留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 32 Issue 1
Jan.  2025

图(13)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  343
  • HTML全文浏览量:  133
  • PDF下载量:  43
  • 被引次数: 0
Junjie Shi, Changle Hou, Jingjing Dong, Dong Chen, and Jianzhong Li, Low-temperature chlorination roasting technology for the simultaneous recovery of valuable metals from spent LiCoO2 cathode material, Int. J. Miner. Metall. Mater., 32(2025), No. 1, pp. 80-91. https://doi.org/10.1007/s12613-024-2898-4
Cite this article as:
Junjie Shi, Changle Hou, Jingjing Dong, Dong Chen, and Jianzhong Li, Low-temperature chlorination roasting technology for the simultaneous recovery of valuable metals from spent LiCoO2 cathode material, Int. J. Miner. Metall. Mater., 32(2025), No. 1, pp. 80-91. https://doi.org/10.1007/s12613-024-2898-4
引用本文 PDF XML SpringerLink
研究论文

低温氯化焙烧技术:用于从废弃LiCoO2正极材料中同步回收有价金属



  • 通讯作者:

    石俊杰    E-mail: junjieshi@126.com

文章亮点

  • (1) 系统的研究了焙烧温度、焙烧时间、原料配比对有价金属回收率的影响。
  • (2) 开发了一种低温氯化焙烧技术并研究了其反应机理。
  • (3) 对废旧LiCoO2正极材料焙烧前后微观组织进行了分析。
  • (4) 阐明了低温氯化焙烧工艺的反应机理。
  • 随着废弃锂离子电池(LIBs)报废量的不断增加,适当回收废弃LIBs对于循环经济的发展变得至关重要。本研究对氯化焙烧动力学进行了系统分析,并提出了一种新的两步氯化焙烧工艺,该工艺整合了热力学原理,用于回收LIB正极材料。根据热重分析数据使用模型法、无模型法和Z(α)函数法获得的氯化反应的活化能为88.41 kJ/mol。结果表明,当转化率小于等于0.5时,反应主要由一阶(F1)模型主导,当转化率超过0.5时,反应转向二阶(F2)模型。通过深入研究焙烧温度、焙烧时间和NH4Cl与LiCoO2的质量比对反应的影响,确定了最佳条件。在最佳条件下,即400°C、20分钟和NH4Cl/LiCoO2质量比为3:1时,Li和Co的浸出效率分别达到了99.43%和99.05%。对焙烧产品的分析表明,LiCoO2中的有价金属转化为CoCl2和LiCl。此外,阐明了反应机制,为基于晶体结构视角的新型低温氯化焙烧技术提供了见解。这项技术可以指导开发低能耗、低二次污染、高回收效率和高附加值的LIB回收工艺。
  • Research Article

    Low-temperature chlorination roasting technology for the simultaneous recovery of valuable metals from spent LiCoO2 cathode material

    + Author Affiliations
    • With the continuous increase in the disposal volume of spent lithium-ion batteries (LIBs), properly recycling spent LIBs has become essential for the advancement of the circular economy. This study presents a systematic analysis of the chlorination roasting kinetics and proposes a new two-step chlorination roasting process that integrates thermodynamics for the recycling of LIB cathode materials. The activation energy for the chloride reaction was 88.41 kJ/mol according to thermogravimetric analysis–derivative thermogravimetry data obtained by using model-free, model-fitting, and Z(α) function (α is conversion rate). Results indicated that the reaction was dominated by the first-order (F1) model when the conversion rate was less than or equal to 0.5 and shifted to the second-order (F2) model when the conversion rate exceeded 0.5. Optimal conditions were determined by thoroughly investigating the effects of roasting temperature, roasting time, and the mass ratio of NH4Cl to LiCoO2. Under the optimal conditions, namely 400°C, 20 min, and NH4Cl/LiCoO2 mass ratio of 3:1, the leaching efficiency of Li and Co reached 99.43% and 99.05%, respectively. Analysis of the roasted products revealed that valuable metals in LiCoO2 transformed into CoCl2 and LiCl. Furthermore, the reaction mechanism was elucidated, providing insights for the establishment of a novel low-temperature chlorination roasting technology based on a crystal structure perspective. This technology can guide the development of LIB recycling processes with low energy consumption, low secondary pollution, high recovery efficiency, and high added value.
    • loading
    • Supplementary Information-s12613-024-2898-4.docx
    • [1]
      Q. Zhao, W.J. Li, C.J. Liu, M.F. Jiang, H. Saxén, and R. Zevenhoven, Preparation of anode material of lithium-ion battery by spent pickling liquor, J. Sustain. Metall., 9(2023), No. 1, p. 148. doi: 10.1007/s40831-022-00638-1
      [2]
      H.S. Chen, C.H. Yu, and W. Liu, Energy Storage Industry Research White Paper 2021, China Energy Storage Alliance [2023-12-27], 2022. http://www.esresearch.com.cn/report/?category_id=26
      [3]
      Q. Zhao, C.J. Liu, X.H. Mei, H. Saxén, and R. Zevenhoven, Research progress of steel slag-based carbon sequestration, Fundam. Res., (2022). DOI: 10.1016/j.fmre.2022.09.023
      [4]
      Y.M. Li, Q. Zhao, X.H. Mei, C.J. Liu, H. Saxén, and R. Zevenhoven, Effect of Ca/Mg molar ratio on the calcium-based sorbents, Int. J. Miner. Metall. Mater., 30(2023), No. 11, p. 2182. doi: 10.1007/s12613-023-2657-y
      [5]
      X.H. Mei, Q. Zhao, Y. Min, et al., Dissolution behavior of steelmaking slag for Ca extraction toward CO2 sequestration, J. Environ. Chem. Eng., 11(2023), No. 3, art. No. 110043. doi: 10.1016/j.jece.2023.110043
      [6]
      F. Arshad, L. Li, K. Amin, et al., A comprehensive review of the advancement in recycling the anode and electrolyte from spent lithium ion batteries, ACS Sustainable Chem. Eng., 8(2020), No. 36, p. 13527. doi: 10.1021/acssuschemeng.0c04940
      [7]
      J. Lee, K.W. Park, I. Sohn, and S. Lee, Pyrometallurgical recycling of end-of-life lithium-ion batteries, Int. J. Miner. Metall. Mater., 31(2024), No. 7, p. 1554 doi: 10.1007/s12613-024-2907-7
      [8]
      K.K. Jena, A. AlFantazi, and A.T. Mayyas, Comprehensive review on concept and recycling evolution of lithium-ion batteries (LIBs), Energy Fuels, 35(2021), No. 22, p. 18257. doi: 10.1021/acs.energyfuels.1c02489
      [9]
      S.B. Qiu, T.Y. Sun, Y. Zhu, C.L. Liu, and J.G. Yu, Direct preparation of water-soluble lithium salts from α-spodumene by roasting with different sulfates, Ind. Eng. Chem. Res., 62(2023), No. 1, p. 685. doi: 10.1021/acs.iecr.2c03744
      [10]
      B. Dong, Q.H. Tian, Z.P. Xu, D. Li, Q.A. Wang, and X.Y. Guo, Advances in clean extraction of nickel, cobalt and lithium to produce strategic metals for new energy industry, Mater. Rep., 37(2023), No. 22, p. 127.
      [11]
      H. Fu, J.S. Wang, J.L. Li, B. Wang, B. Ye, and M.L. Li, Spatiotemporal distribution and genesis types of global cobalt resources, Bull. Geol. Sci. Technol., 43(2023), No. 1, p. 1. doi: 10.19509/j.cnki.dzkq.tb20220431
      [12]
      R.F. Wang, S. Yuan, Y.Z. Liu, P. Gao, and Y.J. Li, Present situation of global manganese ore resources and progress of beneficiation technology, Conserv. Util, Miner. Res., No1(2023), . 14.
      [13]
      W.G. Lv, Z.H. Wang, H.B. Cao, Y. Sun, Y. Zhang, and Z. Sun, A critical review and analysis on the recycling of spent lithium-ion batteries, ACS Sustainable Chem. Eng., 6(2018), No. 2, p. 1504. doi: 10.1021/acssuschemeng.7b03811
      [14]
      Z.H. Yan, Q. Zhao, C.Z. Han, X.H. Mei, C.J. Liu, and M.F. Jiang, Effects of iron oxide on crystallization behavior and spatial distribution of spinel in stainless steel slag, Int. J. Miner. Metall. Mater., 31(2024), No. 2, p. 292. doi: 10.1007/s12613-023-2713-7
      [15]
      L.Y. Ren, B. Liu, S.X. Bao, et al., Recovery of Li, Ni, Co and Mn from spent lithium-ion batteries assisted by organic acids: Process optimization and leaching mechanism, Int. J. Miner. Metall. Mater., 31(2024), No. 3, p. 518. doi: 10.1007/s12613-023-2735-1
      [16]
      D.X. Wei, W. Wang, L.J. Jiang, et al., Preferentially selective extraction of lithium from spent LiCoO2 cathodes by medium-temperature carbon reduction roasting, Int. J. Miner. Metall. Mater., 31(2024), No. 2, p. 315. doi: 10.1007/s12613-023-2698-2
      [17]
      Y.N. Yang, Y.J. Yang, C.L. He, et al., Solvent extraction and separation of cobalt from leachate of spent lithium-ion battery cathodes with N263 in nitrite media, Int. J. Miner. Metall. Mater., 30(2023), No. 5, p. 897 doi: 10.1007/s12613-022-2571-8
      [18]
      F.H. Cui, W.N. Mu, S. Wang, et al., Synchronous extractions of nickel, copper, and cobalt by selective chlorinating roasting and water leaching to low-grade nickel-copper matte, Sep. Purif. Technol., 195(2018), p. 149. doi: 10.1016/j.seppur.2017.11.071
      [19]
      L.B. Zhou, T.C. Yuan, R.D. Li, Y. Zhong, and X. Lei, Extraction of rubidium from Kaolin clay waste: Process study, Hydrometallurgy, 158(2015), p. 61. doi: 10.1016/j.hydromet.2015.10.010
      [20]
      K. Liu, J.K. Yang, S. Liang, et al., An emission-free vacuum chlorinating process for simultaneous sulfur fixation and lead recovery from spent lead-acid batteries, Environ. Sci. Technol., 52(2018), No. 4, p. 2235. doi: 10.1021/acs.est.7b05283
      [21]
      B. Niu, Z.Y. Chen, and Z.M. Xu, Method for recycling tantalum from waste tantalum capacitors by chloride metallurgy, ACS Sustainable Chem. Eng., 5(2017), No. 2, p. 1376. doi: 10.1021/acssuschemeng.6b01839
      [22]
      S.Y. Liu, S.J. Li, S. Wu, L.J. Wang, and K.C. Chou, A novel method for vanadium slag comprehensive utilization to synthesize Zn–Mn ferrite and Fe–V–Cr alloy, J. Hazard. Mater., 354(2018), p. 99. doi: 10.1016/j.jhazmat.2018.04.061
      [23]
      S.Y. Liu, L.J. Wang, and K.C. Chou, Selective chlorinated extraction of iron and manganese from vanadium slag and their application to hydrothermal synthesis of MnFe2O4, ACS Sustainable Chem. Eng., 5(2017), No. 11, p. 10588. doi: 10.1021/acssuschemeng.7b02573
      [24]
      M.K. Jeon and S.W. Kim, Chlorination behavior of LiCoO2, Korean J. Chem. Eng., 39(2022), No. 8, p. 2109. doi: 10.1007/s11814-022-1117-0
      [25]
      M.K. Jeon, S.W. Kim, M. Oh, H.C. Eun, and K. Lee, Chlorination behavior of Li(Ni1/3Co1/3Mn1/3)O2, Korean J. Chem. Eng., 39(2022), No. 9, p. 2345. doi: 10.1007/s11814-022-1166-4
      [26]
      H.J. Chen, P.P. Hu, D.H. Wang, and Z.N. Liu, Selective leaching of Li from spent LiNi0.8Co0.1Mn0.1O2 cathode material by sulfation roast with NaHSO4·H2O and water leach, Hydrometallurgy, 210(2022), art. No. 105865. doi: 10.1016/j.hydromet.2022.105865
      [27]
      Y.C. González, L. Alcaraz, F.J. Alguacil, J. González, L. Barbosa, and F.A. López, Study of the carbochlorination process with CaCl2 and water leaching for the extraction of lithium from spent lithium-ion batteries, Batteries, 9(2022), No. 1, art. No. 12. doi: 10.3390/batteries9010012
      [28]
      X.Q. Xu, W.N. Mu, T.F. Xiao, et al., A clean and efficient process for simultaneous extraction of Li, Co, Ni and Mn from spent lithium-ion batteries by low-temperature NH4Cl roasting and water leaching, Waste Manage., 153(2022), p. 61. doi: 10.1016/j.wasman.2022.08.022
      [29]
      J.F. Xiao, B. Niu, Q.M. Song, L. Zhan, and Z.M. Xu, Novel targetedly extracting lithium: An environmental-friendly controlled chlorinating technology and mechanism of spent lithium ion batteries recovery, J. Hazard. Mater., 404(2021), art. No. 123947. doi: 10.1016/j.jhazmat.2020.123947
      [30]
      J. Yang, Z.L. Zhang, G. Zhang, et al., Process study of chloride roasting and water leaching for the extraction of valuable metals from spent lithium-ion batteries, Hydrometallurgy, 203(2021), art. No. 105638. doi: 10.1016/j.hydromet.2021.105638
      [31]
      M.M. Wang, Q.Y. Tan, L.L. Liu, and J.H. Li, A facile, environmentally friendly, and low-temperature approach for decomposition of polyvinylidene fluoride from the cathode electrode of spent lithium-ion batteries, ACS Sustainable Chem. Eng., 7(2019), No. 15, p. 12799. doi: 10.1021/acssuschemeng.9b01546
      [32]
      J. Li, Y.M. Lai, X.Q. Zhu, et al., Pyrolysis kinetics and reaction mechanism of the electrode materials during the spent LiCoO2 batteries recovery process, J. Hazard. Mater., 398(2020), art. No. 122955. doi: 10.1016/j.jhazmat.2020.122955
      [33]
      G.R. Qu, Y.G. Wei, B. Li, and H. Wang, Chlorination mechanism and kinetics of cathode materials for spent LiCoO2 batteries in the presence of graphite, J. Environ. Chem. Eng., 11(2023), No. 2, art. No. 109361. doi: 10.1016/j.jece.2023.109361
      [34]
      E.S. Fan, L. Li, J. Lin, et al., Low-temperature molten-salt-assisted recovery of valuable metals from spent lithium-ion batteries, ACS Sustainable Chem. Eng., 7(2019), No. 19, p. 16144. doi: 10.1021/acssuschemeng.9b03054
      [35]
      C.W. Bale, E. Bélisle, P. Chartrand, et al., FactSage thermochemical software and databases—Recent developments, Calphad, 33(2009), No. 2, p. 295. doi: 10.1016/j.calphad.2008.09.009
      [36]
      I.H. Jung and M.A. van Ende, Computational thermodynamic calculations: FactSage from CALPHAD thermodynamic database to virtual process simulation, Metall. Mater. Trans. B, 51(2020), No. 5, p. 1851. doi: 10.1007/s11663-020-01908-7
      [37]
      H.E. Kissinger, Variation of peak temperature with heating rate in differential thermal analysis, J. Res. Natl. Bur. Stand., 57(1956), No. 4, p. 217. doi: 10.6028/jres.057.026
      [38]
      T. Ozawa, A new method of analyzing thermogravimetric data, Bull. Chem. Soc. Jpn., 38(1965), No. 11, p. 1881. doi: 10.1246/bcsj.38.1881
      [39]
      J.H. Flynn and L.A. Wall, General treatment of the thermogravimetry of polymers, J. Natl. Res. Bur Stand A Phys. Chem., 70A(1966), No. 6, p. 487. doi: 10.6028/jres.070A.043
      [40]
      M.J. Starink, The determination of activation energy from linear heating rate experiments: A comparison of the accuracy of isoconversion methods, Thermochim. Acta, 404(2003), No. 1-2, p. 163. doi: 10.1016/S0040-6031(03)00144-8
      [41]
      J. Orava and A.L. Greer, Kissinger method applied to the crystallization of glass-forming liquids: Regimes revealed by ultra-fast-heating calorimetry, Thermochim. Acta, 603(2015), p. 63. doi: 10.1016/j.tca.2014.06.021
      [42]
      J.H. Flynn and L.A. Wall, A quick direct method for the determination of activation energy from thermogravimetric data, J. Polym. Sci. Part B, 4(1966), No. 5, . 323.
      [43]
      T. Akahira and T. Sunose, Method of determining activation deterioration constant of electrical insulating materials, Res. Report. Chiba. Inst. Technol., 16(1971), p. 22.
      [44]
      L.X. Yang, D.H. Wang, H.J. Chen, X.D. Zhang, Y.S. Yu, and L. Xu, Estimation of $ \Delta H_{{\rm f},298}^{\ominus} $ and $ \Delta {G}_{{\rm f},298}^{\ominus} $ of LiNi xCo yMn zO2 cathode Materials for lithium ion power battery based on the group contribution method, Rare. Met. Mater. Eng., 49(2020), No. 1, p. 161.
      [45]
      L.X. Yang, D.H. Wang, H.J. Chen, X.D. Zhang, L. Xu, and Y.S. Yu, Heat capacity estimation of LiNi xCo yMn zO2 (x+y+z=1) cathode material based on group contribution method and Kopp’s rule, Chin. J. Rare Met., 44(2020), No. 10, p. 1053.
      [46]
      J.F. Xiao, B. Niu, and Z.M. Xu, Novel approach for metal separation from spent lithium ion batteries based on dry-phase conversion, J. Clean. Prod., 277(2020), art. No. 122718. doi: 10.1016/j.jclepro.2020.122718
      [47]
      A.S. Zhu, L. Xu, F.F. Shen, and Z. Cheng, Review on separation technology study of cobalt and nickel, J. Zhejiang Univ. Sci. Technol., 19(2007), No. 3, p. 169.
      [48]
      O.V. Zhilina, A.N. D’yachenko, V.V. Kozik, and R.I. Kraidenko, Thermal stability of ammonium chlorocobaltates(II), Russ. J. Inorg. Chem., 59(2014), No. 6, p. 536. doi: 10.1134/S0036023614060217
      [49]
      V.A. Borisov, A.N. D’yachenko, and R.I. Kraidenko, Mechanism of reaction between cobalt(II) oxide and ammonium chloride, Russ. J. Inorg. Chem., 57(2012), No. 7, p. 923. doi: 10.1134/S0036023612070066
      [50]
      X.H. Meng and D. Deng, A new approach to facilely synthesize crystalline Co2(OH)3Cl microstructures in an eggshell reactor system, CrystEngComm, 19(2017), No. 21, p. 2953. doi: 10.1039/C7CE00379J

    Catalog


    • /

      返回文章
      返回