留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 6
Jun.  2024

图(15)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  758
  • HTML全文浏览量:  140
  • PDF下载量:  39
  • 被引次数: 0
Meifeng Cai, Zhilou Feng, Qifeng Guo, Xiong Yin, Minghui Ma,  and Xun Xi, Roughness characterization and shearing dislocation failure for rock–backfill interface, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1167-1176. https://doi.org/10.1007/s12613-024-2901-0
Cite this article as:
Meifeng Cai, Zhilou Feng, Qifeng Guo, Xiong Yin, Minghui Ma,  and Xun Xi, Roughness characterization and shearing dislocation failure for rock–backfill interface, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1167-1176. https://doi.org/10.1007/s12613-024-2901-0
引用本文 PDF XML SpringerLink
研究论文

围岩–充填体界面粗糙度表征与剪切错动破坏研究


  • 通讯作者:

    郭奇峰    E-mail: guoqifeng@ustb.edu.cn

文章亮点

  • (1) 设计了考虑节理形貌粗糙系数的围岩-充填体剪切错动试验方法
  • (2) 得到了围岩–充填体界面的三维分形维数、剖面线二维分形维数和表面曲率
  • (3) 揭示了围岩–充填体界面剪切错动力学行为和破坏特征
  • 金属矿充填开采过程中,充填体沉降或采掘扰动作用下,围岩与充填体界面存在剪切错动,影响采场稳定性。本文设计了围岩-充填体剪切错动试验方法,结合数字图像技术与三维激光形貌扫描技术,建立了一套粗糙节理面三维建模流程,基于剪切试验探究了基于自由节理面的围岩-充填体组合体剪切错动力学行为及破坏特征。提出的建模分析方法可获得粗糙面的三维分形维数、剖面线JRC均值、剖面线二维分形维数均值和断裂面表面曲率,通过相关性分析能够实现表面粗糙度的关联表征,进而通过JRC测算剪切强度。试验剪切破坏特征显示:组合体剪切错动有3个破坏阈值点,分别位于峰前段位移30%–50%、峰前段位移70%–90%和峰前段位移100%后,可作为围岩充填体错动破坏判别的征兆;通过围岩表面JRC可判断围岩与充填体剪切错动峰后滑移、均匀变化、阶梯变化的类型,对应工程现场的围岩充填体错动破坏过程类型。该研究揭示了基于自由节理面的异构组合体力学损伤机制,弥补了现有含粗糙节理异构组合体剪切理论体系的不足,为防治矿山充填灾害提供了理论依据。
  • Research Article

    Roughness characterization and shearing dislocation failure for rock–backfill interface

    + Author Affiliations
    • Shearing dislocation is a common failure type for rock–backfill interfaces because of backfill sedimentation and rock strata movement in backfill mining goaf. This paper designed a test method for rock–backfill shearing dislocation. Using digital image technology and three-dimensional (3D) laser morphology scanning techniques, a set of 3D models with rough joint surfaces was established. Further, the mechanical behavior of rock–backfill shearing dislocation was investigated using a direct shear test. The effects of interface roughness on the shear–displacement curve and failure characteristics of rock–backfill specimens were considered. The 3D fractal dimension, profile line joint roughness coefficient (JRC), profile line two-dimensional fractal dimension, and the surface curvature of the fractures were obtained. The correlation characterization of surface roughness was then analyzed, and the shear strength could be measured and calculated using JRC. The results showed the following: there were three failure threshold value points in rock–backfill shearing dislocation: 30%–50% displacement before the peak, 70%–90% displacement before the peak, and 100% displacement before the peak to post-peak, which could be a sign for rock–backfill shearing dislocation failure. The surface JRC could be used to judge the rock–backfill shearing dislocation failure, including post-peak sliding, uniform variations, and gradient change, corresponding to rock–backfill dislocation failure on the field site. The research reveals the damage mechanism for rock–backfill complexes based on the free joint surface, fills the gap of existing shearing theoretical systems for isomerism complexes, and provides a theoretical basis for the prevention and control of possible disasters in backfill mining.
    • loading
    • [1]
      X. Zhao, A. Fourie, and C.C. Qi, Mechanics and safety issues in tailing-based backfill: A review, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1165. doi: 10.1007/s12613-020-2004-5
      [2]
      M. Wang, X. Xi, Q.F. Guo, J.L. Pan, M.F. Cai, and S.T. Yang, Sulfate diffusion in coal pillar: Experimental data and prediction model, Int. J. Coal Sci. Technol., 10(2023), No. 1, p. 12. doi: 10.1007/s40789-023-00565-w
      [3]
      Q.F. Guo, X. Xi, S.T. Yang, and M.F. Cai, Technology strategies to achieve carbon peak and carbon neutrality for China’s metal mines, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 626. doi: 10.1007/s12613-021-2374-3
      [4]
      P.T. Wang, Z.J. Huan, F.H. Ren, L. Zhang, and M.F. Cai, Research on direct shear behaviour and fracture patterns of 3D-printed complex jointed rock models, Rock Soil Mech., 41(2020), art. No. 46.
      [5]
      Y.Y. Tan, X. Yu, D. Elmo, L.H. Xu, and W.D. Song, Experimental study on dynamic mechanical property of cemented tailings backfill under SHPB impact loading, Int. J. Miner. Metall. Mater., 26(2019), No. 4, p. 404. doi: 10.1007/s12613-019-1749-1
      [6]
      Y.Y. Tan, E. Davide, Y.C. Zhou, W.D. Song, and X. Meng, Long-term mechanical behavior and characteristics of cemented tailings backfill through impact loading, Int. J. Miner. Metall. Mater., 27(2020), No. 2, p. 140. doi: 10.1007/s12613-019-1878-6
      [7]
      H.Y. Cheng, S.C. Wu, X.Q. Zhang, and A.X. Wu, Effect of particle gradation characteristics on yield stress of cemented paste backfill, Int. J. Miner. Metall. Mater., 27(2020), No. 1, p. 10. doi: 10.1007/s12613-019-1865-y
      [8]
      J.Y. Wu, H.S. Wong, H. Zhang, Q. Yin, H.W. Jing, and D. Ma, Improvement of cemented rockfill by premixing low-alkalinity activator and fly ash for recycling gangue and partially replacing cement, Cem. Concr. Compos., 145(2024), art. No. 105345. doi: 10.1016/j.cemconcomp.2023.105345
      [9]
      J.Y. Wu, H.W. Jing, Q. Yin, L.Y. Yu, B. Meng, and S.C. Li, Strength prediction model considering material, ultrasonic and stress of cemented waste rock backfill for recycling gangue, J. Clean. Prod., 276(2020), art. No. 123189. doi: 10.1016/j.jclepro.2020.123189
      [10]
      Y. Zhao, A. Taheri, M. Karakus, Z.W. Chen, and A. Deng, Effects of water content, water type and temperature on the rheological behaviour of slag-cement and fly ash-cement paste backfill, Int. J. Min. Sci. Technol., 30(2020), No. 3, p. 271. doi: 10.1016/j.ijmst.2020.03.003
      [11]
      J. Wang, J.X. Fu, and W.D. Song, Mechanical properties and microstructure of layered cemented paste backfill under triaxial cyclic loading and unloading, Constr. Build. Mater., 257(2020), art. No. 119540. doi: 10.1016/j.conbuildmat.2020.119540
      [12]
      H.P. Xie, Z.H. Chen, H.W. Zhou, C. Yi, and Z.J. Chen, Study on two-body mechanical model based on interaction between structural body and geo-body, Chin. J. Rock Mech. Eng., 24(2005), No. 9, p. 1457.
      [13]
      X.R. Liu, H.W. Zhou, and H. Li Numerical simulation of interface behavior in rock-concrete interaction problem, Chin. J. Rock Mech. Eng., 24(2005), No. S2, p. 5648.
      [14]
      C. Yi, H.G. Zhu, H.T. Wang, Z. Liu, and H. Pan, Analysis of transformation conditions and influence factors of uni-body and bi-body models under axial compression, Rock Soil Mech., 32(2011), No. 5, p. 1297.
      [15]
      C. Yi, L. Zhang, Z.H. Chen, and H.P. Xie, Experimental study on bi-material and bi-body models under axial compression, Rock Soil Mech., 27(2006), No. 4, p. 571.
      [16]
      K. Mandal and D. Maity, Transient response of concrete gravity dam considering dam-reservoir-foundation interaction, J. Earthq. Eng., 22(2018), p. 211. doi: 10.1080/13632469.2016.1217804
      [17]
      Y. Chen, L. Zhang, B.Q. Yang, J.H. Dong, and J.Y. Chen, Geomechanical model test on dam stability and application to Jinping High arch dam, Int. J. Rock Mech. Min. Sci., 76(2015), p. 1. doi: 10.1016/j.ijrmms.2015.01.001
      [18]
      J.P. Zuo, Y. Chen, and H.Q, Song, Study progress of failure behaviors and nonlinear model of deep coal-rock combined body, J. Cent. South Uni. Sci. Technol., 52(2021), No. 8, p. 2510.
      [19]
      J.P. Zuo, J.L. Pei, J.F. Liu, R.D. Peng, and Y.C. Li, Investigation on acoustic emission behavior and its time-space evolution mechanism in failure process of coal–rock combined body, Chin. J. Rock Mech. Eng., 30(2011), No. 8, p. 1564.
      [20]
      C.J. Li, Y. Xu, and Z.Y. Ye, Energy dissipation and crushing characteristics of coal–rock-like combined body under impact loading, Chin. J. Geotechn. Eng., 42(2020), No. 5, p. 981.
      [21]
      C.J. Li, Y. Xu, Y.T. Zhang, and H.L. Li, Study on energy evolution and fractal characteristics of cracked coal–rock-like combined body under impact loading, Chin. J. Rock Mech. Eng., 38(2019), No. 11, p. 2231.
      [22]
      G.B. Chen, T. Li, L. Yang, G.H. Zhang, J.W. Li, and H.J. Dong, Mechanical properties and failure mechanism of combined bodies with different coal–rock ratios and combinations, J. Min. Strata Control Eng., 3(2021), No. 02, p. 84.
      [23]
      K. Yang, W.J. Liu, L.T. Dou, X.L. Chi, Z. Wei, and Q. Fu, Experimental investigation into interface effect and progressive instability of coal–rock combined specimen, J. China Coal Soc., 45(2020), No. 5, p. 1691.
      [24]
      N. Barton and V. Choubey, The shear strength of rock joints in theory and practice, Rock Mech., 10(1977), No. 1, p. 1.
      [25]
      B. Mandelbrot, How long is the coast of Britain? Statistical self-similarity and fractional dimension, Science, 156(1967), No. 3775, p. 636. doi: 10.1126/science.156.3775.636
      [26]
      N. Turk, M.J. Greig, W.R. Dearman, and F. Amin, Characterization of rock joint surfaces by fractal dimension, [in] The 28th US Symposium on Rock Mechanics (USRMS ), OnePetro, 1987.
      [27]
      H.P. Xie, Fractal description of rock joints, Chin. J. Geotech. Eng., 17(1995), No. 1, p. 18.
      [28]
      M.H. Ma, Collaborative Bearing Mechanism of Surrounding Rock–backfill and Stability Analysis in Residual Ore Recovery [Dissertation], University of Science and Technology Beijing, Beijing, 2023.
      [29]
      S.B. Chen, X.W. Pan, and J.F. Liu, Impact localization method based on the partial least squares regression fractal dimension, J. Vibr. Shock, 40(2021), No. 2, p. 97.
      [30]
      W.F. Brace, An extension of the Griffith theory of fracture to rocks, J. Geophys. Res., 65(1960), No. 10, p. 3477. doi: 10.1029/JZ065i010p03477

    Catalog


    • /

      返回文章
      返回