留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 7
Jul.  2024

图(8)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  248
  • HTML全文浏览量:  88
  • PDF下载量:  18
  • 被引次数: 0
Shuo Liu, Peng Zhang, Bin Wang, Kaizhong Wang, Zikuan Xu, Fangzhong Hu, Xin Bai, Qiqiang Duan,  and Zhefeng Zhang, Instrumented oscillographic study on impact toughness of an axle steel DZ2 with different tempering temperatures, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp. 1590-1598. https://doi.org/10.1007/s12613-024-2908-6
Cite this article as:
Shuo Liu, Peng Zhang, Bin Wang, Kaizhong Wang, Zikuan Xu, Fangzhong Hu, Xin Bai, Qiqiang Duan,  and Zhefeng Zhang, Instrumented oscillographic study on impact toughness of an axle steel DZ2 with different tempering temperatures, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp. 1590-1598. https://doi.org/10.1007/s12613-024-2908-6
引用本文 PDF XML SpringerLink
研究论文

DZ2车轴钢不同回火温度下冲击韧性的示波冲击研究


  • 通讯作者:

    张鹏    E-mail: pengzhang@imr.ac.cn

    张哲峰    E-mail: zhfzhang@imr.ac.cn

文章亮点

  • (1) 系统地研究了随着回火温度的改变,DZ2车轴钢强度和韧性的变化趋势
  • (2) 用示波冲击的测试方法对DZ2材料冲击过程中能量消耗特点和趋势进行分析。
  • (3) 通过微观组织碳化物的特点分析了冲击功中裂纹扩展功的变化原因。
  • DZ2车轴钢是中国具有自主知识产权的高铁车轴材料,为满足严苛条件下的服役安全性,需要对其冲击韧性进行全面了解。与传统的夏比摆锤冲击试验方法相比,示波冲击试验有助于分析材料在冲击断裂过程中的具体力学行为。在本文中,对DZ2车轴钢在不同回火温度下的强度和韧性之间的倒置关系进行了测试和分析,并通过示波冲击的测试方法对DZ2车轴钢冲击过程中能量消耗特点和趋势进行分析。回火过程显著影响碳化物的析出行为,导致碳化物的长径比不同。通过对应力分布、示波冲击统计、断口形貌和碳化物形貌的综合分析,研究了冲击裂纹扩展过程的特征。冲击韧性随着回火温度的升高而提高,主要是由于冲击裂纹扩展所需能量的增加。低回火温度试样冲击韧性差的原因是,在扩展过程中,小塑性区的碳化物形态导致应力集中点数量增加,导致断口上脆性和韧性断裂混合分布。
  • Research Article

    Instrumented oscillographic study on impact toughness of an axle steel DZ2 with different tempering temperatures

    + Author Affiliations
    • Compared with the conventional Charpy impact test method, the oscillographic impact test can help in the behavioral analysis of materials during the fracture process. In this study, the trade-off relationship between the strength and toughness of a DZ2 axle steel at various tempering temperatures and the cause of the improvement in impact toughness was evaluated. The tempering process dramatically influenced carbide precipitation behavior, which resulted in different aspect ratios of carbides. Impact toughness improved along with the rise in tempering temperature mainly due to the increase in energy required in impact crack propagation. The characteristics of the impact crack propagation process were studied through a comprehensive analysis of stress distribution, oscilloscopic impact statistics, fracture morphology, and carbide morphology. The poor impact toughness of low-tempering-temperature specimens was attributed to the increased number of stress concentration points caused by carbide morphology in the small plastic zone during the propagation process, which resulted in a mixed distribution of brittle and ductile fractures on the fracture surface.
    • loading
    • [1]
      Y. Luo, S.C. Wu, X. Zhao, et al., Three-dimensional correlation of damage criticality with the defect size and lifetime of externally impacted 25CrMo4 steel, Mater. Des., 195(2020), art. No. 109001. doi: 10.1016/j.matdes.2020.109001
      [2]
      D.F. Zeng, L.T. Lu, Y.H. Gong, N. Zhang, and Y.B. Gong, Optimization of strength and toughness of railway wheel steel by alloy design, Mater. Des., 92(2016), p. 998. doi: 10.1016/j.matdes.2015.12.096
      [3]
      Z.W. Xu, S.C. Wu, and X.S. Wang, Fatigue evaluation for high-speed railway axles with surface scratch, Int. J. Fatigue, 123(2019), p. 79. doi: 10.1016/j.ijfatigue.2019.02.016
      [4]
      A. Sorochak, P. Maruschak, and O. Prentkovskis, Cyclic fracture toughness of railway axle and mechanisms of its fatigue fracture, Transp. Telecommun. J., 16(2015), No. 2, p. 158.
      [5]
      H.F. Li, Q.Q. Duan, P. Zhang, X.H. Zhou, B. Wang, and Z.F. Zhang, The quantitative relationship between fracture toughness and impact toughness in high-strength steels, Eng. Fract. Mech., 211(2019), p. 362. doi: 10.1016/j.engfracmech.2019.03.003
      [6]
      J. Wang, W. Li, X.D. Zhu, and L.Q. Zhang, Effect of martensite morphology and volume fraction on the low-temperature impact toughness of dual-phase steels, Mater. Sci. Eng. A, 832(2022), art. No. 142424. doi: 10.1016/j.msea.2021.142424
      [7]
      Z. Li, Y. Zhang, Z.B. Zhang, et al., A nanodispersion-in-nanograins strategy for ultra-strong, ductile and stable metal nanocomposites, Nat. Commun., 13(2022), art. No. 5581. doi: 10.1038/s41467-022-33261-5
      [8]
      B.P. Rocky, C.R. Weinberger, S.R. Daniewicz, and G.B. Thompson, Carbide nanoparticle dispersion techniques for metal powder metallurgy, Metals, 11(2021), No. 6, art. No. 871. doi: 10.3390/met11060871
      [9]
      A. Vilinska, S. Ponnurangam, I. Chernyshova, et al., Stabilization of Silicon Carbide (SiC) micro- and nanoparticle dispersions in the presence of concentrated electrolyte, J. Colloid Interface Sci., 423(2014), p. 48. doi: 10.1016/j.jcis.2014.02.007
      [10]
      A.G. Ning, W.W. Mao, X.C. Chen, H.J. Guo, and J. Guo, Precipitation behavior of carbides in H13 hot work die steel and its strengthening during tempering, Metals, 7(2017), No. 3, art. No. 70. doi: 10.3390/met7030070
      [11]
      S. Takebayashi, K. Ushioda, N. Yoshinaga, and S. Ogata, Effect of carbide size distribution on the impact toughness of tempered martensitic steels with two different prior austenite grain sizes evaluated by instrumented charpy test, Mater. Trans., 54(2013), No. 7, p. 1110. doi: 10.2320/matertrans.M2013079
      [12]
      Y.R. Im, Y.J. Oh, B.J. Lee, J.H. Hong, and H.C. Lee, Effects of carbide precipitation on the strength and Charpy impact properties of low carbon Mn–Ni–Mo bainitic steels, J. Nucl. Mater., 297(2001), No. 2, p. 138. doi: 10.1016/S0022-3115(01)00610-9
      [13]
      X. Yao, J. Huang, Y.X. Qiao, M.Y. Sun, B. Wang, and B. Xu, Precipitation behavior of carbides and its effect on the microstructure and mechanical properties of 15CrNi3MoV steel, Metals, 12(2022), No. 10, art. No. 1758. doi: 10.3390/met12101758
      [14]
      D. Kim, R. Jiang, and P.A.S. Reed, Microstructural and oxidation effects on fatigue crack initiation mechanisms in a turbine disc alloy, J. Mater. Sci., 58(2023), No. 4, p. 1869. doi: 10.1007/s10853-022-08120-9
      [15]
      M.A. Mohtadi-Bonab, Effects of different parameters on initiation and propagation of stress corrosion cracks in pipeline steels: A review, Metals, 9(2019), No. 5, art. No. 590. doi: 10.3390/met9050590
      [16]
      M.W. Mahoney and N.E. Paton, The effect of carbide precipitation on fatigue crack propagation in type 316 stainless steel, Nucl. Technol., 23(1974), No. 1, p. 53. doi: 10.13182/NT74-A31433
      [17]
      N.A. Giang, M. Kuna, and G. Hütter, Influence of carbide particles on crack initiation and propagation with competing ductile-brittle transition in ferritic steel, Theor. Appl. Fract. Mech., 92(2017), p. 89. doi: 10.1016/j.tafmec.2017.05.015
      [18]
      W. Wciślik and R. Pała, Some microstructural aspects of ductile fracture of metals, Materials, 14(2021), No. 15, art. No. 4321. doi: 10.3390/ma14154321
      [19]
      S.H. Kim, H. Kim, and N.J. Kim, Brittle intermetallic compound makes ultrastrong low-density steel with large ductility, Nature, 518(2015), No. 7537, p. 77. doi: 10.1038/nature14144
      [20]
      S.Y. Han, S.Y. Shin, C.H. Seo, et al., Effects of Mo, Cr, and V additions on tensile and charpy impact properties of API X80 pipeline steels, Metall. Mater. Trans. A, 40(2009), No. 8, p. 1851. doi: 10.1007/s11661-009-9884-3
      [21]
      B. Wang, P. Zhang, Q.Q. Duan, et al., Optimizing the fatigue strength of 18Ni maraging steel through ageing treatment, Mater. Sci. Eng. A, 707(2017), p. 674. doi: 10.1016/j.msea.2017.09.107
      [22]
      A. Zavdoveev, V. Poznyakov, T. Baudin, et al., Effect of heat treatment on the mechanical properties and microstructure of HSLA steels processed by various technologies, Mater. Today Commun., 28(2021), art. No. 102598. doi: 10.1016/j.mtcomm.2021.102598
      [23]
      Y. Li, Y. Lian, J.K. Li, T.T. He, and Y. Zou, Effect of supersonic fine particle bombardment on the surface integrity and wear performance of DZ2 axle steel, Surf. Coat. Technol., 435(2022), art. No. 128250. doi: 10.1016/j.surfcoat.2022.128250
      [24]
      Y. Zou, J.K. Li, X. Liu, et al., Effect of multiple ultrasonic nanocrystal surface modification on surface integrity and wear property of DZ2 axle steel, Surf. Coat. Technol., 412(2021), art. No. 127012. doi: 10.1016/j.surfcoat.2021.127012
      [25]
      J.W. Zhang, Y.G. Cao, C.G. Zhang, Z.D. Li, and W.X. Wang, Effect of Nb addition on microstructure and mechanical properties of 25CrNiMoV (DZ2) steel for high-speed railway axles, J. Iron Steel Res. Int., 29(2022), No. 5, p. 802. doi: 10.1007/s42243-021-00613-2
      [26]
      F. Tioguem, F. N’Guyen, M. Mazière, F. Tankoua, A. Galtier, and A.F. Gourgues Lorenzon, advanced quantification of the carbide spacing and correlation with dimple size in a high-strength medium carbon martensitic steel, Mater. Charact., 167(2020), art. No. 110531. doi: 10.1016/j.matchar.2020.110531
      [27]
      S.H. Talebi, M. Jahazi, and H. Melkonyan, Retained austenite decomposition and carbide precipitation during isothermal tempering of a medium-carbon low-alloy bainitic steel, Materials, 11(2018), No. 8, art. No. 1441. doi: 10.3390/ma11081441
      [28]
      Y.X. Xie, X.N. Cheng, J.B. Wei, and R. Luo, Characterization of carbide precipitation during tempering for quenched dievar steel, Materials, 15(2022), No. 18, art. No. 6448. doi: 10.3390/ma15186448
      [29]
      P. Han, Z.P. Liu, Z.J. Xie, et al., Influence of band microstructure on carbide precipitation behavior and toughness of 1 GPa-grade ultra-heavy gauge low-alloy steel, Int. J. Miner. Metall. Mater., 30(2023), No. 7, p. 1329. doi: 10.1007/s12613-023-2597-6
      [30]
      Q.Q. Duan, R.T. Qu, P. Zhang, Z.J. Zhang, and Z.F. Zhang, Intrinsic impact toughness of relatively high strength alloys, Acta Mater., 142(2018), p. 226. doi: 10.1016/j.actamat.2017.09.064
      [31]
      M.D. Mulholland and D.N. Seidman, Nanoscale co-precipitation and mechanical properties of a high-strength low-carbon steel, Acta Mater., 59(2011), No. 5, p. 1881. doi: 10.1016/j.actamat.2010.11.054
      [32]
      M. Zhou, L.X. Du, and X.H. Liu, Relationship among microstructure and properties and heat treatment process of ultra-high strength X120 pipeline steel, J. Iron Steel Res. Int., 18(2011), No. 3, p. 59. doi: 10.1016/S1006-706X(11)60038-1
      [33]
      F.C. An, J.J. Wang, S.X. Zhao, and C.M. Liu, Tailoring cementite precipitation and mechanical properties of quenched and tempered steel by nickel partitioning between cementite and ferrite, Mater. Sci. Eng. A, 802(2021), art. No. 140686. doi: 10.1016/j.msea.2020.140686
      [34]
      P. Zhang, S.X. Li, and Z.F. Zhang, General relationship between strength and hardness, Mater. Sci. Eng. A, 529(2011), p. 62. doi: 10.1016/j.msea.2011.08.061
      [35]
      F. Szuecs, C.P. Kim, and W.L. Johnson, Mechanical properties of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 ductile phase reinforced bulk metallic glass composite, Acta Mater., 49(2001), No. 9, p. 1507. doi: 10.1016/S1359-6454(01)00068-4
      [36]
      L.Y. Lan, C.L. Qiu, D.W. Zhao, X.H. Gao, and L.X. Du, Microstructural characteristics and toughness of the simulated coarse grained heat affected zone of high strength low carbon bainitic steel, Mater. Sci. Eng. A, 529(2011), p. 192. doi: 10.1016/j.msea.2011.09.017
      [37]
      N. Vlajic, A. Chijioke, and E. Lucon, Design considerations to improve charpy instrumented strikers, J. Res. Natl. Inst. Stand. Technol., 125(2020), art. No. 125010. doi: 10.6028/jres.125.010
      [38]
      S.H. Hashemi, Apportion of Charpy energy in API 5L grade X70 pipeline steel, Int. J. Press. Vessels Pip., 85(2008), No. 12, p. 879. doi: 10.1016/j.ijpvp.2008.04.011
      [39]
      J.R. Rice and R. Thomson, Ductile versus brittle behaviour of crystals, Philos. Mag. A, 29(1974), No. 1, p. 73. doi: 10.1080/14786437408213555
      [40]
      P.F. Thomason, Ductile fracture by the growth and coalescence of microvoids of non-uniform size and spacing, Acta Metall. Mater., 41(1993), No. 7, p. 2127. doi: 10.1016/0956-7151(93)90382-3
      [41]
      L. Wang, X. Du, and N.S. Choi, Effects of Notch radius and thickness on the tensile strength and fracture mechanisms of Al6061–T6 plate specimens, Int. J. Precis. Eng. Manuf., 23(2022), No. 2, p. 177. doi: 10.1007/s12541-021-00613-y
      [42]
      L. Brackmann, D. Wingender, S. Weber, D. Balzani, and A. Röttger, Influence of hard phase size and spacing on the fatigue crack propagation in tool steels—Numerical simulation and experimental validation, Fatigue Fract. Eng. Mater. Struct., 46(2023), No. 10, p. 3872. doi: 10.1111/ffe.14107
      [43]
      Q. Feng, Y.J. Wang, Y.N. Zeng, et al., Unraveling the effects of Cr interface segregation on precipitation mechanism and mechanical properties of MC carbides in high carbon chromium bearing steels, J. Mater. Res. Technol., 27(2023), p. 2443. doi: 10.1016/j.jmrt.2023.10.091
      [44]
      J.P. Hanson, A. Bagri, J. Lind, et al., Crystallographic character of grain boundaries resistant to hydrogen-assisted fracture in Ni-base alloy 725, Nat. Commun., 9(2018), No. 1, art. No. 3386. doi: 10.1038/s41467-018-05549-y

    Catalog


    • /

      返回文章
      返回