留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 11
Nov.  2024

图(10)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  422
  • HTML全文浏览量:  167
  • PDF下载量:  31
  • 被引次数: 0
Haoyan Sun, Ajala Adewole Adetoro, Zhiqiang Wang,  and Qingshan Zhu, Behavior and mechanism of pre-oxidation improvement on fluidization in the fluidized reduction of titanomagnetite, Int. J. Miner. Metall. Mater., 31(2024), No. 11, pp. 2458-2465. https://doi.org/10.1007/s12613-024-2904-x
Cite this article as:
Haoyan Sun, Ajala Adewole Adetoro, Zhiqiang Wang,  and Qingshan Zhu, Behavior and mechanism of pre-oxidation improvement on fluidization in the fluidized reduction of titanomagnetite, Int. J. Miner. Metall. Mater., 31(2024), No. 11, pp. 2458-2465. https://doi.org/10.1007/s12613-024-2904-x
引用本文 PDF XML SpringerLink
研究论文

预氧化改善钒钛磁铁矿流态化还原过程流化性能的行为及机制


  • 通讯作者:

    孙昊延    E-mail: sunhaoyan@ipe.ac.cn

文章亮点

  • (1) 预氧化能够显著改善钒钛磁铁矿流态化还原过程流化性能
  • (2) 揭示了预氧化对颗粒还原流化性能影响的参数区间规律
  • (3) 建立了预氧化调控还原铁粉流化行为的作用机制
  • 直接还原工艺是低碳冶金和实现如钒钛磁铁矿等复杂多金属矿资源综合利用的重要发展方向。然而,对于流态化直接还原而言,高金属化率还原铁矿粉在高温下易粘结失流,严重时将直接影响其生产操作顺行。基于协同预氧化强化钒钛磁铁矿直接还原和矿物颗粒表面结构改性作用效果,本文对预氧化改善钒钛磁铁矿流态化还原过程流化性能的行为及机制进行了系统研究。钒钛磁铁矿经预氧化处理后能够显著降低其还原至金属化率90%时所需的稳定还原流化气速至0.17m/s,相比未经预氧化处理的样品稳定还原流化气速相对降低了56%。根据不同的还原流化行为,以氧化度26%和86%为边界将预氧化操作参数划分为三个区间,进一步深入研究分析预氧化-还原过程颗粒表面形貌变化,最终建立了颗粒预氧化形貌、氧化后还原形貌、还原过程流化性能三者之间的联系。通过预氧化调控颗粒表面形貌从而改善还原铁颗粒流化性能并协同强化还原,为抑制铁矿粉,特别是复杂多金属矿的流态化还原过程粘结失流提供了一个新思路方法。
  • Research Article

    Behavior and mechanism of pre-oxidation improvement on fluidization in the fluidized reduction of titanomagnetite

    + Author Affiliations
    • The direct reduction process is an important development direction of low-carbon ironmaking and efficient comprehensive utilization of poly-metallic iron ore, such as titanomagnetite. However, the defluidization of reduced iron particles with a high metallization degree at a high temperature will seriously affect the operation of fluidized bed reduction. Coupling the pre-oxidation enhancing reduction and the particle surface modification of titanomagnetite, the behavior and mechanism of pre-oxidation improvement on fluidization in the fluidized bed reduction of titanomagnetite are systematically studied in this paper. Pre-oxidation treatment of titanomagnetite can significantly lower the critical stable reduction fluidization gas velocity to 0.17 m/s, which is reduced by 56% compared to that of titanomagnetite reduction without pre-oxidation, while achieving a metallization degree of >90%, Corresponding to the different reduction fluidization behaviors, three pre-oxidation operation regions have been divided, taking oxidation degrees of 26% and 86% as the boundaries. Focusing on the particle surface morphology evolution in the pre-oxidation–reduction process, the relationship between the surface morphology of pre-oxidized ore and the reduced iron with fluidization properties is built. The improving method of pre-oxidation on the reduction fluidization provides a novel approach to prevent defluidization by particle surface modification, especially for the fluidized bed reduction of poly-metallic iron ore.
    • loading
    • [1]
      World Steel Association, World Steel in Figures 2022, World Steel Association, 2022 [2022-10-31]. https://worldsteel.org/data/world-steel-in-figures-2022/
      [2]
      X.Y. Zhang, K.X. Jiao, J.L. Zhang, and Z.Y. Guo, A review on low carbon emissions projects of steel industry in the world, J. Cleaner Prod., 306(2021), art. No. 127259. doi: 10.1016/j.jclepro.2021.127259
      [3]
      Z.Y. Fan and S.J. Friedmann, Low-carbon production of iron and steel: Technology options, economic assessment, and policy, Joule, 5(2021), No. 4, p. 829. doi: 10.1016/j.joule.2021.02.018
      [4]
      Midrex Technologies, 2022 World Direct Reduction Statistics, World Steel Dynamics, 2023 [2023-12-11]. https://www.midrex.com/wp-content/uploads/MidrexSTATSBook2022.pdf
      [5]
      A. Chatterjee, Sponge Iron Production by Direct Reduction of Iron Oxide, PHI Learning Private Limited, New Delhi, 2010.
      [6]
      S.W. Prabowo, R.J. Longbottom, B.J. Monaghan, D. del Puerto, M.J. Ryan, and C.W. Bumby, Phase transformations during fluidized bed reduction of New Zealand titanomagnetite ironsand in hydrogen gas, Powder Technol., 398(2022), art. No. 117032. doi: 10.1016/j.powtec.2021.117032
      [7]
      H.Y. Sun, A.A. Adetoro, F. Pan, Z. Wang, and Q.S. Zhu, Effects of high-temperature preoxidation on the titanomagnetite ore structure and reduction behaviors in fluidized bed, Metall. Mater. Trans. B, 48(2017), No. 3, p. 1898. doi: 10.1007/s11663-017-0925-9
      [8]
      A.A. Adetoro, H.Y. Sun, S.Y. He, Q.S. Zhu, and H.Z. Li, Effects of low-temperature pre-oxidation on the titanomagnetite ore structure and reduction behaviors in a fluidized bed, Metall. Mater. Trans. B, 49(2018), No. 2, p. 846. doi: 10.1007/s11663-018-1193-z
      [9]
      F. Pan, Z. Du, M.J. Zhang, and H.Y. Sun, Relationship between the phases, structure, MgO migration and the reduction performance of the pre-oxidized vanadium-titanium magnetite ore in a fluidized bed, ISIJ Int., 57(2017), No. 3, p. 413. doi: 10.2355/isijinternational.ISIJINT-2016-499
      [10]
      H.Y. Sun, J.S. Wang, Y.H. Han, X.F. She, and Q.G. Xue, Reduction mechanism of titanomagnetite concentrate by hydrogen, Int. J. Miner. Process., 125(2013), p. 122. doi: 10.1016/j.minpro.2013.08.006
      [11]
      H.Y. Sun, A.A. Adetoro, Z. Wang, F. Pan, and L. Li, Direct reduction behaviors of titanomagnetite ore by carbon monoxide in fluidized bed, ISIJ Int., 56(2016), No. 6, p. 936. doi: 10.2355/isijinternational.ISIJINT-2016-040
      [12]
      M. Komatina and H.W. Gudenau, The sticking problem during direct reduction of fine iron ore in the fluidized bed, Metall. Mater. Eng., 2018. DOI: 10.30544/378.
      [13]
      Z.C. Guo and X.Z. Gong, Sticking Mechanism and Suppression Technology of Fluidized Reduced Iron Ore Powder, Beijing Science Press, Beijing, 2015.
      [14]
      L. Guo, J.T. Yu, J.K. Tang, Y.H. Lin, Z.C. Guo, and H.Q. Tang, Influence of coating MgO on sticking and functional mechanism during fluidized bed reduction of vanadium titano-magnetite, J. Iron Steel Res. Int., 22(2015), No. 6, p. 464. doi: 10.1016/S1006-706X(15)30028-5
      [15]
      C. Lei, T. Zhang, J.B. Zhang, C.L. Fan, Q.S. Zhu, and H.Z. Li, Influence of content and microstructure of deposited carbon on fluidization behavior of iron powder at elevated temperatures, ISIJ Int., 54(2014), No. 3, p. 589. doi: 10.2355/isijinternational.54.589
      [16]
      Q.S. Zhu and H.Z. Li, Study on magnetic fluidization of group C powders, Powder Technol., 86(1996), No. 2, p. 179. doi: 10.1016/0032-5910(96)83162-7
      [17]
      J.M. Valverde and A. Castellanos, Effect of vibration on agglomerate particulate fluidization, AlChE. J., 52(2006), No. 5, p. 1705. doi: 10.1002/aic.10769
      [18]
      N.S. Srinivasan, Reduction of iron oxides by carbon in a circulating fluidized bed reactor, Powder Technol., 124(2002), No. 1-2, p. 28. doi: 10.1016/S0032-5910(01)00484-3
      [19]
      S.Y. He, H.Y. Sun, C.Q. Hu, J. Li, Q.S. Zhu, and H.Z. Li, Direct reduction of fine iron ore concentrate in a conical fluidized bed, Powder Technol., 313(2017), p. 161. doi: 10.1016/j.powtec.2017.03.007
      [20]
      H.Y. Sun, Q.S. Zhu, and H.Z. Li, The technical state and development trend of the direct reduction of titanomagnetite by fluidized bed, Chin. J. Process Eng., 18(2018), No. 6, p. 1146.
      [21]
      S.Y. Chen, X.J. Fu, M.S. Chu, Z.G. Liu, and J. Tang, Life cycle assessment of the comprehensive utilisation of vanadium titano-magnetite, J. Cleaner Prod., 101(2015), p. 122. doi: 10.1016/j.jclepro.2015.03.076
      [22]
      H.Y. Sun, J.S. Wang, X.J. Dong, and Q.G. Xue, A literature review of titanium slag metallurgical processes, Metal. Int., 17(2012), No. 7, p. 49.
      [23]
      E. Park and O. Ostrovski, Effects of preoxidation of titania-ferrous ore on the ore structure and reduction behavior, ISIJ Int., 44(2004), No. 1, p. 74. doi: 10.2355/isijinternational.44.74
      [24]
      A.A. Adetoro, Fundamental Research on Gas-Solid Direct Reduction of Titanomagnetite in a Fluidized Bed [Dissertation], University of Chinese Academy of Sciences, Beijing, 2019, p. 89.
      [25]
      H. Zheng, O. Daghagheleh, T. Wolfinger, B. Taferner, J. Schenk, and R.S. Xu, Fluidization behavior and reduction kinetics of pre-oxidized magnetite-based iron ore in a hydrogen-induced fluidized bed, Int. J. Miner. Metall. Mater., 29(2022), No. 10, p. 1873. doi: 10.1007/s12613-022-2511-7
      [26]
      E. Park and O. Ostrovski, Reduction of titania-ferrous ore by carbon monoxide, ISIJ Int., 43(2003), No. 9, p. 1316. doi: 10.2355/isijinternational.43.1316
      [27]
      X.F. She, H.Y. Sun, X.J. Dong, Q.G. Xue, and J.S. Wang, Reduction mechanism of titanomagnetite concentrate by carbon monoxide, J. Min. Metall. Sect. B, 49(2013), No. 3, p. 263. doi: 10.2298/JMMB121001020S
      [28]
      T. Battle, U. Srivastava, J. Kopfle, R. Hunter, and J. McClelland, The direct reduction of iron, [in] S. Seetharaman, ed., Treatise on Process Metallurgy, Elsevier, Amsterdam, 2024, p. 89.
      [29]
      L. Guo, Q.P. Bao, J.T. Gao, Q.S. Zhu, and Z.C. Guo, A review on prevention of sticking during fluidized bed reduction of fine iron ore, ISIJ Int., 60(2020), No. 1, p. 1. doi: 10.2355/isijinternational.ISIJINT-2019-392
      [30]
      X.Z. Gong, B. Zhang, Z. Wang, and Z.C. Guo, Insight of iron whisker sticking mechanism from iron atom diffusion and calculation of solid bridge radius, Metall. Mater. Trans. B, 45(2014), No. 6, p. 2050. doi: 10.1007/s11663-014-0125-9
      [31]
      B. Zhang, X.Z. Gong, Z. Wang, and Z.C. Guo, Relation between sticking and metallic iron precipitation on the surface of Fe2O3 particles reduced by CO in the fluidized bed, ISIJ Int., 51(2011), No. 9, p. 1403. doi: 10.2355/isijinternational.51.1403
      [32]
      C. Wagner, Mechanism of the reduction of oxides and sulphides to metals, JOM, 4(1952), No. 2, p. 214. doi: 10.1007/BF03397678
      [33]
      R. Nicolle and A. Rist, The mechanism of whisker growth in the reduction of wüstite, Metall. Trans. B, 10(1979), No. 3, p. 429. doi: 10.1007/BF02652516
      [34]
      S.E. Moujahid and A. Rist, The nucleation of iron on dense wustite: A morphological study, Metall. Trans. B, 19(1988), No. 5, p. 787. doi: 10.1007/BF02650198

    Catalog


    • /

      返回文章
      返回