留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 7
Jul.  2024

图(11)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  433
  • HTML全文浏览量:  203
  • PDF下载量:  40
  • 被引次数: 0
Ayahisa Okawa, Son Thanh Nguyen, Tadachika Nakayama, Thi-Mai-Dung Do, Hisayuki Suematsu, Shu Yin, Takuya Hasegawa, Tsuneo Suzuki, Takashi Goto, and Koichi Niihara, High-temperature corrosion of sintered RE2Si2O7 (RE = Yb and Ho) environmental barrier coating materials by volcanic ash, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp. 1628-1638. https://doi.org/10.1007/s12613-024-2899-3
Cite this article as:
Ayahisa Okawa, Son Thanh Nguyen, Tadachika Nakayama, Thi-Mai-Dung Do, Hisayuki Suematsu, Shu Yin, Takuya Hasegawa, Tsuneo Suzuki, Takashi Goto, and Koichi Niihara, High-temperature corrosion of sintered RE2Si2O7 (RE = Yb and Ho) environmental barrier coating materials by volcanic ash, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp. 1628-1638. https://doi.org/10.1007/s12613-024-2899-3
引用本文 PDF XML SpringerLink
研究论文

火山灰烧结RE2Si2O7(RE = Yb和Ho)环境阻挡涂层材料的高温腐蚀性能研究



  • 通讯作者:

    Ayahisa Okawa    E-mail: ayahisa.okawa@tohoku.ac.jp

    Tadachika Nakayama    E-mail: nky15@vos.nagaokaut.ac.jp

  • 稀土硅酸盐是一种很有前途的环境阻挡涂层(EBCs),可以保护下一代燃气轮机叶片中的SiCf/SiCm基体。值得注意的是,RE2Si2O7(RE = Yb和Ho)因其与基材相容的热膨胀系数(CTE)和对水蒸气腐蚀的高抵抗性而显示出巨大的潜力。下一代涡轮叶片的目标工作温度为1400°C。在与熔融火山灰粘附的过程中,腐蚀是不可避免的,因此,了解材料的腐蚀行为对其可靠性至关重要。本文使用固态反应和热压方法制备了样品,然后将分别暴露在1400oC的火山灰中2、24和48 h,研究发现暴露48 h后,火山灰没有与Yb2Si2O7反应,而是渗透到其内部造成损坏。同时,Ho2Si2O7部分溶解在熔融的火山灰中,形成了一个反应区,阻止火山灰熔体穿透内部。随着热处理时间的增加,反应区扩大,针状磷灰石晶粒厚度增加。Yb2Si2O7的残余火山灰中的Ca:Si摩尔比基本上没有变化,但随着时间的推移,Ho2Si2O7的Ca∶Si摩尔比显著降低。火山灰中的Ca被消耗并形成磷灰石,表明具有大离子半径(Ho>Yb)的RE3+离子容易从火山灰中沉淀磷灰石。
  • Research Article

    High-temperature corrosion of sintered RE2Si2O7 (RE = Yb and Ho) environmental barrier coating materials by volcanic ash

    + Author Affiliations
    • Rare-earth silicates are promising environmental barrier coatings (EBCs) that can protect SiCf/SiCm substrates in next-generation gas turbine blades. Notably, RE2Si2O7 (RE = Yb and Ho) shows potential as an EBC due to its coefficient of thermal expansion (CTE) compatible with substrates and high resistance to water vapor corrosion. The target operating temperature for next-generation turbine blades is 1400°C. Corrosion is inevitable during adhesion to molten volcanic ash, and thus, understanding the corrosion behavior of the material is crucial to its reliability. This study investigates the high-temperature corrosion behavior of sintered RE2Si2O7 (RE = Yb and Ho). Samples were prepared using a solid-state reaction and hot-press method. They were then exposed to volcanic ash at 1400°C for 2, 24, and 48 h. After 48 h of exposure, volcanic ash did not react with Yb2Si2O7 but penetrated its interior, causing damage. Meanwhile, Ho2Si2O7 was partially dissolved in the molten volcanic ash, forming a reaction zone that prevented volcanic ash melts from penetrating the interior. With increasing heat treatment time, the reaction zone expanded, and the thickness of the acicular apatite grains increased. The Ca:Si ratios in the residual volcanic ash were mostly unchanged for Yb2Si2O7 but decreased considerably over time for Ho2Si2O7. The Ca in volcanic ash was consumed and formed apatite, indicating that RE3+ ions with large ionic radii (Ho > Yb) easily precipitated apatite from the volcanic ash.
    • loading
    • Supplementary Information-s12613-024-2899-3.docx
    • [1]
      H. Xu, S.F. Yang, E.H. Wang, et al., Competitive oxidation behavior of Ni-based superalloy GH4738 at extreme temperature, Int. J. Miner. Metall. Mater., 31(2024), No. 1, p. 138. doi: 10.1007/s12613-023-2687-5
      [2]
      Y. Yao, D. Wu, X.F. Zhao, and F. Yang, Premature failure induced by non-equilibrium grain-boundary tantalum segregation in air-plasma sprayed ZrO2−YO1.5−TaO2.5 thermal barrier coatings, Int. J. Miner. Metall. Mater., 29(2022), No. 12, p. 2189. doi: 10.1007/s12613-021-2394-z
      [3]
      P. Zamani and Z. Valefi, Comparative investigation of microstructure and high-temperature oxidation resistance of high-velocity oxy-fuel sprayed CoNiCrAlY/nano-Al2O3 composite coatings using satellited powders, Int. J. Miner. Metall. Mater., 30(2023), No. 9, p. 1779. doi: 10.1007/s12613-023-2630-9
      [4]
      S.T. Nguyen, A. Okawa, H. Iwasawa, et al., Titanium nitride and yttrium titanate nanocomposites, endowed with renewable self-healing ability, Adv. Mater. Interfaces, 8(2021), No. 22, art. No. 2100979. doi: 10.1002/admi.202100979
      [5]
      S. Yin and T. Hasegawa, Morphology control of transition metal oxides by liquid-phase process and their material development, KONA Powder Part. J., 40(2023), p. 94. doi: 10.14356/kona.2023015
      [6]
      P. Sun, S.M. Han, J.H. Liu, et al., Introducing oxygen vacancies in TiO2 lattice through trivalent iron to enhance the photocatalytic removal of indoor NO, Int. J. Miner. Metall. Mater., 30(2023), No. 10, p. 2025. doi: 10.1007/s12613-023-2611-z
      [7]
      J.D. Cao, T. Hhasegawa, Y. Asakura, et al., Synthesis of crystal-phase and color tunable mixed anion Co-doped titanium oxides and their controllable photocatalytic activity, Int. J. Miner. Metall. Mater., 30(2023), No. 10, p. 2036. doi: 10.1007/s12613-022-2573-6
      [8]
      N.P. Padture, Advanced structural ceramics in aerospace propulsion, Nat. Mater., 15(2016), No. 8, p. 804. doi: 10.1038/nmat4687
      [9]
      E.J. Opila, Oxidation and volatilization of silica formers in water vapor, J. Am. Ceram. Soc., 86(2003), No. 8, p. 1238. doi: 10.1111/j.1151-2916.2003.tb03459.x
      [10]
      E.J. Opila and R.E. Hann Jr, Paralinear oxidation of CVD SiC in water vapor, J. Am. Ceram. Soc., 80(1997), No. 1, p. 197. doi: 10.1111/j.1151-2916.1997.tb02810.x
      [11]
      D. Tejero-Martin, C. Bennett, and T. Hussain, A review on environmental barrier coatings: History, current state of the art and future developments, J. Eur. Ceram. Soc., 41(2021), No. 3, p. 1747. doi: 10.1016/j.jeurceramsoc.2020.10.057
      [12]
      R. Vaßen, E. Bakan, C. Gatzen, S. Kim, D.E. Mack, and O. Guillon, Environmental barrier coatings made by different thermal spray technologies, Coatings, 9(2019), No. 12, art. No. 784. doi: 10.3390/coatings9120784
      [13]
      H. Klemm, Silicon nitride for high-temperature applications, J. Am. Ceram. Soc., 93(2010), No. 6, p. 1501. doi: 10.1111/j.1551-2916.2010.03839.x
      [14]
      Z.Y. Chen, C.C. Lin, W. Zheng, C.F. Jiang, Y. Zeng, and X.M. Song, Water vapor corrosion behaviors of high-entropy pyrosilicates, J. Materiomics, 8(2022), No. 5, p. 992. doi: 10.1016/j.jmat.2022.03.002
      [15]
      X.T. Guo, Y.L. Zhang, T. Li, et al., High-entropy rare-earth disilicate (Lu0.2Yb0.2Er0.2Tm0.2Sc0.2)2Si2O7: A potential environmental barrier coating material, J. Eur. Ceram. Soc., 42(2022), No. 8, p. 3570. doi: 10.1016/j.jeurceramsoc.2022.03.006
      [16]
      Y. Dong, K. Ren, Y.H. Lu, Q.K. Wang, J. Liu, and Y.G. Wang, High-entropy environmental barrier coating for the ceramic matrix composites, J. Eur. Ceram. Soc., 39(2019), No. 7, p. 2574. doi: 10.1016/j.jeurceramsoc.2019.02.022
      [17]
      A. Okawa, S.T. Nguyen, T. Nakayama, H. Suematsu, T. Goto, and K. Niihara, Development of Silicates and Spraying Techniques for Environmental Barrier Coatings, [in] A. Pakseresht and K.K. Amirtharaj Mosas, eds., Ceramic Coatings for High-Temperature Environments : From Thermal Barrier to Environmental Barrier Applications, Springer International Publishing, Cham, 2023, p. 283.
      [18]
      W. Song, Y. Lavallée, K.U. Hess, U. Kueppers, C. Cimarelli, and D.B. Dingwell, Volcanic ash melting under conditions relevant to ash turbine interactions, Nat. Commun., 7(2016), art. No. 10795. doi: 10.1038/ncomms10795
      [19]
      A. Nieto, R. Agrawal, L. Bravo, C. Hofmeister-Mock, M. Pepi, and A. Ghoshal, Calcia–magnesia–alumina–silicate (CMAS) attack mechanisms and roadmap towards Sandphobic thermal and environmental barrier coatings, Int. Mater. Rev., 66(2021), No. 7, p. 451. doi: 10.1080/09506608.2020.1824414
      [20]
      S.H. Kim, T. Osada, Y. Matsushita, T. Hiroto, C.A.J. Fisher, and B.K. Jang, CMAS corrosion behavior of dual-phase composite Gd2Si2O7/Sc2Si2O7 as a promising EBC material, J. Eur. Ceram. Soc., 43(2023), No. 14, p. 6440. doi: 10.1016/j.jeurceramsoc.2023.06.026
      [21]
      M.P. Borom, C.A. Johnson, and L.A. Peluso, Role of environment deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings, Surf. Coat. Technol., 86(1996), p. 116.
      [22]
      L.C. Sun, Y.X. Luo, Z.L. Tian, et al., High temperature corrosion of (Er0.25Tm0.25Yb0.25Lu0.25)2Si2O7 environmental barrier coating material subjected to water vapor and molten calcium–magnesium–aluminosilicate (CMAS), Corros. Sci., 175(2020), art. No. 108881. doi: 10.1016/j.corsci.2020.108881
      [23]
      X. Wang, M.H. Cheng, G.Z. Xiao, et al., Preparation and corrosion resistance of high-entropy disilicate (Y0.25Yb0.25Er0.25Sc0.25)2Si2O7 ceramics, Corros. Sci., 192(2021), art. No. 109786. doi: 10.1016/j.corsci.2021.109786
      [24]
      L.R. Turcer, A.R. Krause, H.F. Garces, L. Zhang, and N.P. Padture, Environmental-barrier coating ceramics for resistance against attack by molten calcia–magnesia–aluminosilicate (CMAS) glass: Part I, YAlO3 and γ-Y2Si2O7, J. Eur. Ceram. Soc., 38(2018), No. 11, p. 3905. doi: 10.1016/j.jeurceramsoc.2018.03.021
      [25]
      S.H. Kim, C.A.J. Fisher, N. Nagashima, Y. Matsushita, and B.K. Jang, Reaction between environmental barrier coatings material Er2Si2O7 and a calcia–magnesia–alumina–silica melt, Ceram. Int., 48(2022), No. 12, p. 17369. doi: 10.1016/j.ceramint.2022.03.001
      [26]
      L.R. Turcer, A.R. Krause, H.F. Garces, L. Zhang, N.P. Padture, Environmental-barrier coating ceramics for resistance against attack by molten calcia-magnesia-aluminosilicate (CMAS) glass: Part II, β-Yb2Si2O7 and β-Sc2Si2O7, J. Eur. Ceram. Soc., 38(2018), No. 11, p. 3914. doi: 10.1016/j.jeurceramsoc.2018.03.010
      [27]
      L.C. Sun, X.M. Ren, Y.X. Luo, et al., Exploration of the mechanism of enhanced CMAS corrosion resistance at 1500°C for multicomponent (Er0.25Tm0.25Yb0.25Lu0.25)2Si2O7 disilicate, Corros. Sci., 203(2022), art. No. 110343. doi: 10.1016/j.corsci.2022.110343
      [28]
      Z.Y. Chen, C.C. Lin, W. Zheng, Y. Zeng, and Y.R. Niu, Investigation on improving corrosion resistance of rare earth pyrosilicates by high-entropy design with RE-doping, Corros. Sci., 199(2022), art. No. 110217. doi: 10.1016/j.corsci.2022.110217
      [29]
      B.K. Jang, F.J. Feng, K. Suzuta, et al., Corrosion behavior of volcanic ash on sintered mullite for environmental barrier coatings, Ceram. Int., 43(2017), No. 2, p. 1880. doi: 10.1016/j.ceramint.2016.10.147
      [30]
      X. Chen, Y. Li, W. Zhou, et al., Interaction of Yb2Si2O7 environmental barrier coating material with calcium–ferrum–alumina–silicate (CFAS) at high temperature, Ceram. Int., 47(2021), No. 22, p. 31625. doi: 10.1016/j.ceramint.2021.08.043
      [31]
      J. Dean, C. Taltavull, and T.W. Clyne, Influence of the composition and viscosity of volcanic ashes on their adhesion within gas turbine aeroengines, Acta Mater., 109(2016), p. 8. doi: 10.1016/j.actamat.2016.02.011
      [32]
      R.I. Webster and E.J. Opila, Viscosity of CaO–MgO–Al2O3–SiO2 (CMAS) melts: Experimental measurements and comparison to model calculations, J. Non-Cryst. Solids, 584(2022), art. No. 121508. doi: 10.1016/j.jnoncrysol.2022.121508
      [33]
      B.K. Jang, F.J. Feng, K. Suzuta, et al., Corrosion behavior of volcanic ash and calcium magnesium aluminosilicate on Yb2SiO5 environmental barrier coatings, J. Ceram. Soc. Jpn, 125(2017), No. 4, p. 326. doi: 10.2109/jcersj2.16211
      [34]
      S.H. Kim, B.N. Kim, N. Nagashima, Y. Matsushita, and B.K. Jang, High-temperature corrosion of spark plasma sintered Gd2SiO5 with volcanic ash for environmental barrier coatings, J. Eur. Ceram. Soc., 41(2021), No. 5, p. 3161. doi: 10.1016/j.jeurceramsoc.2020.09.001
      [35]
      L.R. Turcer and N.P. Padture, Towards multifunctional thermal environmental barrier coatings (TEBCs) based on rare-earth pyrosilicate solid–solution ceramics, Scripta Mater., 154(2018), p. 111. doi: 10.1016/j.scriptamat.2018.05.032
      [36]
      A. Okawa, S.T. Nguyen, J.P. Wiff, et al., Self-healing ability, strength enhancement, and high-temperature oxidation behavior of silicon carbide-dispersed ytterbium disilicate composite for environmental barrier coatings under isothermal heat treatment, J. Eur. Ceram. Soc., 42(2022), No. 13, p. 6170. doi: 10.1016/j.jeurceramsoc.2022.05.057
      [37]
      A.J. Fernández-Carrión, M. Allix, and A.I. Becerro, Thermal expansion of rare-earth pyrosilicates, J. Am. Ceram. Soc., 96(2013), No. 7, p. 2298. doi: 10.1111/jace.12388
      [38]
      A. Okawa, S.T. Nguyen, J.P. Wiff, et al., Autonomous crack healing ability of SiC dispersed Yb2Si2O7 by oxidations in air and water vapor, Ceram. Int., 47(2021), No. 24, p. 34802. doi: 10.1016/j.ceramint.2021.09.020
      [39]
      H.Y. Wang, Z.X. Luo, L.C. Sun, J. Zhang, and J.Y. Wang, Comprehensive microstructural characterization and CMAS infiltration resistance of ytterbium disilicate coatings with lamellar and quasi-columnar structures, Corros. Sci., 221(2023), art. No. 111316. doi: 10.1016/j.corsci.2023.111316
      [40]
      W.D. Summers, D.L. Poerschke, D. Park, J.H. Shaw, F.W. Zok, and C.G. Levi, Roles of composition and temperature in silicate deposit-induced recession of yttrium disilicate, Acta Mater., 160(2018), p. 34. doi: 10.1016/j.actamat.2018.08.043
      [41]
      L.R. Turcer and N.P. Padture, Rare-earth pyrosilicate solid-solution environmental-barrier coating ceramics for resistance against attack by molten calcia–magnesia–aluminosilicate (CMAS) glass, J. Mater. Res., 35(2020), No. 17, p. 2373. doi: 10.1557/jmr.2020.132
      [42]
      Z.L. Tian, X.M. Ren, Y.M. Lei, et al., Corrosion of RE2Si2O7 (RE=Y, Yb, and Lu) environmental barrier coating materials by molten calcium–magnesium–alumino–silicate glass at high temperatures, J. Eur. Ceram. Soc., 39(2019), No. 14, p. 4245. doi: 10.1016/j.jeurceramsoc.2019.05.036
      [43]
      M. Kahlweit, Ostwald ripening of precipitates, Adv. Colloid Interface Sci., 5(1975), No. 1, p. 1. doi: 10.1016/0001-8686(75)85001-9
      [44]
      W. Zhou, Z.B. Niu, X. Chen, P. Xiao, and Y. Li, Synergistic effect of water vapour on the thermal corrosion of CFAS melt to Yb2Si2O7 environmental barrier coating material, Corros. Sci., 225(2023), art. No. 111625. doi: 10.1016/j.corsci.2023.111625
      [45]
      Z.Y. Zhang, Z.L. Xue, H.H. Wang, et al., Corrosion behavior of Y xYb(2− x)Si2O7 environmental barrier coating materials against molten calcium–magnesium–aluminosilicate (CMAS) at 1475°C, Corros. Sci., 227(2024), art. No. 111770. doi: 10.1016/j.corsci.2023.111770
      [46]
      J.L. Stokes, B.J. Harder, V.L. Wiesner, and D.E. Wolfe, High-Temperature thermochemical interactions of molten silicates with Yb2Si2O7 and Y2Si2O7 environmental barrier coating materials, J. Eur. Ceram. Soc., 39(2019), No. 15, p. 5059. doi: 10.1016/j.jeurceramsoc.2019.06.051
      [47]
      V.L. Wiesner, D. Scales, N.S. Johnson, B.J. Harder, A. Garg, and N.P. Bansal, Calcium–magnesium aluminosilicate (CMAS) interactions with ytterbium silicate environmental barrier coating material at elevated temperatures, Ceram. Int., 46(2020), No. 10, p. 16733. doi: 10.1016/j.ceramint.2020.03.249
      [48]
      N.P. Bansal and S.R. Choi, Properties of CMAS glass from desert sand, Ceram. Int., 41(2015), No. 3, p. 3901. doi: 10.1016/j.ceramint.2014.11.072
      [49]
      J. Sleeper, A. Garg, V.L. Wiesner, and N.P. Bansal, Thermochemical interactions between CMAS and Ca2Y8(SiO4)6O2 apatite environmental barrier coating material, J. Eur. Ceram. Soc., 39(2019), No. 16, p. 5380. doi: 10.1016/j.jeurceramsoc.2019.08.040
      [50]
      S.T. Nguyen, A. Okawa, T. Nakayama, and H. Suematsu, Self-healing Ceramic Coatings, [in] R.K. Gupta, A. Motallebzadeh, S. Kakooei, T.A. Nguyen, and A. Behera, eds., Advanced Ceramic Coatings for Emerging Applications, Elsevier, Amsterdam, 2023, p. 107.
      [51]
      X.R. Lv, Y.X. Luo, J.P. Cui, J. Zhang, L. Zhang, and J.Y. Wang, Atomic structural visualization on γ-Ho2Si2O7 using iDPC-STEM technique and its correlation with thermal expansion as advanced environmental barrier coating, Mater. Today Phys., 30(2023), art. No. 100961. doi: 10.1016/j.mtphys.2022.100961
      [52]
      Z.L. Tian, J. Zhang, L.Y. Zheng, et al., General trend on the phase stability and corrosion resistance of rare earth monosilicates to molten calcium–magnesium–aluminosilicate at 1300oC, Corros. Sci., 148(2019), p. 281. doi: 10.1016/j.corsci.2018.12.032
      [53]
      U. Schulz and W. Braue, Degradation of La2Zr2O7 and other novel EB-PVD thermal barrier coatings by CMAS (CaO–MgO–Al2O3–SiO2) and volcanic ash deposits, Surf. Coat. Technol., 235(2013), p. 165. doi: 10.1016/j.surfcoat.2013.07.029
      [54]
      Q. Arnaud, D. Caurant, O. Majérus, J.L. Dussossoy, and T. Charpentier, Effect of changing the rare earth cation type on the structure and crystallization behavior of an aluminoborosilicate glass, Phys. Chem. Glasses, 49(2008), No. 4, p. 192.
      [55]
      G. Costa, B.J. Harder, N.P. Bansal, B.A. Kowalski, and J.L. Stokes, Thermochemistry of calcium rare-earth silicate oxyapatites, J. Am. Ceram. Soc., 103(2020), No. 2, p. 1446. doi: 10.1111/jace.16816
      [56]
      X. Zhong, Y.W. Wang, Y.R. Niu, L.P. Huang, Q.L. Li, and X.B. Zheng, Corrosion behaviors and mechanisms of ytterbium silicate environmental barrier coatings by molten calcium–magnesium–alumino–silicate melts, Corros. Sci., 191(2021), art. No. 109718. doi: 10.1016/j.corsci.2021.109718
      [57]
      R.I. Webster and E.J. Opila, Mixed phase ytterbium silicate environmental-barrier coating materials for improved calcium–magnesium–alumino-silicate resistance, J. Mater. Res., 35(2020), No. 17, p. 2358. doi: 10.1557/jmr.2020.151
      [58]
      S. Krämer, J. Yang, C.G. Levi, and C.A. Johnson, Thermochemical interaction of thermal barrier coatings with molten CaO–MgO–Al2O3–SiO2 (CMAS) deposits, J. Am. Ceram. Soc., 89(2006), No. 10, p. 3167. doi: 10.1111/j.1551-2916.2006.01209.x
      [59]
      Z.G. Pang, X.D. Xing, Q.G. Xue, J.S. Wang, and H.B. Zuo, Influence of Na2O on the thermodynamics properties, viscosity, and structure of CaO–SiO2–MgO–Al2O3–BaO–Na2O slag, Ceram. Int., 48(2022), No. 16, p. 23357. doi: 10.1016/j.ceramint.2022.04.325
      [60]
      Y. Hou, G.H. Zhang, K.C. Chou, and D.Q. Fan, Mixed alkali effect in viscosity of CaO–SiO2–Al2O3–R2O melts, Metall. Mater. Trans. B, 51(2020), No. 3, p. 985. doi: 10.1007/s11663-020-01830-y

    Catalog


    • /

      返回文章
      返回