留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 7
Jul.  2024

图(13)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  2294
  • HTML全文浏览量:  356
  • PDF下载量:  119
  • 被引次数: 0
Juheon Lee, Kwang Won Park, Il Sohn,  and Sanghoon Lee, Pyrometallurgical recycling of end-of-life lithium-ion batteries, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp. 1554-1571. https://doi.org/10.1007/s12613-024-2907-7
Cite this article as:
Juheon Lee, Kwang Won Park, Il Sohn,  and Sanghoon Lee, Pyrometallurgical recycling of end-of-life lithium-ion batteries, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp. 1554-1571. https://doi.org/10.1007/s12613-024-2907-7
引用本文 PDF XML SpringerLink
特约综述

废旧锂离子电池的火法冶金回收


  • 通讯作者:

    Sanghoon Lee    E-mail: slag@yonsei.ac.kr

  • 随着先进储能技术的发展,锂离子电池(LIBs)在全球的重要性日益凸显。然而,废旧电池在环境、经济和资源管理方面引起了重大挑战。本文重点介绍了锂离子电池的火法冶金回收工艺,探讨了对工艺的基本认识和优化的重要性。围绕火法冶金回收工艺存在的高能耗、高气体排放问题,系统分析了工艺的资本密集性和由此产生的技术特征。此外,为克服现有的技术壁垒和局限性,对未来的研究方向进行了深入的讨论。本文为电池回收领域的研究人员和行业相关者提供有价值的见解。
  • Invited Review

    Pyrometallurgical recycling of end-of-life lithium-ion batteries

    + Author Affiliations
    • The global importance of lithium-ion batteries (LIBs) has been increasingly underscored with the advancement of high-performance energy storage technologies. However, the end-of-life of these batteries poses significant challenges from environmental, economic, and resource management perspectives. This review paper focuses on the pyrometallurgy-based recycling process of lithium-ion batteries, exploring the fundamental understanding of this process and the importance of its optimization. Centering on the high energy consumption and emission gas issues of the pyrometallurgical recycling process, we systematically analyzed the capital-intensive nature of this process and the resulting technological characteristics. Furthermore, we conducted an in-depth discussion on the future research directions to overcome the existing technological barriers and limitations. This review will provide valuable insights for researchers and industry stakeholders in the battery recycling field.
    • loading
    • [1]
      A. Yoshino, The birth of the lithium-ion battery, Angew. Chem. Int. Ed., 51(2012), No. 24, p. 5798. doi: 10.1002/anie.201105006
      [2]
      G.E. Blomgren, The development and future of lithium ion batteries, J. Electrochem. Soc., 164(2016), No. 1, p. A5019.
      [3]
      B. Huang, Z.F. Pan, X.Y. Su, and L. An, Recycling of lithium-ion batteries: Recent advances and perspectives, J. Power Sources, 399(2018), p. 274. doi: 10.1016/j.jpowsour.2018.07.116
      [4]
      J.M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 414(2001), No. 6861, p. 359. doi: 10.1038/35104644
      [5]
      J.B. Goodenough and K.S. Park, The Li-ion rechargeable battery: A perspective, J. Am. Chem. Soc., 135(2013), No. 4, p. 1167. doi: 10.1021/ja3091438
      [6]
      B. Scrosati and J. Garche, Lithium batteries: Status, prospects and future, J. Power Sources, 195(2010), No. 9, p. 2419. doi: 10.1016/j.jpowsour.2009.11.048
      [7]
      J.W. Choi and D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities, Nat. Rev. Mater., 1(2016), No. 4, art. No. 16013. doi: 10.1038/natrevmats.2016.13
      [8]
      M.S. Whittingham, Lithium batteries and cathode materials, Chem. Rev., 104(2004), No. 10, p. 4271. doi: 10.1021/cr020731c
      [9]
      S.G. Ji, C.R. Cherry, M.J. Bechle, Y. Wu, and J.D. Marshall, Electric vehicles in China: Emissions and health impacts, Environ. Sci. Technol., 46(2012), No. 4, p. 2018. doi: 10.1021/es202347q
      [10]
      J. Archsmith, A. Kendall, and D. Rapson, From cradle to junkyard: Assessing the life cycle greenhouse gas benefits of electric vehicles, Res. Transp. Econ., 52(2015), p. 72. doi: 10.1016/j.retrec.2015.10.007
      [11]
      B. Dunn, H. Kamath, and J.M. Tarascon, Electrical energy storage for the grid: A battery of choices, Science, 334(2011), No. 6058, p. 928. doi: 10.1126/science.1212741
      [12]
      P. Denholm and M. Hand, Grid flexibility and storage required to achieve very high penetration of variable renewable electricity, Energy Policy, 39(2011), No. 3, p. 1817. doi: 10.1016/j.enpol.2011.01.019
      [13]
      A.K. Akella, R.P. Saini, and M.P. Sharma, Social, economical and environmental impacts of renewable energy systems, Renewable Energy, 34(2009), No. 2, p. 390. doi: 10.1016/j.renene.2008.05.002
      [14]
      M.A. Hannan, M.S.H. Lipu, A. Hussain, and A. Mohamed, A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations, Renewable Sustainable Energy Rev., 78(2017), p. 834. doi: 10.1016/j.rser.2017.05.001
      [15]
      H.S. Chen, T.N. Cong, W. Yang, C.Q. Tan, Y.L. Li, and Y.L. Ding, Progress in electrical energy storage system: A critical review, Prog. Nat. Sci., 19(2009), No. 3, p. 291. doi: 10.1016/j.pnsc.2008.07.014
      [16]
      A.S. Hollinger, D.R. McAnallen, M.T. Brockett, S.C. DeLaney, J. Ma, and C.D. Rahn, Cylindrical lithium-ion structural batteries for drones, Int. J. Energy Res., 44(2020), No. 1, p. 560. doi: 10.1002/er.4937
      [17]
      N.A. Khofiyah, W. Sutopo, and B.D.A. Nugroho, Technical feasibility battery lithium to support unmanned aerial vehicle (UAV): A technical review, [in] Proceedings of the International Conference on Industrial Engineering and Operations Management, Bangkok, 2019, p. 3591.
      [18]
      T. Kim, L.K. Ono, and Y.B. Qi, Elucidating the mechanism involved in the performance improvement of lithium-ion transition metal oxide battery by conducting polymer, Adv. Mater. Interfaces, 6(2019), No. 7, art. No. 1801785. doi: 10.1002/admi.201801785
      [19]
      Y.Q. Wu, M.L. Li, W. Wahyudi, et al., Performance and stability improvement of layered NCM lithium-ion batteries at high voltage by a microporous Al2O3 sol–gel coating, ACS Omega, 4(2019), No. 9, p. 13972. doi: 10.1021/acsomega.9b01706
      [20]
      N. Kunjuzwa, M.A. Kebede, K.I. Ozoemena, and M.K. Mathe, Stable nickel-substituted spinel cathode material (LiMn1.9Ni0.1O4) for lithium-ion batteries obtained by using a low temperature aqueous reduction technique, RSC Adv., 6(2016), No. 113, p. 111882. doi: 10.1039/C6RA23052K
      [21]
      J. Fleischmann, M. Hanicke, E. Horetsky, et al. , Battery 2030 : Resilient , Sustainable , and Circular, McKinsey & Company: Brussels, 2023, p.2.
      [22]
      F. Degen, Lithium-ion battery cell production in Europe: scenarios for reducing energy consumption and greenhouse gas emissions until 2030, J. Ind. Ecol., 27(2023), No. 3, p. 964. doi: 10.1111/jiec.13386
      [23]
      Y.C. Zhang, Z.L. Dong, S. Liu, Q.R. Yang, and Y.J. Jia, Prediction of the potential trade relationship of a lithium-ion battery’s main element raw material minerals: Combined with local characteristics of the trade network, Int. J. Energy Res., 2023(2023), art. No. 2280027.
      [24]
      C.X. Zu, Y. Ren, F.L. Guo, H.G. Yu, and H. Li, A reflection on lithium-ion batteries from a lithium-resource perspective, Adv. Energy Sustainability Res., 2(2021), No. 10, art. No. 2100062. doi: 10.1002/aesr.202100062
      [25]
      F. F. Akbar. Long-term Indonesia’s nickel supply chain strategy for lithium-ion battery as energy storage system, Int. J. Bus. Technol. Manage.,4 (2022) , No. 3, art. No. 2100062.
      [26]
      Y.G. Guo, Y.J. Liu, J. Guan, et al., Global trend for waste lithium-ion battery recycling from 1984 to 2021: A bibliometric analysis, Minerals, 12(2022), No. 12, art. No. 1514. doi: 10.3390/min12121514
      [27]
      M.X. Zhou, B. Li, J. Li, and Z.M. Xu, Pyrometallurgical technology in the recycling of a spent lithium ion battery: Evolution and the challenge, ACS ES&T Enging, 1(2021), No. 10, p. 1369.
      [28]
      T.Z. Yang, D. Luo, A.P. Yu, and Z.W. Chen, Enabling future closed-loop recycling of spent lithium-ion batteries: Direct cathode regeneration (adv. mater. 36/2023), Adv. Mater., 35(2023), No. 36, art. No. 2370259. doi: 10.1002/adma.202370259
      [29]
      X.W. Duan, W.K. Zhu, Z.K. Ruan, M. Xie, J. Chen, and X.H. Ren, Recycling of lithium batteries—A review, Energies, 15(2022), No. 5, art. No. 1611. doi: 10.3390/en15051611
      [30]
      A. Pražanová, V. Knap, and D.I. Stroe, Literature review, recycling of lithium-ion batteries from electric vehicles, part II: Environmental and economic perspective, Energies, 15(2022), No. 19, art. No. 7356. doi: 10.3390/en15197356
      [31]
      X.L. Zeng, J.H. Li, and N. Singh, Recycling of spent lithium-ion battery: A critical review, Crit. Rev. Environ. Sci. Technol., 44(2014), No. 10, p. 1129. doi: 10.1080/10643389.2013.763578
      [32]
      P.W. Zhang, T. Yokoyama, O. Itabashi, T.M. Suzuki, and K. Inoue, Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries, Hydrometallurgy, 47(1998), No. 2–3, p. 259.
      [33]
      A. Chagnes and B. Pospiech, A brief review on hydrometallurgical technologies for recycling spent lithium-ion batteries, J. Chem. Technol. Biotechnol., 88(2013), No. 7, p. 1191. doi: 10.1002/jctb.4053
      [34]
      J.C.Y. Jung, P.C. Sui, and J.J. Zhang, A review of recycling spent lithium-ion battery cathode materials using hydrometallurgical treatments, J. Energy Storage, 35(2021), art. No. 102217. doi: 10.1016/j.est.2020.102217
      [35]
      B. Swain, Recovery and recycling of lithium: A review, Sep. Purif. Technol., 172(2017), p. 388. doi: 10.1016/j.seppur.2016.08.031
      [36]
      Y.L. Yao, M.Y. Zhu, Z. Zhao, B.H. Tong, Y.Q. Fan, and Z.S. Hua, Hydrometallurgical processes for recycling spent lithium-ion batteries: A critical review, ACS Sustainable Chem. Eng., 6(2018), No. 11, p. 13611. doi: 10.1021/acssuschemeng.8b03545
      [37]
      P. Moazzam, Y. Boroumand, P. Rabiei, et al., Lithium bioleaching: an emerging approach for the recovery of Li from spent lithium ion batteries, Chemosphere, 277(2021), art. No. 130196. doi: 10.1016/j.chemosphere.2021.130196
      [38]
      J.J. Roy, B. Cao, and S. Madhavi, A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach, Chemosphere, 282(2021), art. No. 130944. doi: 10.1016/j.chemosphere.2021.130944
      [39]
      M. Alipanah, D. Reed, V. Thompson, Y. Fujita, and H.Y. Jin, Sustainable bioleaching of lithium-ion batteries for critical materials recovery, J. Cleaner Prod., 382(2023), art. No. 135274. doi: 10.1016/j.jclepro.2022.135274
      [40]
      J. Jegan Roy, M. Srinivasan, and B. Cao, Bioleaching as an eco-friendly approach for metal recovery from spent NMC-based lithium-ion batteries at a high pulp density, ACS Sustainable Chem. Eng., 9(2021), No. 8, p. 3060. doi: 10.1021/acssuschemeng.0c06573
      [41]
      N.B. Horeh, S.M. Mousavi, and S.A. Shojaosadati, Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus Niger, J. Power Sources, 320(2016), p. 257. doi: 10.1016/j.jpowsour.2016.04.104
      [42]
      S. Ilyas, M.A. Anwar, S.B. Niazi, and M. Afzal Ghauri, Bioleaching of metals from electronic scrap by moderately thermophilic acidophilic bacteria, Hydrometallurgy, 88(2007), No. 1–4, p. 180.
      [43]
      B.K. Biswal and R. Balasubramanian, Recovery of valuable metals from spent lithium-ion batteries using microbial agents for bioleaching: A review, Front. Microbiol., 14(2023), art. No. 1197081. doi: 10.3389/fmicb.2023.1197081
      [44]
      M.A. Rajaeifar, M. Raugei, B. Steubing, A. Hartwell, P.A. Anderson, and O. Heidrich, Life cycle assessment of lithium-ion battery recycling using pyrometallurgical technologies, J. Ind. Ecol., 25(2021), No. 6, p. 1560. doi: 10.1111/jiec.13157
      [45]
      B. Makuza, Q.H. Tian, X.Y. Guo, K. Chattopadhyay, and D.W. Yu, Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review, J. Power Sources, 491(2021), art. No. 229622. doi: 10.1016/j.jpowsour.2021.229622
      [46]
      M. Assefi, S. Maroufi, Y. Yamauchi, and V. Sahajwalla, Pyrometallurgical recycling of Li-ion, Ni–Cd and Ni–MH batteries: A minireview, Curr. Opin. Green Sustainable Chem., 24(2020), p. 26. doi: 10.1016/j.cogsc.2020.01.005
      [47]
      S. Windisch-Kern, A. Holzer, C. Ponak, and H. Raupenstrauch, Pyrometallurgical lithium-ion-battery recycling: Approach to limiting lithium slagging with the InduRed reactor concept, Processes, 9(2021), No. 1, p. 84. doi: 10.3390/pr9010084
      [48]
      Y.S. Zhang, K. Schneider, H. Qiu, and H.L. Zhu, A perspective of low carbon lithium-ion battery recycling technology, Carbon Capture Sci. Technol., 5(2022), art. No. 100074. doi: 10.1016/j.ccst.2022.100074
      [49]
      M.Y. Chen, X.T. Ma, B. Chen, R. Arsenault, P. Karlson, N. Simon, and Y. Wang, Recycling end-of-life electric vehicle lithium-ion batteries, Joule, 3(2019), No. 11, p. 2622. doi: 10.1016/j.joule.2019.09.014
      [50]
      R.E. Ciez and J.F. Whitacre, Examining different recycling processes for lithium-ion batteries, Nat. Sustainability, 2(2019), p. 148. doi: 10.1038/s41893-019-0222-5
      [51]
      T. Georgi-Maschler, B. Friedrich, R. Weyhe, H. Heegn, and M. Rutz, Development of a recycling process for Li-ion batteries, J. Power Sources, 207(2012), p. 173. doi: 10.1016/j.jpowsour.2012.01.152
      [52]
      M. Mohr, J.F. Peters, M. Baumann, and M. Weil, Toward a cell-chemistry specific life cycle assessment of lithium-ion battery recycling processes, J. Ind. Ecol., 24(2020), No. 6, p. 1310. doi: 10.1111/jiec.13021
      [53]
      J. Li, G.X. Wang, and Z.M. Xu, Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO2/graphite lithium batteries, J. Hazard. Mater., 302(2016), p. 97. doi: 10.1016/j.jhazmat.2015.09.050
      [54]
      R. Beheshti, R.E. Aune, Automotive lithium-ion battery recycling: a theoretical evaluation, [in] R.E. Kirchain, B. Blanpain, C. Meskers, et al., eds., REWAS 2016 : Towards Materials Resource Sustainability, Springer Cham, Switzerland, 2016, p. 65.
      [55]
      R. Beheshti, A. Tabeshian, and R.E. Aune, Lithium-ion battery recycling through secondary aluminum production, [in] Energy Technology 2017 : Carbon Dioxide Management and Other Technologies, Springer Cham, Switzerland, 2017, p. 267.
      [56]
      O.S. Kwon and I. Sohn, Fundamental thermokinetic study of a sustainable lithium-ion battery pyrometallurgical recycling process, Resour. Conserv. Recycl., 158(2020), art. No. 104809. doi: 10.1016/j.resconrec.2020.104809
      [57]
      C. Bodsworth, The Extraction and Refining of Metals. Routledge, New York, 1994.
      [58]
      C.B. Alcock, Principles of Pyrometallurgy, Academic Press, London–New York, 1976.
      [59]
      P.C. Hayes, Process Principles in Minerals and Materials Production, Hayes Publishing Co., Brisbane, 2011.
      [60]
      H. Bae and Y. Kim, Technologies of lithium recycling from waste lithium ion batteries: A review, Mater. Adv., 2(2021), No. 10, p. 3234. doi: 10.1039/D1MA00216C
      [61]
      S. Kim, J. Bang, J. Yoo, et al., A comprehensive review on the pretreatment process in lithium-ion battery recycling, J. Cleaner Prod., 294(2021), art. No. 126329. doi: 10.1016/j.jclepro.2021.126329
      [62]
      S. Ojanen, M. Lundström, A. Santasalo-Aarnio, and R. Serna-Guerrero, Challenging the concept of electrochemical discharge using salt solutions for lithium-ion batteries recycling, Waste Manage., 76(2018), p. 242. doi: 10.1016/j.wasman.2018.03.045
      [63]
      M.M. Torabian, M. Jafari, and A. Bazargan, Discharge of lithium-ion batteries in salt solutions for safer storage, transport, and resource recovery, Waste Manage. Res., 40(2022), No. 4, p. 402. doi: 10.1177/0734242X211022658
      [64]
      L.P. Yao, Q. Zeng, T. Qi, and J. Li, An environmentally friendly discharge technology to pretreat spent lithium-ion batteries, J. Cleaner Prod., 245(2020), art. No. 118820. doi: 10.1016/j.jclepro.2019.118820
      [65]
      J.F. Xiao, J. Guo, L. Zhan, and Z.M. Xu, A cleaner approach to the discharge process of spent lithium ion batteries in different solutions, J. Cleaner Prod., 255(2020), art. No. 120064. doi: 10.1016/j.jclepro.2020.120064
      [66]
      L.R. Li, P.N. Zheng, T.R. Yang, R. Sturges, M.W. Ellis, and Z. Li, Disassembly automation for recycling end-of-life lithium-ion pouch cells, JOM, 71(2019), No. 12, p. 4457. doi: 10.1007/s11837-019-03778-0
      [67]
      J. Schmitt, H. Haupt, M. Kurrat, and A. Raatz, Disassembly automation for lithium-ion battery systems using a flexible gripper, [in] 2011 15th International Conference on Advanced Robotics (ICAR ). Tallinn, 2011, p. 291.
      [68]
      T. Zhang, Y.Q. He, L.H. Ge, R.S. Fu, X. Zhang, and Y.J. Huang, Characteristics of wet and dry crushing methods in the recycling process of spent lithium-ion batteries, J. Power Sources, 240(2013), p. 766. doi: 10.1016/j.jpowsour.2013.05.009
      [69]
      H. Pinegar and Y.R. Smith, Recycling of end-of-life lithium ion batteries, part I: Commercial processes, J. Sustainable Metall., 5(2019), No. 3, p. 402. doi: 10.1007/s40831-019-00235-9
      [70]
      X. Wang, G. Gaustad, and C.W. Babbitt, Targeting high value metals in lithium-ion battery recycling via shredding and size-based separation, Waste Manage., 51(2016), p. 204. doi: 10.1016/j.wasman.2015.10.026
      [71]
      S.O. Adewuyi, H.A.M. Ahmed, and H.M.A. Ahmed, Methods of ore pretreatment for comminution energy reduction, Minerals, 10(2020), No. 5, art. No. 423. doi: 10.3390/min10050423
      [72]
      S. Fröhlich and D. Sewing, The BATENUS process for recycling mixed battery waste, J. Power Sources, 57(1995), No. 1–2, p. 27.
      [73]
      G.D. Tian, G. Yuan, A. Aleksandrov, et al., Recycling of spent Lithium-ion Batteries: A comprehensive review for identification of main challenges and future research trends, Sustainable Energy Technol. Assess., 53(2022), art. No. 102447. doi: 10.1016/j.seta.2022.102447
      [74]
      J. Piątek, S. Afyon, T.M. Budnyak, S. Budnyk, M.H. Sipponen, and A. Slabon, Sustainable Li-ion batteries: Chemistry and recycling, Adv. Energy Mater., 11(2021), No. 43, art. No. 2003456. doi: 10.1002/aenm.202003456
      [75]
      J.D. Yu, Y.Q. He, Z.Z. Ge, H. Li, W.N. Xie, and S. Wang, A promising physical method for recovery of LiCoO2 and graphite from spent lithium-ion batteries: Grinding flotation, Sep. Purif. Technol., 190(2018), p. 45. doi: 10.1016/j.seppur.2017.08.049
      [76]
      S.D. Widijatmoko, G. Fu, Z. Wang, and P. Hall, Recovering lithium cobalt oxide, aluminium, and copper from spent lithium-ion battery via attrition scrubbing, J. Cleaner Prod., 260(2020), art. No. 120869. doi: 10.1016/j.jclepro.2020.120869
      [77]
      A.V.M. Silveira, M.P. Santana, E.H. Tanabe, and D.A. Bertuol, Recovery of valuable materials from spent lithium ion batteries using electrostatic separation, Int. J. Miner. Process., 169(2017), p. 91. doi: 10.1016/j.minpro.2017.11.003
      [78]
      S.M. Shin, N.H. Kim, J.S. Sohn, D.H. Yang, and Y.H. Kim, Development of a metal recovery process from Li-ion battery wastes, Hydrometallurgy, 79(2005), No. 3–4, p. 172.
      [79]
      E. Gratz, Q.N. Sa, D. Apelian, and Y. Wang, A closed loop process for recycling spent lithium ion batteries, J. Power Sources, 262(2014), p. 255. doi: 10.1016/j.jpowsour.2014.03.126
      [80]
      G.W. Zhang, Y.Q. He, H.F. Wang, Y. Feng, W.N. Xie, and X.N. Zhu, Removal of organics by pyrolysis for enhancing liberation and flotation behavior of electrode materials derived from spent lithium-ion batteries, ACS Sustainable Chem. Eng., 8(2020), No. 5, p. 2205. doi: 10.1021/acssuschemeng.9b05896
      [81]
      H.J. Bi, H.B. Zhu, L. Zu, Y.X. Bai, S. Gao, and Y. Gao, A new model of trajectory in eddy current separation for recovering spent lithium iron phosphate batteries, Waste Manage., 100(2019), p. 1. doi: 10.1016/j.wasman.2019.08.041
      [82]
      L. Yang, G.X. Xi, and Y.B. Xi, Recovery of Co, Mn, Ni, and Li from spent lithium ion batteries for the preparation of LiNi xCo yMn zO2 cathode materials, Ceram. Int., 41(2015), No. 9, p. 11498. doi: 10.1016/j.ceramint.2015.05.115
      [83]
      L.P. He, S.Y. Sun, X.F. Song, and J.G. Yu, Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning, Waste Manage., 46(2015), p. 523. doi: 10.1016/j.wasman.2015.08.035
      [84]
      M.M. Wang, Q.Y. Tan, L.L. Liu, and J.H. Li, Efficient separation of aluminum foil and cathode materials from spent lithium-ion batteries using a low-temperature molten salt, ACS Sustainable Chem. Eng., 7(2019), No. 9, p. 8287. doi: 10.1021/acssuschemeng.8b06694
      [85]
      E.S. Fan, L. Li, J. Lin, et al., Low-temperature molten-salt-assisted recovery of valuable metals from spent lithium-ion batteries, ACS Sustainable Chem. Eng., 7(2019), No. 19, p. 16144. doi: 10.1021/acssuschemeng.9b03054
      [86]
      X.Q. Chen, Y.Y. Feng, S. Zhang, W.Z. Kou, H.M. Ji, and G. Yang, Comparison study on regeneration of spent ternary materials by molten salt solid–liquid method and traditional solid-solid method, J. Alloys Compd., 900(2022), art. No. 163308. doi: 10.1016/j.jallcom.2021.163308
      [87]
      M. Petrániková, A. Miškufová, T. Havlík, O. Forsén, and A. Pehkonen, Cobalt recovery from spent portable lithium accumulators after thermal treatment, Acta Metall. Slovaca, 17(2011), No. 2, p. 106.
      [88]
      C. Hanisch, T. Loellhoeffel, J. Diekmann, K.J. Markley, W. Haselrieder, and A. Kwade, Recycling of lithium-ion batteries: A novel method to separate coating and foil of electrodes, J. Cleaner Prod., 108(2015), p. 301. doi: 10.1016/j.jclepro.2015.08.026
      [89]
      M.M. Hirschler, Effect of oxygen on the thermal decomposition of poly (vinylidene fluoride), Eur. Polym. J., 18(1982), No. 5, p. 463. doi: 10.1016/0014-3057(82)90184-7
      [90]
      X.H. Zheng, Z.W. Zhu, X. Lin, et al., A mini-review on metal recycling from spent lithium ion batteries, Engineering, 4(2018), No. 3, p. 361. doi: 10.1016/j.eng.2018.05.018
      [91]
      J.K. Mao, J. Li, and Z.M. Xu, Coupling reactions and collapsing model in the roasting process of recycling metals from LiCoO2 batteries, J. Cleaner Prod., 205(2018), p. 923. doi: 10.1016/j.jclepro.2018.09.098
      [92]
      B A. Nuraeni, K. Avarmaa, L H. Prentice, W. Rankin, and M. Rhamdhani, Recovery of cobalt and lithium by carbothermic reduction of LiCoO2 cathode material: A kinetic study, Metall. Mater. Trans. B, 54(2023), No. 2, p. 602. doi: 10.1007/s11663-022-02712-1
      [93]
      D.X. Wei, W. Wang, L.J. Jiang, et al., Preferentially selective extraction of lithium from spent LiCoO2 cathodes by medium-temperature carbon reduction roasting, Int. J. Miner. Metall. Mater., 31(2024), No. 2, p. 315. doi: 10.1007/s12613-023-2698-2
      [94]
      P.C. Liu, L. Xiao, Y.W. Tang, Y.F. Chen, L.G. Ye, and Y.R. Zhu, Study on the reduction roasting of spent LiNi xCo yMn zO2 lithium-ion battery cathode materials, J. Therm. Anal. Calorim., 136(2019), No. 3, p. 1323. doi: 10.1007/s10973-018-7732-7
      [95]
      P.C. Liu, L. Xiao, Y.F. Chen, Y.W. Tang, J. Wu, and H. Chen, Recovering valuable metals from LiNi xCo yMn1– x yO2 cathode materials of spent lithium ion batteries via a combination of reduction roasting and stepwise leaching, J. Alloys Compd., 783(2019), p. 743. doi: 10.1016/j.jallcom.2018.12.226
      [96]
      A. Seidell, W.F. Linke, Solubilities of Inorganic and Organic Compounds, D. Van No. trand Co., New York, 1952.
      [97]
      J. Yang, Z.L. Zhang, G. Zhang, et al., Process study of chloride roasting and water leaching for the extraction of valuable metals from spent lithium-ion batteries, Hydrometallurgy, 203(2021), art. No. 105638. doi: 10.1016/j.hydromet.2021.105638
      [98]
      J.J. Shi, C. Peng, M. Chen, et al., Sulfation roasting mechanism for spent lithium-ion battery metal oxides under SO2–O2–Ar atmosphere, JOM, 71(2019), No. 12, p. 4473. doi: 10.1007/s11837-019-03800-5
      [99]
      C. Peng, F.P. Liu, Z.L. Wang, B.P. Wilson, and M. Lundström, Selective extraction of lithium (Li) and preparation of battery grade lithium carbonate (Li2CO3) from spent Li-ion batteries in nitrate system, J. Power Sources, 415(2019), p. 179. doi: 10.1016/j.jpowsour.2019.01.072
      [100]
      J.A.N. Friend and A.T.W. Colley, CCCCXXXIV.—The solubility of lithium chloride in water, J. Chem. Soc., (1931), p. 3148.
      [101]
      J. Lin, C.W. Liu, H.B. Cao, et al., Environmentally benign process for selective recovery of valuable metals from spent lithium-ion batteries by using conventional sulfation roasting, Green Chem., 21(2019), No. 21, p. 5904. doi: 10.1039/C9GC01350D
      [102]
      V.T. Orlova, IUPAC-NIST solubility data series. 89. alkali metal nitrates. part 1. lithium nitrate, J. Phys. Chem. Ref. Data, 39(2010), No. 3, art No. 033104.
      [103]
      C. Stallmeister, M. Scheller, and B. Friedrich, Slag design for pyrometallurgical metal recycling and targeted lithium slagging from lithium-ion batteries, [in] 8th Slag Valorization Symposium, Mechelen, 2023.
      [104]
      X. Lu, T. Miki, and T. Nagasaka, Activity coefficients of NiO and CoO in CaO–Al2O3–SiO2 slag and their application to the recycling of Ni–Co–Fe-based end-of-life superalloys via remelting, Int. J. Miner. Metall. Mater., 24(2017), No. 1, p. 25. doi: 10.1007/s12613-017-1375-8
      [105]
      G.X. Ren, S.W. Xiao, M.Q. Xie, et al., Recovery of valuable metals from spent lithium ion batteries by smelting reduction process based on FeO–SiO2–Al2O3 slag system, Trans. Nonferrous Met. Soc. China, 27(2017), No. 2, p. 450. doi: 10.1016/S1003-6326(17)60051-7
      [106]
      S.W. Xiao, G.X. Ren, M.Q. Xie, et al., Recovery of valuable metals from spent lithium-ion batteries by smelting reduction process based on MnO–SiO2–Al2O3 slag system, J. Sustainable Metall., 3(2017), No. 4, p. 703. doi: 10.1007/s40831-017-0131-7
      [107]
      J.S. Choi, T.J. Park, and D.J. Min, Effect of ionic structure on dissolution behavior of nickel in aluminosilicate slags, Metall. Mater. Trans. B, 52(2021), No. 3, p. 1333. doi: 10.1007/s11663-021-02096-8
      [108]
      T.T.H. Nguyen and M.S. Lee, Separation of base metals from reduction smelt-alloy of spent lithium-ion batteries by ferric sulfate leaching, cementation, solvent extraction and oxidative precipitation, Hydrometallurgy, 215(2023), art. No. 105969. doi: 10.1016/j.hydromet.2022.105969
      [109]
      T.T. Tran, H.S. Moon, and M.S. Lee, Recovery of valuable metals from the hydrochloric leaching solution of reduction smelted metallic alloys from spent lithium-ion batteries, J. Chem. Technol. Biotechnol., 97(2022), No. 5, p. 1247. doi: 10.1002/jctb.7019
      [110]
      T.T. Tran, H.S. Moon, and M.S. Lee, Co, Ni, Cu, Fe, and Mn integrated recovery process via sulfuric acid leaching from spent lithium-ion batteries smelted reduction metallic alloys, Miner. Process. Extr. Metall. Rev., 43(2022), No. 8, p. 954. doi: 10.1080/08827508.2021.1979541
      [111]
      H. Dang, B.F. Wang, Z.D. Chang, et al., Recycled lithium from simulated pyrometallurgical slag by chlorination roasting, ACS Sustainable Chem. Eng., 6(2018), No. 10, p. 13160. doi: 10.1021/acssuschemeng.8b02713
      [112]
      H. Dang, N. Li, Z.D. Chang, et al., Lithium leaching via calcium chloride roasting from simulated pyrometallurgical slag of spent lithium ion battery, Sep. Purif. Technol., 233(2020), art. No. 116025. doi: 10.1016/j.seppur.2019.116025
      [113]
      J. Heo, P.T. Jones, B. Blanpain, and M.X. Guo, Chlorination roasting of Li-bearing minerals and slags: Combined evaluation of lithium recovery ratio and lithium chloride product purity, J. Sustainable Metall., 9(2023), No. 3, p. 1353. doi: 10.1007/s40831-023-00729-7
      [114]
      I. Sohn and D.J. Min, A review of the relationship between viscosity and the structure of calcium-silicate-based slags in ironmaking, Steel Res. Int., 83(2012), No. 7, p. 611. doi: 10.1002/srin.201200040
      [115]
      R. Jiang, R. Fruehan, Slag foaming in bath smelting, Metall. Trans. B, 22 (1991), p. 481. doi: 10.1007/BF02654286
      [116]
      M.A. Tayeb, A.N. Assis, S. Sridhar, and R.J. Fruehan, MgO solubility in steelmaking slags, Metall. Mater. Trans. B, 46(2015), No. 3, p. 1112. doi: 10.1007/s11663-015-0352-8
      [117]
      G.R. Qu, J.Q. Yang, H. Wang, Y.X. Ran, B. Li, and Y.G. Wei, Applicability of the reduction smelting recycling process to different types of spent lithium-ion batteries cathode materials, Waste Manage., 166(2023), p. 222. doi: 10.1016/j.wasman.2023.05.009
      [118]
      O. Velazquez, J. Valio, A. Santasalo-Aarnio, M. Reuter, and R. Serna, A critical review of lithium-ion battery recycling processes from a circular economy perspective, Batteries, 5(2019), No. 4, p. 68. doi: 10.3390/batteries5040068
      [119]
      J. Arambarri, J. Hayden, M. Elkurdy, et al., Lithium ion car batteries: Present analysis and future predictions, Environ. Eng. Res., 24(2019), No. 4, p. 699. doi: 10.4491/eer.2018.383
      [120]
      S. Windisch-Kern, E. Gerold, T. Nigl, et al., Recycling chains for lithium-ion batteries: A critical examination of current challenges, opportunities and process dependencies, Waste Manage., 138(2022), p. 125. doi: 10.1016/j.wasman.2021.11.038
      [121]
      F. Saloojee and J. Lloyd, Lithium Battery Recycling Process, Department of Environmental Affairs Development Bank of South Africa (No. DB-074 (RW1/1016)) , 2015.
      [122]
      Y. Haga, K. Saito, and K. Hatano, Waste lithium-ion battery recycling in JX Nippon mining & metals corporation, [in] Materials Processing Fundamentals 2018. Springer Cham, Switzerland, 2018, p. 143.
      [123]
      M.C.C. Lima, L.P. Pontes, A.S.M. Vasconcelos, W. de Araujo Silva Jr, and K.L. Wu, Economic aspects for recycling of used lithium-ion batteries from electric vehicles, Energies, 15(2022), No. 6, art. No. 2203. doi: 10.3390/en15062203
      [124]
      D. Thompson, C. Hyde, J.M. Hartley, A.P. Abbott, P.A. Anderson, and G.D.J. Harper, To shred or not to shred: A comparative techno-economic assessment of lithium ion battery hydrometallurgical recycling retaining value and improving circularity in LIB supply chains, Resour. Conserv. Recycl., 175(2021), art. No. 105741. doi: 10.1016/j.resconrec.2021.105741
      [125]
      S. Blömeke, C. Scheller, F. Cerdas, et al., Material and energy flow analysis for environmental and economic impact assessment of industrial recycling routes for lithium-ion traction batteries, J. Cleaner Prod., 377(2022), art. No. 134344. doi: 10.1016/j.jclepro.2022.134344
      [126]
      R. Bird, Z.J. Baum, X. Yu, and J. Ma, The regulatory environment for lithium-ion battery recycling, ACS Energy Lett., 7(2022), No. 2, p. 736. doi: 10.1021/acsenergylett.1c02724
      [127]
      R. Barkhausen, K. Fick, A. Durand, and C. Rohde, Analysing policy change towards the circular economy at the example of EU battery legislation, Renewable Sustainable Energy Rev., 186(2023), art. No. 113665. doi: 10.1016/j.rser.2023.113665
      [128]
      H.E. Melin, M. A. Rajaeifar, A.Y. Ku, A. Kendall, G. Harper, and O. Heidrich, Global implications of the EU battery regulation, Science, 373(2021), No. 6553, p. 384. doi: 10.1126/science.abh1416
      [129]
      L. Reinhart, D. Vrucak, R. Woeste, et al., Pyrometallurgical recycling of different lithium-ion battery cell systems: Economic and technical analysis, J. Cleaner Prod., 416(2023), art. No. 137834. doi: 10.1016/j.jclepro.2023.137834
      [130]
      D.H. Kim, Recovery of Lithium Carbonate From LFP Cathode Active Material Process Byproducts [Dissertation], Pukyong National University, Busan, 2023.
      [131]
      F.P. Liu, C. Peng, Q.X. Ma, et al., Selective lithium recovery and integrated preparation of high-purity lithium hydroxide products from spent lithium-ion batteries, Sep. Purif. Technol., 259(2021), art. No. 118181. doi: 10.1016/j.seppur.2020.118181
      [132]
      H. Pinegar, R. Marthi, P.L. Yang, and Y.R. Smith, Reductive thermal treatment of LiCoO2 from end-of-life lithium-ion batteries with hydrogen, ACS Sustainable Chem. Eng., 9(2021), No. 22, p. 7447. doi: 10.1021/acssuschemeng.0c08695
      [133]
      Z. Huang, F. Liu, B. Makuza, D.W. Yu, X.Y. Guo, and Q.H. Tian, Metal reclamation from spent lithium-ion battery cathode materials: directional conversion of metals based on hydrogen reduction, ACS Sustainable Chem. Eng., 10(2022), No. 2, p. 756. doi: 10.1021/acssuschemeng.1c05721
      [134]
      G.S. Bhandari and N. Dhawan, Gaseous reduction of NMC-type cathode materials using hydrogen for metal recovery, Process. Saf. Environ. Prot., 172(2023), p. 523. doi: 10.1016/j.psep.2023.02.053
      [135]
      J.F. Xiao, B. Niu, and Z.M. Xu, Highly efficient selective recovery of lithium from spent lithium-ion batteries by thermal reduction with cheap ammonia reagent, J. Hazard. Mater., 418(2021), art. No. 126319. doi: 10.1016/j.jhazmat.2021.126319
      [136]
      C. Stinn and A. Allanore, Selective sulfidation of metal compounds, Nature, 602(2022), No. 7895, p. 78. doi: 10.1038/s41586-021-04321-5
      [137]
      C. Stinn and A. Allanore, Selective sulfidation and electrowinning of nickel and cobalt for lithium ion battery recycling, [in] Ni–Co 2021 : The 5th International Symposium on Nickel and Cobalt, Springer Cham, Switzerland, 2021.

    Catalog


    • /

      返回文章
      返回