留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图(18)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  268
  • HTML全文浏览量:  119
  • PDF下载量:  7
  • 被引次数: 0
Tao Zou, Yanwu Dong, Zhouhua Jiang, Shuyang Du, and Yushuo Li, Effect of lamellarization on the microstructure and mechanical properties of marine 10Ni5CrMoV steel, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2897-5
Cite this article as:
Tao Zou, Yanwu Dong, Zhouhua Jiang, Shuyang Du, and Yushuo Li, Effect of lamellarization on the microstructure and mechanical properties of marine 10Ni5CrMoV steel, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2897-5
引用本文 PDF XML SpringerLink
研究论文

层状化工艺对船用10Ni5CrMoV钢微观结构和力学性能的影响


  • 通讯作者:

    董艳伍    E-mail: dongyw@smm.neu.edu.cn

文章亮点

  • (1) 系统分析了淬火–层状化–回火工艺对10Ni5CrMoV钢应变硬化行为和低温增韧机制。
  • (2) 阐明了逆转奥氏体的演变机制和生长动力学过程。
  • (3) 总结并提出了获得最佳强韧性匹配的层状化温度。
  • 使用淬火(Q)–层状化(L)–回火(T)的多级热处理工艺制备了船用10Ni5CrMoV钢,通过多尺度表征手段研究了其微观结构和力学性能演变规律,重点研究了逆转奥氏体的转变动力学、应变硬化行为和低温增韧机理。层状化过程会在马氏体板条和块界处生成膜状的逆转奥氏体,这会细化马氏体组织,降低试样的等效晶粒尺寸。使用基于JMAK模型对逆转奥氏体的生长动力学分析表明,等温转变过程是以逆转奥氏体的生长为主,并且存在一个峰值温度(750°C)使得逆转奥氏体的转变量达到最大。使用基于改进的Crussard–Jaoul方法分析的不同层状化工艺所得试样的应变硬化行为表明,层状化过程所生成的逆转奥氏体会降低基体中马氏体的比例,显著降低变形过程中阻碍裂纹扩展的能力,因此试样会表现出较高的机械加工性能。与QT试样相比,QLT试样拥有较低的等效晶粒尺寸和逆转奥氏体的存在,这会增加裂纹扩展所需的解理应力,同时消耗外加载荷的能量,进而导致韧脆转变温度从−116°C降低到−130°C,低温韧性显著提升。本工作为提升船用10Ni5CrMoV钢的低温韧性提供了思路,为其工业应用和综合性能的提高奠定了理论基础。
  • Research Article

    Effect of lamellarization on the microstructure and mechanical properties of marine 10Ni5CrMoV steel

    + Author Affiliations
    • Multistage heat treatment involving quenching (Q), lamellarizing (L), and tempering (T) is applied to marine 10Ni5CrMoV steel. The microstructure and mechanical properties were studied by multiscale characterizations, and the kinetics of reverse austenite transformation, strain hardening behavior, and toughening mechanism were further investigated. The lamellarized specimens possess low yield strength but high toughness, especially cryogenic toughness. Lamellarization leads to the development of film-like reversed austenite at the martensite block and lath boundaries, refining the martensite structure and lowering the equivalent grain size. Kinetic analysis of austenite reversion based on the JMAK model shows that the isothermal transformation is dominated by the growth of reversed austenite, and the maximum transformation of reversed austenite is reached at the peak temperature (750°C). The strain hardening behavior based on the modified Crussard–Jaoul analysis indicates that the reversed austenite obtained from lamellarization reduces the proportion of martensite, significantly hindering crack propagation via martensitic transformation during the deformation. As a consequence, the QLT specimens exhibit high machinability and low yield strength. Compared with the QT specimen, the ductile–brittle transition temperature of the QLT specimens decreases from −116 to −130°C due to the low equivalent grain size and reversed austenite, which increases the cleavage force required for crack propagation and absorbs the energy of external load, respectively. This work provides an idea to improve the cryogenic toughness of marine 10Ni5CrMoV steel and lays a theoretical foundation for its industrial application and comprehensive performance improvement.
    • loading
    • [1]
      Y.L. Dai, S.F. Yu, A.G. Huang, and Y.S. Shi, Microstructure and mechanical properties of high-strength low alloy steel by wire and arc additive manufacturing, Int. J. Miner. Metall. Mater., 27(2020), No. 7, p. 933. doi: 10.1007/s12613-019-1919-1
      [2]
      J. Wang, Y.F. Shen, W.Y. Xue, N. Jia, and R.D.K. Misra, The significant impact of introducing nanosize precipitates and decreased effective grain size on retention of high toughness of simulated heat affected zone (HAZ), Mater. Sci. Eng. A, 803(2021), art. No. 140484. doi: 10.1016/j.msea.2020.140484
      [3]
      S. Monschein, M. Kapp, D. Zügner, J. Fasching, A. Landefeld, and R. Schnitzer, Influence of microalloying elements and deformation parameters on the recrystallization and precipitation behavior of two low-alloyed steels, Steel Res. Int., 92(2021), No. 9, art. No. 2100065. doi: 10.1002/srin.202100065
      [4]
      Y. Tian, J.H. Zhou, Y.F. Shen, Z.Z. Qu, W.Y. Xue, and Z.D. Wang, Improved toughness of a high-strength low-alloy steel for Arctic ship by Ni and Mo addition, Adv. Eng. Mater., 22(2020), No. 6, art. No. 1901553. doi: 10.1002/adem.201901553
      [5]
      C. Yu, T.C. Yang, C.Y. Huang, and R.K. Shiue, Low-temperature toughness of the austempered offshore steel, Metall. Mater. Trans. A, 47(2016), No. 10, p. 4777. doi: 10.1007/s11661-016-3654-9
      [6]
      E.D. Fan, Y. Li, Y. You, and X.W. Lü, Effect of crystallographic orientation on crack growth behaviour of HSLA steel, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1532. doi: 10.1007/s12613-022-2415-6
      [7]
      L. Jiang, J. Wang, T. Zhang, T. Dorin, and X.J. Sun, Superior low temperature toughness in a newly designed low Mn and low Ni high strength steel, Mater. Sci. Eng. A, 825(2021), art. No. 141899. doi: 10.1016/j.msea.2021.141899
      [8]
      H.W. Lee, T.M. Park, N. Seo, S.J. Lee, C.M. Lee, and J. Han, Design of low-Ni martensitic steels with novel cryogenic impact toughness exceeding 190 J, Mater. Sci. Eng. A, 840(2022), art. No. 142959. doi: 10.1016/j.msea.2022.142959
      [9]
      L.Y. Kan, T. Zhu, Q.B. Ye, et al., Enhanced mechanical properties of a low-carbon martensitic steel by thermally stable Ni-rich austenite, Steel Res. Int., 93(2022), No. 6, art. No. 2100562. doi: 10.1002/srin.202100562
      [10]
      L.X. Xu, H.B. Wu, and D. Mou, Effect of quenching in dual-phase region on microstructure and mechanical properties of 7Ni steel, J. Mater. Eng., 46(2018), No. 8, p. 113.
      [11]
      S.J. Wu, G.J. Sun, Q.S. Ma, Q.Y. Shen, and L. Xu, Influence of QLT treatment on microstructure and mechanical properties of a high nickel steel, J. Mater. Process. Technol., 213(2013), No. 1, p. 120. doi: 10.1016/j.jmatprotec.2012.08.005
      [12]
      I.V. Khomskaya, Structure formed in two-phase (α + γ) field and mechanical properties of a cryogenic alloy 10N7, Phys. Met. Metallogr., 110(2010), No. 2, p. 188. doi: 10.1134/S0031918X10080089
      [13]
      H.W. Cao, X.H. Luo, G.F. Zhan, and S. Liu, Effect of Mn content on microstructure and cryogenic mechanical properties of a 7% Ni steel, Acta Metall. Sin. Engl. Lett., 31(2018), No. 7, p. 699. doi: 10.1007/s40195-018-0700-1
      [14]
      H.W. Cao, X.H. Luo, G.F. Zhan, and S. Liu, Influence of Nb content on microstructure and mechanical properties of a 7%Ni steel, Acta Metall. Sin. Engl. Lett., 31(2018), No. 9, p. 975. doi: 10.1007/s40195-018-0743-3
      [15]
      S.Z. Wang, Z.J. Gao, G.L. Wu, and X.P. Mao, Titanium microalloying of steel: A review of its effects on processing, microstructure and mechanical properties, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 645. doi: 10.1007/s12613-021-2399-7
      [16]
      Z. Li and D. Wu, Effects of hot deformation and subsequent austempering on the mechanical properties of Si–Mn TRIP steels, ISIJ Int., 46(2006), No. 1, p. 121. doi: 10.2355/isijinternational.46.121
      [17]
      S. Takebayashi, T. Kunieda, N. Yoshinaga, K. Ushioda, and S. Ogata, Comparison of the dislocation density in martensitic steels evaluated by some X-ray diffraction methods, ISIJ Int., 50(2010), No. 6, p. 875. doi: 10.2355/isijinternational.50.875
      [18]
      J. Aufrecht, A. Leineweber, J. Foct, and E.J. Mittemeijer, The structure of nitrogen-supersaturated ferrite produced by ball milling, Philos. Mag., 88(2008), No. 12, p. 1835. doi: 10.1080/14786430802322198
      [19]
      F. Christien, M.T.F. Telling, and K.S. Knight, Neutron diffraction in situ monitoring of the dislocation density during martensitic transformation in a stainless steel, Scripta Mater., 68(2013), No. 7, p. 506. doi: 10.1016/j.scriptamat.2012.11.031
      [20]
      W. Wang, X.D. Mao, S.J. Liu, G. Xu, and B. Wang, Microstructure evolution and toughness degeneration of 9Cr martensitic steel after aging at 550°C for 20000 h, J. Mater. Sci., 53(2018), No. 6, p. 4574. doi: 10.1007/s10853-017-1868-x
      [21]
      Q.M. Wan, R.S. Wang, G.G. Shu, et al., Analysis method of Charpy V-notch impact data before and after electron beam welding reconstitution, Nucl. Eng. Des., 241(2011), No. 2, p. 459. doi: 10.1016/j.nucengdes.2010.11.005
      [22]
      M. Wang, Z.Y. Liu, and C.G. Li, Correlations of Ni contents, formation of reversed austenite and toughness for Ni-containing cryogenic steels, Acta Metall. Sin. Engl. Lett., 30(2017), No. 3, p. 238. doi: 10.1007/s40195-016-0496-9
      [23]
      G.Q. Su, X.H. Gao, T. Yan, et al., Intercritical tempering enables nanoscale austenite/ε-martensite formation in low-C medium-Mn steel: A pathway to control mechanical properties, Mater. Sci. Eng. A, 736(2018), p. 417. doi: 10.1016/j.msea.2018.08.082
      [24]
      Z.J. Xie, G. Han, W.H. Zhou, C.Y. Zeng, and C.J. Shang, Study of retained austenite and nano-scale precipitation and their effects on properties of a low alloyed multi-phase steel by the two-step intercritical treatment, Mater. Charact., 113(2016), p. 60. doi: 10.1016/j.matchar.2016.01.009
      [25]
      Q.Y. Chen, J.K. Ren, Z.L. Xie, W.N. Zhang, J. Chen, and Z.Y. Liu, Correlation between reversed austenite and mechanical properties in a low Ni steel treated by ultra-fast cooling, intercritical quenching and tempering, J. Mater. Sci., 55(2020), No. 4, p. 1840. doi: 10.1007/s10853-019-04029-y
      [26]
      M. Pozuelo, J.W. Stremfel, J.M. Yang, and J. Marian, Strengthening to softening transition in lath martensite, Materialia, 5(2019), art. No. 100254. doi: 10.1016/j.mtla.2019.100254
      [27]
      S. Morito, H. Tanaka, R. Konishi, T. Furuhara, and T. Maki, The morphology and crystallography of lath martensite in Fe–C alloys, Acta Mater., 51(2003), No. 6, p. 1789. doi: 10.1016/S1359-6454(02)00577-3
      [28]
      E.M. Wang, C. Ding, N. Gong, et al., Effect of Nb precipitates and reversed austenite formed by QLT process on microstructure and mechanical properties of Nb-bearing 7Ni cryogenic steel, Metall. Mater. Trans. A, 55(2024), No. 1, p. 247. doi: 10.1007/s11661-023-07246-y
      [29]
      H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino, Crystallographic features of lath martensite in low-carbon steel, Acta Mater., 54(2006), No. 5, p. 1279. doi: 10.1016/j.actamat.2005.11.001
      [30]
      J. Chiang, J.D. Boyd, and A.K. Pilkey, Effect of microstructure on retained austenite stability and tensile behaviour in an aluminum-alloyed TRIP steel, Mater. Sci. Eng. A, 638(2015), p. 132. doi: 10.1016/j.msea.2015.03.069
      [31]
      Y.K. Lee, H.C. Shin, Y.C. Jang, S.H. Kim, and C.S. Choi, Effect of isothermal transformation temperature on amount of retained austenite and its thermal stability in a bainitic Fe–3%Si–0.45%C–X steel, Scripta Mater., 47(2002), No. 12, p. 805. doi: 10.1016/S1359-6462(02)00303-2
      [32]
      M. Kuzmina, D. Ponge, and D. Raabe, Grain boundary segregation engineering and austenite reversion turn embrittlement into toughness: Example of a 9wt.% medium Mn steel, Acta Mater., 86(2015), p. 182. doi: 10.1016/j.actamat.2014.12.021
      [33]
      S. Morito, K. Oh-ishi, K. Hono, and T. Ohba, Carbon enrichment in retained austenite films in low carbon lath martensite steel, ISIJ Int., 51(2011), No. 7, p. 1200. doi: 10.2355/isijinternational.51.1200
      [34]
      S.H. Zhang, P. Wang, D.Z. Li, and Y.Y. Li, Investigation of the evolution of retained austenite in Fe–13%Cr–4%Ni martensitic stainless steel during intercritical tempering, Mater. Des., 84(2015), p. 385. doi: 10.1016/j.matdes.2015.06.143
      [35]
      S.H. Zhang, D.Z. Lv, and J. Xiong, The effect of reversed austenite on mechanical properties of 13Cr4NiMo steel: A CPFEM study, J. Mater. Res. Technol., 18(2022), p. 2963. doi: 10.1016/j.jmrt.2022.03.186
      [36]
      D.G. Liu, H. Ding, D. Han, and M.H. Cai, Effect of grain interior and grain boundary κ-carbides on the strain hardening behavior of medium-Mn lightweight steels, Mater. Sci. Eng. A, 871(2023), art. No. 144861. doi: 10.1016/j.msea.2023.144861
      [37]
      G.D. Liu, X.M. Luo, J.P. Zou, B. Zhang, and G.P. Zhang, Effects of grain size and cryogenic temperature on the strain hardening behavior of VCoNi medium-entropy alloys, Acta Metall. Sin. Engl. Lett., 36(2023), No. 6, p. 973. doi: 10.1007/s40195-023-01520-z
      [38]
      M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe, Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD, Mater. Sci. Eng. A, 527(2010), No. 10-11, p. 2738. doi: 10.1016/j.msea.2010.01.004
      [39]
      H. Ghassemi-Armaki, R. Maaß, S.P. Bhat, S. Sriram, J.R. Greer, and K.S. Kumar, Deformation response of ferrite and martensite in a dual-phase steel, Acta Mater., 62(2014), p. 197. doi: 10.1016/j.actamat.2013.10.001
      [40]
      H.D. Alvarenga, T.V.D. Putte, N.V. Steenberge, J. Sietsma, and H. Terryn, Influence of carbide morphology and microstructure on the kinetics of superficial decarburization of C–Mn steels, Metall. Mater. Trans. A, 46(2015), No. 1, p. 123. doi: 10.1007/s11661-014-2600-y
      [41]
      G.X. Qiu, Q. Du, X.M. Li, X.D. Xing, and D.P. Zhan, Strengthening effect of multiscale second phases in reduced activation ferrite/martensitic steel, Steel Res. Int., 93(2022), No. 4, art. No. 2100430. doi: 10.1002/srin.202100430
      [42]
      C.S. Oh, H.N. Han, C.G. Lee, T.H. Lee, and S.J. Kim, Dilatometric analysis on phase transformations of intercritical annealing of Fe–Mn–Si and Fe–Mn–Si–Cu low carbon TRIP steels, Met. Mater. Int., 10(2004), No. 5, p. 399. doi: 10.1007/BF03027339
      [43]
      J. Huang, W.J. Poole, and M. Militzer, Austenite formation during intercritical annealing, Metall. Mater. Trans. A, 35(2004), No. 11, p. 3363. doi: 10.1007/s11661-004-0173-x
      [44]
      J.S. Blázquez, C.F. Conde, and A. Conde, On the use of classical JMAK crystallization kinetic theory to describe simultaneous processes leading to the formation of different phases in metals, Int. J. Therm. Sci., 88(2015), p. 1. doi: 10.1016/j.ijthermalsci.2014.09.004
      [45]
      M. Balbi, I. Alvarez-Armas, and A. Armas, Effect of holding time at an intercritical temperature on the microstructure and tensile properties of a ferrite–martensite dual phase steel, Mater. Sci. Eng. A, 733(2018), p. 1. doi: 10.1016/j.msea.2018.07.029
      [46]
      M.A. Asadabad, M. Goodarzi, and S. Kheirandish, Kinetics of austenite formation in dual phase steels, ISIJ Int., 48(2008), No. 9, p. 1251. doi: 10.2355/isijinternational.48.1251
      [47]
      V. Colla, M.D. Sanctis, A. Dimatteo, G. Lovicu, A. Solina, and R. Valentini, Strain hardening behavior of dual-phase steels, Metall. Mater. Trans. A, 40(2009), No. 11, p. 2557. doi: 10.1007/s11661-009-9975-1
      [48]
      Z.Z. Zhao, T.T. Tong, J.H. Liang, H.X. Yin, A.M. Zhao, and D. Tang, Microstructure, mechanical properties and fracture behavior of ultra-high strength dual-phase steel, Mater. Sci. Eng. A, 618(2014), p. 182. doi: 10.1016/j.msea.2014.09.005
      [49]
      N. Kamikawa, K. Sato, G. Miyamoto, et al., Stress–strain behavior of ferrite and bainite with nano-precipitation in low carbon steels, Acta Mater., 83(2015), p. 383. doi: 10.1016/j.actamat.2014.10.010
      [50]
      S.A. Etesami, M.H. Enayati, and A.G. Kalashami, Austenite formation and mechanical properties of a cold rolled ferrite–martensite structure during intercritical annealing, Mater. Sci. Eng. A, 682(2017), p. 296. doi: 10.1016/j.msea.2016.09.112
      [51]
      Z.H. Jiang, Z.Z. Guan, and J.S. Lian, Effects of microstructural variables on the deformation behaviour of dual-phase steel, Mater. Sci. Eng. A, 190(1995), No. 1-2, p. 55. doi: 10.1016/0921-5093(94)09594-M
      [52]
      Y.Y. Yang, S. Zhang, P. Huang, and F. Wang, Phase transformation-induced strengthening and multistage strain hardening in double-gradient-structured high-entropy alloys, Appl. Phys. A, 128(2022), No. 4, art. No. 258. doi: 10.1007/s00339-022-05382-7
      [53]
      B.B. Wu, Z.Q. Wang, X.L. Wang, W.S. Xu, C.J. Shang, and R.D.K. Misra, Toughening of martensite matrix in high strength low alloy steel: Regulation of variant pairs, Mater. Sci. Eng. A, 759(2019), p. 430. doi: 10.1016/j.msea.2019.05.030
      [54]
      J. Wang, W. Li, X.D. Zhu, and L.Q. Zhang, Effect of martensite morphology and volume fraction on the low-temperature impact toughness of dual-phase steels, Mater. Sci. Eng. A, 832(2022), art. No. 142424. doi: 10.1016/j.msea.2021.142424
      [55]
      H.F. Li, P. Zhang, R.T. Qu, and Z.F. Zhang, The minimum energy density criterion for the competition between shear and flat fracture, Adv. Eng. Mater., 20(2018), No. 8, art. No. 1800150. doi: 10.1002/adem.201800150
      [56]
      W.T. Reynolds, S.K. Liu, F.Z. Li, S. Hartfield, and H.I. Aaronson, An investigation of the generality of incomplete transformation to bainite in Fe–C–X alloys, Metall. Trans. A, 21(1990), No. 6, p. 1479. doi: 10.1007/BF02672563
      [57]
      O. Dmitrieva, D. Ponge, G. Inden, et al., Chemical gradients across phase boundaries between martensite and austenite in steel studied by atom probe tomography and simulation, Acta Mater., 59(2011), No. 1, p. 364. doi: 10.1016/j.actamat.2010.09.042
      [58]
      S.W. Zhang, Y.D. Wang, M.H. Zhu, Z.J. Zhang, P.L. Nie, and Z.G. Li, Relationships among Charpy impact toughness, microstructure and fracture behavior in 10CrNi3MoV steel weld joint, Mater. Lett., 281(2020), art. No. 128328. doi: 10.1016/j.matlet.2020.128328

    Catalog


    • /

      返回文章
      返回