留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 12
Dec.  2024

图(14)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  1561
  • HTML全文浏览量:  148
  • PDF下载量:  21
  • 被引次数: 0
Yun Tian, Jianing Liu, Mingming Xue, Dongyao Zhang, Yuxin Wang, Keping Geng, Yanchun Dong, and Yong Yang, Structure and corrosion behavior of FeCoCrNiMo high-entropy alloy coatings prepared by mechanical alloying and plasma spraying, Int. J. Miner. Metall. Mater., 31(2024), No. 12, pp. 2692-2705. https://doi.org/10.1007/s12613-024-2902-z
Cite this article as:
Yun Tian, Jianing Liu, Mingming Xue, Dongyao Zhang, Yuxin Wang, Keping Geng, Yanchun Dong, and Yong Yang, Structure and corrosion behavior of FeCoCrNiMo high-entropy alloy coatings prepared by mechanical alloying and plasma spraying, Int. J. Miner. Metall. Mater., 31(2024), No. 12, pp. 2692-2705. https://doi.org/10.1007/s12613-024-2902-z
引用本文 PDF XML SpringerLink
研究论文

机械合金化与等离子喷涂技术制备FeCoCrNiMo高熵合金涂层的组织与腐蚀行为


  • 通讯作者:

    董艳春    E-mail: dongrunyanchun@126.com

文章亮点

  • (1) 由于 Mo 元素与其他常见金属元素的熔点和原子半径相差较大,形成高熵合金时容易偏析。结合机械合金化和等离子喷涂技术,制备了均匀的FeCoCrNiMo高熵合金涂层。
  • (2)对FeCoCrNiMo高熵合金涂层的微观组织和力学性能进行了分析。
  • (3)分析了FeCoCrNiMo高熵合金涂层在模拟海水中的耐腐蚀性,并对其腐蚀机理进行了研究。
  • 为了解决高熵合金常见的元素偏析问题并制备出均匀的FeCoCrNiMo高熵合金涂层,采用了机械合金化技术制备了FeCoCrNiMo复合粉末,并利用等离子喷涂技术将其制成了面心立方相的高熵合金涂层。利用扫描电子显微镜、透射电子显微镜和 X 射线衍射仪对涂层的微观结构和相组成进行了表征。测试了涂层的硬度、弹性模量和断裂韧性,并分析了涂层在模拟海水中的耐腐蚀性。结果表明,涂层的硬度为 HV0.1 606.15,弹性模量为 128.42 GPa,断裂韧性为 43.98 MPa·m1/2。涂层在 3.5wt% NaCl 溶液中的腐蚀电位为 −0.49 V,腐蚀电流密度为 1.2 × 10−6 A/cm2。电化学系统由电解液、浸泡过程中产生的吸附膜和金属氧化膜以及FeCoCrNiMo高熵合金涂层三部分共同组成。腐蚀过程中,随着时间的延长,腐蚀反应速率先增大后减小,金属氧化物组成的腐蚀产物膜在形成和溶解之间达到动态平衡,涂层被腐蚀的速度变缓。
  • Research Article

    Structure and corrosion behavior of FeCoCrNiMo high-entropy alloy coatings prepared by mechanical alloying and plasma spraying

    + Author Affiliations
    • FeCoCrNiMox composite powders were prepared using the mechanical alloying technique and made into high-entropy alloy (HEA) coatings with the face-centered cubic phase using plasma spraying to address the element segregation problem in HEAs and prepare uniform HEA coatings. Scanning electron microscopy, transmission electron microscopy, and X-ray diffractometry were employed to characterize these coatings’ microstructure and phase composition. The hardness, elastic modulus, and fracture toughness of coatings were tested, and the corrosion resistance was analyzed in simulated seawater. Results show that the hardness of the coating is HV0.1 606.15, the modulus of elasticity is 128.42 GPa, and the fracture toughness is 43.98 MPa·m1/2. The corrosion potential of the coating in 3.5wt% NaCl solution is –0.49 V, and the corrosion current density is 1.2 × 10−6 A/cm2. The electrochemical system comprises three parts: the electrolyte, the adsorption and metallic oxide films produced during immersion, and the FeCoNiCrMo HEA coating. Over increasingly long periods, the corrosion reaction rate increases first and then decreases, the corrosion product film comprising metal oxides reaches a dynamic balance between formation and dissolution, and the internal reaction of the coating declines.
    • loading
    • [1]
      K. Kaufmann and K.S. Vecchio, Searching for high entropy alloys: A machine learning approach, Acta Mater., 198(2020), p. 178. doi: 10.1016/j.actamat.2020.07.065
      [2]
      S. Hou, M.Y. Sun, M.J. Bai, D. Lin, Y.J. Li, and W.W. Liu, A hybrid prediction frame for HEAs based on empirical knowledge and machine learning, Acta Mater., 228(2022), art. No. 117742. doi: 10.1016/j.actamat.2022.117742
      [3]
      J.W. Yeh, S.K. Chen, S.J. Lin, et al., Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater., 6(2004), No. 5, p. 299. doi: 10.1002/adem.200300567
      [4]
      Z.Z. Li, S.T. Zhao, R.O. Ritchie, and M.A. Meyers, Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys, Prog. Mater. Sci., 102(2019), p. 296. doi: 10.1016/j.pmatsci.2018.12.003
      [5]
      Y.Q. Tang and D.Y. Li, Dynamic response of high-entropy alloys to ballistic impact, Sci. Adv., 8(2022), No. 32, art. No. eabp9096. doi: 10.1126/sciadv.abp9096
      [6]
      G. Feng, F.H. Ning, J. Song, et al., Sub-2 nm ultrasmall high-entropy alloy nanoparticles for extremely superior electrocatalytic hydrogen evolution, J. Am. Chem. Soc., 143(2021), No. 41, p. 17117. doi: 10.1021/jacs.1c07643
      [7]
      B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science, 345(2014), No. 6201, p. 1153. doi: 10.1126/science.1254581
      [8]
      C.C. Du, L. Hu, X.D. Ren, et al., Cracking mechanism of brittle FeCoNiCrAl HEA coating using extreme high-speed laser cladding, Surf. Coat. Technol., 424(2021), art. No. 127617. doi: 10.1016/j.surfcoat.2021.127617
      [9]
      J.K. Xiao, H. Tan, Y.Q. Wu, J. Chen, and C. Zhang, Microstructure and wear behavior of FeCoNiCrMn high entropy alloy coating deposited by plasma spraying, Surf. Coat. Technol., 385(2020), art. No. 125430. doi: 10.1016/j.surfcoat.2020.125430
      [10]
      K.A. Kuptsov, M.N. Antonyuk, A.N. Sheveyko, et al., High-entropy Fe–Cr–Ni–Co–(Cu) coatings produced by vacuum electro-spark deposition for marine and coastal applications, Surf. Coat. Technol., 453(2023), art. No. 129136. doi: 10.1016/j.surfcoat.2022.129136
      [11]
      C. Cui, M.P. Wu, X.J. Miao, Z.S. Zhao, and Y.L. Gong, Microstructure and corrosion behavior of CeO2/FeCoNiCrMo high-entropy alloy coating prepared by laser cladding, J. Alloys Compd., 890(2022), art. No. 161826. doi: 10.1016/j.jallcom.2021.161826
      [12]
      K.S. Ming, X.F. Bi, and J. Wang, Precipitation strengthening of ductile Cr15Fe20Co35Ni20Mo10 alloys, Scripta Mater., 137(2017), p. 88. doi: 10.1016/j.scriptamat.2017.05.019
      [13]
      W.H. Liu, Z.P. Lu, J.Y. He, et al., Ductile CoCrFeNiMo x high entropy alloys strengthened by hard intermetallic phases, Acta Mater., 116(2016), p. 332. doi: 10.1016/j.actamat.2016.06.063
      [14]
      Q. Zhao, X. Huang, Z.X. Zhan, et al., Effect of alloying elements (Mn, Ti, and Mo) on the corrosion behavior of FeCoNiCr-based high entropy alloy in supercritical water, Corros. Sci., 220(2023), art. No. 111291. doi: 10.1016/j.corsci.2023.111291
      [15]
      P.P. Yang, Y. Liu, X.C. Zhao, J.W. Cheng, and H. Li, Electromagnetic wave absorption properties of mechanically alloyed FeCoNiCrAl high entropy alloy powders, Adv. Powder Technol., 27(2016), No. 4, p. 1128. doi: 10.1016/j.apt.2016.03.023
      [16]
      I.A. Alhafez, C.J. Ruestes, E.M. Bringa, and H.M. Urbassek, Nanoindentation into a high-entropy alloy–An atomistic study, J. Alloys Compd., 803(2019), p. 618. doi: 10.1016/j.jallcom.2019.06.277
      [17]
      Z. Wang, J. Jin, G.H. Zhang, X.H. Fan, and L. Zhang, Effect of temperature on the passive film structure and corrosion performance of CoCrFeMoNi high-entropy alloy, Corros. Sci., 208(2022), art. No. 110661. doi: 10.1016/j.corsci.2022.110661
      [18]
      J. Xu, S. Peng, Z.Y. Li, et al., Remarkable cavitation erosion–corrosion resistance of CoCrFeNiTiMo high-entropy alloy coatings, Corros. Sci., 190(2021), art. No. 109663. doi: 10.1016/j.corsci.2021.109663
      [19]
      W. Li, P. Liu, and P.K. Liaw, Microstructures and properties of high-entropy alloy films and coatings: A review, Mater. Res. Lett., 6(2018), No. 4, p. 199. doi: 10.1080/21663831.2018.1434248
      [20]
      S. Fritze, P. Malinovskis, L. Riekehr, L.V. Fieandt, E. Lewin, and U. Jansson, Hard and crack resistant carbon supersaturated refractory nanostructured multicomponent coatings, Sci. Rep., 8(2018), No. 1, art. No. 14508. doi: 10.1038/s41598-018-32932-y
      [21]
      J.K. Wang, Y.S. Chen, Y.H. Zhang, et al., Corrosion and slurry erosion wear performances of coaxial direct laser deposited CoCrFeNiCu1− xMo x high-entropy coatings by modulating the second-phase precipitation, Mater. Des., 212(2021), art. No. 110277. doi: 10.1016/j.matdes.2021.110277
      [22]
      Y.K. Mu, Y.D. Jia, L. Xu, et al., Nano oxides reinforced high-entropy alloy coatings synthesized by atmospheric plasma spraying, Mater. Res. Lett., 7(2019), No. 8, p. 312. doi: 10.1080/21663831.2019.1604443
      [23]
      A. Kumar, A. Singh, and A. Suhane, Mechanically alloyed high entropy alloys: Existing challenges and opportunities, J. Mater. Res. Technol., 17(2022), p. 2431. doi: 10.1016/j.jmrt.2022.01.141
      [24]
      K.C. Lo, H. Murakami, U. Glatzel, J.W. Yeh, S. Gorsse, and A.C. Yeh, Elemental effects on the oxidation of refractory compositionally complex alloys, Int. J. Refract. Met. Hard Mater., 108(2022), art. No. 105918. doi: 10.1016/j.ijrmhm.2022.105918
      [25]
      T.T. Shun, L.Y. Chang, and M.H. Shiu, Microstructure and mechanical properties of multiprincipal component CoCrFeNiMo x alloys, Mater. Charact., 70(2012), p. 63. doi: 10.1016/j.matchar.2012.05.005
      [26]
      B. Niu, Z.H. Wang, S. Ge, et al., Precipitation behavior of second phases and mechanical property of Fe–Cr–Al–Mo–Nb/Ta/Zr alloy during aging at 1073 K, J. Mater. Res. Technol., 19(2022), p. 4571. doi: 10.1016/j.jmrt.2022.07.024
      [27]
      C.D. Dai, T.L. Zhao, C.W. Du, Z.Y. Liu, and D.W. Zhang, Effect of molybdenum content on the microstructure and corrosion behavior of FeCoCrNiMo x high-entropy alloys, J. Mater. Sci. Technol., 46(2020), p. 64. doi: 10.1016/j.jmst.2019.10.020
      [28]
      C. Suryanarayana, Mechanical alloying: A critical review, Mater. Res. Lett., 10(2022), No. 10, p. 619. doi: 10.1080/21663831.2022.2075243
      [29]
      J. Wu, X.G. An, J. Zhang, et al., Effect of mechanical alloying on microstructure and mechanical properties of Ti–24Nb–4Zr–3Mn alloys prepared by spark plasma sintering, J. Alloys Compd., 927(2022), art. No. 167023. doi: 10.1016/j.jallcom.2022.167023
      [30]
      J.H. Yan, K.L. Li, Y. Wang, and J.W. Qiu, NbMoCrTiAl high-entropy alloy prepared by mechanical alloying and spark plasma sintering, Mater. Rep., 33(2019), No. 10, p. 1671.
      [31]
      X.Y. Mao, Y.X. Wang, J. Jiang, Y.L. Chi, Y.C. Dong, and Y. Yang, Microstructure and corrosion properties of micro–nano FeCoNiCrMnAl0.5 coatings fabricated by plasma spraying, Mater. Lett., 314(2022), art. No. 131855. doi: 10.1016/j.matlet.2022.131855
      [32]
      X.Y. Mao, Y.X. Wang, J. Jiang, et al., Microstructure and corrosion performance of Al0.5FeCoNiCrMn coating prepared by plasma spraying mechanically alloyed powders, Surf. Eng., 38(2022), No. 4, p. 383. doi: 10.1080/02670844.2022.2082156
      [33]
      Y.L. Chen, Y.H. Hu, C.A. Hsieh, J.W. Yeh, and S.K. Chen, Competition between elements during mechanical alloying in an octonary multi-principal-element alloy system, J. Alloys Compd., 481(2009), No. 1-2, p. 768. doi: 10.1016/j.jallcom.2009.03.087
      [34]
      X.J. Chang, M.Q. Zeng, K.L. Liu, and L. Fu, Phase engineering of high-entropy alloys, Adv. Mater., 32(2020), No. 14, art. No. 1907226. doi: 10.1002/adma.201907226
      [35]
      L.M. Rymer, T. Lindner, and T. Lampke, Enhanced high-temperature wear behavior of high-speed laser metal deposited Al0.3CrFeCoNi coatings alloyed with Nb and Mo, Surf. Coat. Technol., 470(2023), art. No. 129832. doi: 10.1016/j.surfcoat.2023.129832
      [36]
      Z.J. Yang, J.H. Cao, W.X. Yu, et al., Effects of microstructure characteristics on the mechanical properties and elastic modulus of a new Ti–6Al–2Nb–2Zr–0.4B alloy, Mater. Sci. Eng. A, 820(2021), art. No. 141564. doi: 10.1016/j.msea.2021.141564
      [37]
      X.Z. Li, W.X. Zhang, M.D. Han, et al., Indentation size effect: an improved mechanistic model incorporating surface undulation and indenter tip irregularity, J. Mater. Res. Technol., 23(2023), p. 143. doi: 10.1016/j.jmrt.2023.01.001
      [38]
      G.R. Anstis, P. Chantikul, B.R. Lawn, and D.B. Marshall, A critical evaluation of indentation techniques for measuring fracture toughness: I, Direct crack measurements, J. Am. Ceram. Soc., 64(1981), No. 9, p. 533. doi: 10.1111/j.1151-2916.1981.tb10320.x
      [39]
      G.J. D’Silva, V. Goanta, and C. Ciocanel, Fracture toughness evaluation of Ni2MnGa magnetic shape memory alloys by Vickers micro indentation, Eng. Fract. Mech., 247(2021), art. No. 107655. doi: 10.1016/j.engfracmech.2021.107655
      [40]
      L. Li, L.L. Wan, and Q.M. Zhou, Crack propagation during Vickers indentation of zirconia ceramics, Ceram. Int., 46(2020), No. 13, p. 21311. doi: 10.1016/j.ceramint.2020.05.225
      [41]
      A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal, and E. Matykina, Pitting corrosion behaviour of austenitic stainless steels–Combining effects of Mn and Mo additions, Corros. Sci., 50(2008), No. 6, p. 1796. doi: 10.1016/j.corsci.2008.04.005
      [42]
      H.J. Mathieu and D. Landolt, An investigation of thin oxide films thermally grown in situ on Fe–24Cr and Fe–24Cr–11Mo by auger electron spectroscopy and X-ray photoelectron spectroscopy, Corros. Sci., 26(1986), No. 7, p. 547. doi: 10.1016/0010-938X(86)90022-3
      [43]
      H. Feng, H.B. Li, J. Dai, et al., Why CoCrFeMnNi HEA could not passivate in chloride solution? –A novel strategy to significantly improve corrosion resistance of CoCrFeMnNi HEA by N-alloying, Corros. Sci., 204(2022), art. No. 110396. doi: 10.1016/j.corsci.2022.110396
      [44]
      B.J. He, Study on Surface Treatment and Corrosion Resistance of 45 Steel [Dissertation], Zhengzhou University, Zhengzhou, 2019, p. 27.
      [45]
      F. Weng, Y. Chew, W.K. Ong, et al., Enhanced corrosion resistance of laser aided additive manufactured CoCrNi medium entropy alloys with oxide inclusion, Corros. Sci., 195(2022), art. No. 109965. doi: 10.1016/j.corsci.2021.109965
      [46]
      J.W. Wang, W.H. Wen, J. Cheng, et al., Tribocorrosion behavior of high-entropy alloys FeCrNiCoM (M = Al, Mo) in artificial seawater, Corros. Sci., 218(2023), art. No. 111165. doi: 10.1016/j.corsci.2023.111165
      [47]
      H. Luo, Z.M. Li, A.M. Mingers, and D. Raabe, Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution, Corros. Sci., 134(2018), p. 131. doi: 10.1016/j.corsci.2018.02.031
      [48]
      J.K. Wang, Y.S. Chen, Y.H. Zhang, et al., Microstructure evolution and acid corrosion behavior of CoCrFeNiCu1− xMo x high-entropy alloy coatings fabricated by coaxial direct laser deposition, Corros. Sci., 198(2022), art. No. 110108. doi: 10.1016/j.corsci.2022.110108
      [49]
      X. Wang, Y. Li, C. Li, et al., Highly orientated graphene/epoxy coating with exceptional anti-corrosion performance for harsh oxygen environments, Corros. Sci., 176(2020), art. No. 109049. doi: 10.1016/j.corsci.2020.109049
      [50]
      D. Bi, Y. Chang, H. Luo, et al., Corrosion behavior and passive film characteristics of AlNbTiZrSi x high-entropy alloys in simulated seawater environment, Corros. Sci., 224(2023), art. No. 111530. doi: 10.1016/j.corsci.2023.111530
      [51]
      H.X. Wan, D.D. Song, X.L. Shi, Y. Cai, T.T. Li, and C.F. Chen, Corrosion behavior of Al0.4CoCu0.6NiSi0.2Ti0.25 high-entropy alloy coating via 3D printing laser cladding in a sulphur environment, J. Mater. Sci. Technol., 60(2021), p. 197. doi: 10.1016/j.jmst.2020.07.001
      [52]
      K.D. Yu, W. Zhao, Z. Li, N. Guo, G.C. Xiao, and H. Zhang, High-temperature oxidation behavior and corrosion resistance of in situ TiC and Mo reinforced AlCoCrFeNi-based high entropy alloy coatings by laser cladding, Ceram. Int., 49(2023), No. 6, p. 10151. doi: 10.1016/j.ceramint.2022.11.198
      [53]
      Z. Zhang, X.F. Li, H. Yi, H.Q. Xie, Z.Y. Zhao, and P.K. Bai, Clarify the role of Nb alloying on passive film and corrosion behavior of CoCrFeMnNi high entropy alloy fabricated by laser powder bed fusion, Corros. Sci., 224(2023), art. No. 111510. doi: 10.1016/j.corsci.2023.111510
      [54]
      Z. Li, W. Zhao, K.D. Yu, et al., Effect of Y2O3 on microstructure and properties of CoCrFeNiTiNb high entropy alloy coating on Ti–6Al–4V surface by laser cladding, J. Rare Earths, 42(2024), No. 3, p. 586. doi: 10.1016/j.jre.2023.02.015

    Catalog


    • /

      返回文章
      返回