall. Mater., 32(2025), No. 1, pp. 102-110. https://doi.org/10.1007/s12613-024-2896-6
Cite this article as:
Qiang Liu, Xiang Li, Shen Du, Ming Gao, Yanbin Yin, and Jiongming Zhang, Investigation of bubbles escape behavior from low basicity mold flux for high-Mn high-Al steels using 3D X-ray microscope, Int. J. Miner. Metall. Mater., 32(2025), No. 1, pp. 102-110. https://doi.org/10.1007/s12613-024-2896-6
引用本文 PDF XML SpringerLink
研究论文

使用三维X射线显微镜研究高锰高铝钢低碱度保护渣中气泡的逸出行为


  • 通讯作者:

    张炯明    E-mail: jmz2203@sina.com

文章亮点

  • (1) 使用三维X射线显微镜对保护渣中1~100μm的气泡的空间分布和三维形态学参数进行了直观、准确和全面的统计
  • (2) 碱度为0.52~1.03的高锰高铝钢保护渣,粘度碱度升高而降低,保护渣逐渐解聚,转折温度增加
  • (3) 气泡运动速率随粘度减小而增加,渣中残留气泡的体积分数和等效球直径减小,提高碱度、温度和保温时间均有利于气泡的去除
  • 在高锰高铝钢的连铸过程中,氩气等各种气体都需要通过结晶器顶部的保护渣逸出。气泡穿越保护渣液渣层是逸出过程中的限制性环节,主要与保护渣粘度和液渣层厚度有关。相对于传统二维表面分析技术研究渣中的气泡尺寸和分布,三维表征是一种更直观、准确和全面的分析方法。因此,本研究采用三维X射线显微镜获得了不同碱度、不同温度和不同保温时间下保护渣中残余气泡的空间分布和三维形貌特征。结果表明,保护渣碱度从0.52增加到1.03,温度从1423 K增加到1573 K的过程中,保护渣的粘度逐渐减小,气泡的上浮速率增加;保温时间从10 s增加到30 s的过程中,凝固的保护渣中残存气泡的体分数和平均等效球直径逐渐减小,尤其是大气泡去除效果明显。提高碱度、温度和保温时间均有利于气泡去除效率的增加。气泡逸出行为的研究对高锰高铝钢低碱度保护渣的性能优化有意义的。
  • Research Article

    Investigation of bubbles escape behavior from low basicity mold flux for high-Mn high-Al steels using 3D X-ray microscope

    + Author Affiliations
    • During the continuous casting process of high-Mn high-Al steels, various types of gases such as Ar need to escape through the top of the mold. In which, the behavior of bubbles traversing the liquid slag serves as a restrictive link, closely associated with viscosity and the thickness of liquid slag. In contrast to two-dimensional surface observation, three-dimensional (3D) analysis method can offer a more intuitive, accurate, and comprehensive information. Therefore, this study employs a 3D X-ray microscope (3D-XRM) to obtained spatial distribution and 3D morphological characteristics of residual bubbles in mold flux under different basicity of liquid slag, different temperatures, and different holding times. The results indicate that as basicity of slag increases from 0.52 to 1.03, temperature increases from 1423 to 1573 K, the viscosity of slag decreases, the floating rate of bubbles increases. In addition, when holding time increases from 10 to 30 s, the bubbles floating distance increases, and the volume fraction and average equivalent sphere diameter of the bubbles solidified in the mold flux gradually decreases. In one word, increasing the basicity, temperature, and holding time leading to an increase in the removal rate of bubbles especially for the large. These findings of bubbles escape behavior provide valuable insights into optimizing low basicity mold flux for high-Mn high-Al steels.
    • loading
    • [1]
      L.Z. Kong, F. Xing, T.J. Wang, et al., Interfacial reaction model of high-Al steel in continuous casting mold, Metall. Mater. Trans. B, 54(2023), No. 3, p. 1546. doi: 10.1007/s11663-023-02780-x
      [2]
      J. Yang, L.J. Wang, Y. Li, T.J. Wang, L.Z. Kong, and X.M. Zang, Modeling of flux reaction and mixing in continuous casting mold of medium Mn steel, Metall. Mater. Trans. B, 53(2022), No. 3, p. 1516. doi: 10.1007/s11663-022-02461-1
      [3]
      W.L. Wang, B.X. Lu, and D. Xiao, A review of mold flux development for the casting of high-Al steels, Metall. Mater. Trans. B, 47(2016), No. 1, p. 384. doi: 10.1007/s11663-015-0474-z
      [4]
      J.X. Gao, G.H. Wen, T. Huang, B.W. Bai, P. Tang, and Q. Liu, Effect of slag–steel reaction on the structure and viscosity of CaO–SiO2-based mold flux during high-Al steel casting, J. Non Cryst. Solids, 452(2016), p. 119. doi: 10.1016/j.jnoncrysol.2016.08.036
      [5]
      H. Zhao, W.L. Wang, L.J. Zhou, B.X. Lu, and Y.B. Kang, Effects of MnO on crystallization, melting, and heat transfer of CaO–Al2O3-based mold flux used for high Al-TRIP steel casting, Metall. Mater. Trans. B, 45(2014), No. 4, p. 1510. doi: 10.1007/s11663-014-0043-x
      [6]
      L. Wang, J. Yang, and Y.B. Liu, Numerical investigation for effects of polydisperse argon bubbles on molten steel flow and liquid slag entrapment in a slab continuous casting mold, Metall. Mater. Trans. B, 53(2022), No. 6, p. 3707. doi: 10.1007/s11663-022-02634-y
      [7]
      D. Bao, X. Zhang, H.F. Dong, Z.L. Ouyang, X.P. Zhang, and S.J. Zhang, Numerical simulations of bubble behavior and mass transfer in CO2 capture system with ionic liquids, Chem. Eng. Sci., 135(2015), p. 76. doi: 10.1016/j.ces.2015.06.035
      [8]
      C.L. Yang, G.H. Wen, X.F. Zhu, and P. Tang, In situ observation and numerical simulation of bubble behavior in CaO–SiO2 based slag during isothermal and nonisothermal processes, J. Non Cryst. Solids, 464(2017), p. 56. doi: 10.1016/j.jnoncrysol.2017.03.028
      [9]
      L.J. Zhou and W.L. Wang, Application of non-Arrhenius models to the viscosity of mold flux, Metall. Mater. Trans. B, 47(2016), No. 3, p. 1548. doi: 10.1007/s11663-016-0651-8
      [10]
      J.W. Cho, K. Blazek, M. Frazee, H.B. Yin, J.H. Park, and S.W. Moon, Assessment of CaO–Al2O3 based mold flux system for high aluminum TRIP casting, ISIJ Int., 53(2013), No. 1, p. 62. doi: 10.2355/isijinternational.53.62
      [11]
      J.W. Cho and H.T. Jeong, Infiltration of slag film into the grooves on a continuous casting mold, Metall. Mater. Trans. B, 44(2013), No. 1, p. 146. doi: 10.1007/s11663-012-9748-x
      [12]
      X. Li, Y.P. Bao, M. Wang, and L. Lin, Simulation study on factors influencing the entrainment behavior of liquid steel as bubbles pass through the steel/slag interface, Int. J. Miner. Metall. Mater., 23(2016), No. 5, p. 511. doi: 10.1007/s12613-016-1262-8
      [13]
      S.G. Zheng and M.Y. Zhu, Physical modeling of gas–liquid interfacial fluctuation in a thick slab continuous casting mold with argon blowing, Int. J. Miner. Metall. Mater., 17(2010), No. 6, p. 704. doi: 10.1007/s12613-010-0377-6
      [14]
      K. Wu, W. Qian, S.J. Chu, Q. Niu, and H.W. Luo, Behavior of slag foaming caused by blowing gas in molten slags, ISIJ Int., 40(2000), No. 10, p. 954. doi: 10.2355/isijinternational.40.954
      [15]
      Y. Cao, Z. Kawara, T. Yokomine, and T. Kunugi, Experimental and numerical study on nucleate bubble deformation in subcooled flow boiling, Int. J. Multiphase Flow, 82(2016), p. 93. doi: 10.1016/j.ijmultiphaseflow.2016.02.008
      [16]
      Z.J. Shen, Q.F. Liang, J.L. Xu, and H.F. Liu, In situ study on the formation mechanism of bubbles during the reaction of captured chars on molten slag surface, Int. J. Heat Mass Transfer, 95(2016), p. 517. doi: 10.1016/j.ijheatmasstransfer.2015.12.040
      [17]
      Z.K. Wu, S.C. Wu, J.G. Bao, et al., The effect of defect population on the anisotropic fatigue resistance of AlSi10Mg alloy fabricated by laser powder bed fusion, Int. J. Fatigue, 151(2021), art. No. 106317. doi: 10.1016/j.ijfatigue.2021.106317
      [18]
      L.X. Cui, X.H. Lei, L.F. Zhang, et al., Three-dimensional characterization of defects in continuous casting blooms of heavy rail steel using X-ray computed tomography, Metall. Mater. Trans. B, 52(2021), No. 4, p. 2327. doi: 10.1007/s11663-021-02172-z
      [19]
      Q. Liu, Z.H. Zhan, M. Gao, L.D. Xing, Y.B. Yin, and J.M. Zhang, Investigation of evolution of inclusions in 15-5PH stainless steel during hot compression using 3D X-ray microscopy, Metall. Mater. Trans. B, 54(2023), No. 5, p. 2852. doi: 10.1007/s11663-023-02882-6
      [20]
      H. Singh, A.M. Gokhale, Y. Mao, A. Tewari, and A.K. Sachdev, Reconstruction and quantitative characterization of multiphase, multiscale three-dimensional microstructure of a cast Al–Si base alloy, Metall. Mater. Trans. B, 40(2009), No. 6, p. 859. doi: 10.1007/s11663-009-9291-6
      [21]
      L.J. Zhou, H.F. Wu, W.L. Wang, H. Luo, X. Yan, and Y. Yang, Electrical conductivity and melt structure of the CaO–SiO2-based mold fluxes with different basicity, Metall. Mater. Trans. B, 53(2022), No. 1, p. 466. doi: 10.1007/s11663-021-02383-4
      [22]
      L.J. Zhou, W.L. Wang, F.J. Ma, et al., A kinetic study of the effect of basicity on the mold fluxes crystallization, Metall. Mater. Trans. B, 43(2012), No. 2, p. 354. doi: 10.1007/s11663-011-9591-5
      [23]
      K.Z. Gu, W.L. Wang, L.J. Zhou, F.J. Ma, and D.Y. Huang, The effect of basicity on the radiative heat transfer and interfacial thermal resistance in continuous casting, Metall. Mater. Trans. B, 43(2012), No. 4, p. 937. doi: 10.1007/s11663-012-9644-4
      [24]
      X.X. Wan, C.B. Shi, Y. Huang, Q.F. Shu, and Y. Zhao, Effect of SiO2 and BaO/CaO mass ratio on structure and viscosity of B2O3-containing CaF2–CaO–Al2O3-based slag for electroslag remelting of rotor steel, Metall. Mater. Trans. B, 54(2023), No. 1, p. 465. doi: 10.1007/s11663-022-02706-z
      [25]
      X.X. Wan, C.B. Shi, Y. Zhao, and J. Li, Effect of CaF2 and Li2O on structure and viscosity of low-fluoride slag for electroslag remelting of rotor steel, J. Non Cryst. Solids, 597(2022), art. No. 121914. doi: 10.1016/j.jnoncrysol.2022.121914
      [26]
      D.W. Cai, L. Zhang, W.L. Wang, L. Zhang, and I. Sohn, Dissolution of TiO2 and TiN inclusions in CaO–SiO2–B2O3-based fluorine-free mold flux, Int. J. Miner. Metall. Mater., 30(2023), No. 9, p. 1740. doi: 10.1007/s12613-023-2622-9
      [27]
      S.P. He, Q. Wang, D. Xie, C.S. Xu, Z.S. Li, and K.C. Mills, Solidification and crystallization properties of CaO–SiO2–Na2O based mold fluxes, Int. J. Miner. Metall. Mater., 16(2009), No. 3, p. 261. doi: 10.1016/S1674-4799(09)60047-9
      [28]
      G.Q. Yang, B. Du, and L.S. Fan, Bubble Formation and dynamics in gas–liquid–solid fluidization—A review, Chem. Eng. Sci., 62(2007), No. 1-2, p. 2. doi: 10.1016/j.ces.2006.08.021
      [29]
      S. Schwarz and J. Fröhlich, Numerical study of single bubble motion in liquid metal exposed to a longitudinal magnetic field, Int. J. Multiphase Flow, 62(2014), p. 134. doi: 10.1016/j.ijmultiphaseflow.2014.02.012

    Catalog


    • /

      返回文章
      返回