留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 7
Jul.  2024

图(18)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  414
  • HTML全文浏览量:  151
  • PDF下载量:  53
  • 被引次数: 0
Jingcheng Wang, Zhentong Liu, Wei Chen, Hongliang Chen, and Lifeng Zhang, Numerical simulation on the multiphase flow and reoxidation of the molten steel in a two-strand tundish during ladle change, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp. 1540-1553. https://doi.org/10.1007/s12613-024-2909-5
Cite this article as:
Jingcheng Wang, Zhentong Liu, Wei Chen, Hongliang Chen, and Lifeng Zhang, Numerical simulation on the multiphase flow and reoxidation of the molten steel in a two-strand tundish during ladle change, Int. J. Miner. Metall. Mater., 31(2024), No. 7, pp. 1540-1553. https://doi.org/10.1007/s12613-024-2909-5
引用本文 PDF XML SpringerLink
研究论文

两流连铸中间包换包过程多相流动及钢液二次氧化的数值模拟研究


  • 通讯作者:

    陈威    E-mail: weichen@ysu.edu.cn

    张立峰    E-mail: zhanglifeng@ncut.edu.cn

文章亮点

  • (1) 通过数值模拟研究了连铸中间包换包非稳态浇注过程钢液–渣–空气的多相流动,预测了中间包换包过程渣眼的形成以及消失过程
  • (2) 通过建立耦合的钢液多相流二次氧化数值模型,预测了换包过程钢液二次氧化以及溶解氧在中间包内扩散的过程
  • (3) 通过定量对比提出了对于适用于目前条件下减小中间包换包过程二次氧化影响的工艺参数
  • 连铸中间包在生产过程中起着调节和均匀钢液成分、稳流分流以及连铸衔接的作用。然而,在中间包换包非稳态过程中钢液液面波动剧烈,使得钢液裸露造成二次氧化,降低了钢产品质量。本文通过建立三维数学模型计算了中间包换包过程中60 t两流连铸中间包内钢液–渣–空气多相流动,并在此基础上耦合二次氧化模型研究了再充包过程由于钢液裸露引起的二次氧化以及溶解氧从渣眼扩散到钢液中的过程。讨论了不同再充包速度下钢液的二次氧化和溶解氧的扩散。研究结果表明,在钢包更换的高速再填充过程中,入口速度的增加与会使渣眼面积增加,同时进入中间包的溶解氧总量也会增加。再充包过程入口速度为3.0 m⋅s–1工况二次氧化最严重,中间包内钢液的平均溶解氧质量分数增加了0.000145%。相比之下,入口速度为1.8 m⋅s–1工况的平均溶解氧质量分数增加了0.000035%。定量对比换包过程溶解氧含量的增加以及换包过程中钢液的暴露时间,入口速度为1.8 m⋅s–1工况二次氧化影响最小。因此,更换钢包时应该降低浇注速度。
  • Research Article

    Numerical simulation on the multiphase flow and reoxidation of the molten steel in a two-strand tundish during ladle change

    + Author Affiliations
    • A 3D mathematical model was proposed to investigate the molten steel–slag–air multiphase flow in a two-strand slab continuous casting (CC) tundish during ladle change. The study focused on the exposure of the molten steel and the subsequent reoxidation occurrence. The exposure of the molten steel was calculated using the coupled realizable kε model and volume of fluid (VOF) model. The diffusion of dissolved oxygen was determined by solving the user-defined scalar (UDS) equation. Moreover, the user-defined function (UDF) was used to describe the source term in the UDS equation and determine the oxidation rate and oxidation position. The effect of the refilling speed on the molten steel exposure and dissolved oxygen content was also discussed. Increasing the refilling speed during ladle change reduced the refilling time and the exposure duration of the molten steel. However, the elevated refilling speed enlarged the slag eyes and increased the average dissolved oxygen content within the tundish, thereby exacerbating the reoxidation phenomenon. In addition, the time required for the molten steel with a high dissolved oxygen content to exit the tundish varied with the refilling speed. When the inlet speed was 3.0 m·s−1 during ladle change, the molten steel with a high dissolved oxygen content exited the outlet in a short period, reaching a maximum dissolved oxygen content of 0.000525wt%. Conversely, when the inlet speed was 1.8 m·s−1, the maximum dissolved oxygen content was 0.000382wt%. The refilling speed during the ladle change process must be appropriately decreased to minimize reoxidation effects and enhance the steel product quality.
    • loading
    • [1]
      Y. Zhong, M.M. Zhu, B. Huang, and A.P. Zhang, Numerical simulation study on design optimization of inner cavity dimensions of large-capacity tundish, [in] 10th International Symposium on High-temperature Metallurgical Processing, San Antonio, 2019, p. 51.
      [2]
      M. Warzecha, Numerical and physical modelling of steel flow in a one-strand continuous casting tundish, Metalurgija, 50(2011), No. 3, art. No. 147.
      [3]
      B.L. Zhang, F.H. Liu, R. Zhu, and J.F. Zhu, Effects of multiple-hole baffle arrangements on flow fields in a five-strand asymmetric tundish, Materials, 13(2020), No. 22, art. No. 5129. doi: 10.3390/ma13225129
      [4]
      X.G. Ai, D. Han, S.L. Li, H.B. Zeng, and H.Y. Li, Optimization of flow uniformity control device for six-stream continuous casting tundish, J. Iron Steel Res. Int., 27(2020), No. 9, p. 1035. doi: 10.1007/s42243-020-00418-9
      [5]
      H. Zhang, J.H. Wang, Q. Fang and W.H. Ni, Research progress on numerical simulation of transient tundish casting, J. Univ. Sci. Technol. Liaoning, 44(2021), No. 6, p. 401.
      [6]
      Y. Sahai, Tundish technology for casting clean steel: a review, Metall. Mater. Trans. B, 47(2016), No. 4, p. 2095. doi: 10.1007/s11663-016-0648-3
      [7]
      L.F. Zhang, Inclusion and bubble in steel: a review, J. Iron Steel Res. Int., 13(2006), No. 3, p. 1. doi: 10.1016/S1006-706X(06)60051-4
      [8]
      Y.F. Wang and L.F. Zhang, Transient fluid flow phenomena during continuous casting: Part I—cast start, ISIJ Int., 50(2010), No. 12, p. 1777. doi: 10.2355/isijinternational.50.1777
      [9]
      K. Chattopadhyay, F.G. Liu, M. Isac, and R.I.L. Guthrie, Effect of vertical alignment of ladle shroud on transient steel quality output from multistrand tundish, Ironmaking Steelmaking, 38(2013), No. 2, p. 112.
      [10]
      H. Tanaka, R. Nishihara, I. Kitagawa, and R. Tsujino, Quantitative analysis of contamination of molten steel in tundish, ISIJ Int., 33(1993), No. 12, p. 1238. doi: 10.2355/isijinternational.33.1238
      [11]
      H.L. Chen, Z.T. Liu, F.C. Li, B.Y. Lyu, W. Chen, and L.F. Zhang, Numerical simulation on multiphase flow and slag entrainment during casting start of a slab continuous casting tundish, Metall. Mater. Trans. B, 54(2023), No. 4, p. 2048. doi: 10.1007/s11663-023-02815-3
      [12]
      L.F. Zhang and B.G. Thomas, State of the art in the control of inclusions during steel ingot casting, Metall. Mater. Trans. B, 37(2006), No. 5, p. 733. doi: 10.1007/s11663-006-0057-0
      [13]
      C. Gu, W.Q. Liu, J.H. Lian, and Y.P. Bao, In-depth analysis of the fatigue mechanism induced by inclusions for high-strength bearing steels, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 826. doi: 10.1007/s12613-020-2223-9
      [14]
      Z.L. Wang and Y.P. Bao, Development and prospects of molten steel deoxidation in steelmaking process, Int. J. Miner. Metall. Mater., 31(2024), No. 1, p. 18. doi: 10.1007/s12613-023-2740-4
      [15]
      W. Xiao, Y.P. Bao, C. Gu, et al., Ultrahigh cycle fatigue fracture mechanism of high-quality bearing steel obtained through different deoxidation methods, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 804. doi: 10.1007/s12613-021-2253-y
      [16]
      D. Yang, X.X. Deng X.H. Wang and L. Qian, Effect of reoxidation on cleanliness of molten steel in tundish for low carbon aluminum killed steel, Iron Steel, 48(2013), No. 1, p. 37.
      [17]
      C. Fan, Z.Z. Liu, K.K. Cai, et al., Research on cleanliness of steel grade 45 produced by BOF–LF–CC process, Iron Steel, 38(2003), No. 3, p. 18.
      [18]
      J. Wei, G.Y. Zhao, K.K. Cai, Y.C. Zhou J.Q. Lv, and Y.P. Gao, Investigation on non-metallic inclusions in low carbon Al-killed steel produced by CSP at Handan steel, Iron Steel, 40(2005), No. 6, p. 30.
      [19]
      K. Sasai and Y. Mizukami, Oxidation rate of molten steel by argon gas blowing in tundish oxidizing atmosphere, ISIJ Int., 51(2011), No. 7, p. 1119. doi: 10.2355/isijinternational.51.1119
      [20]
      P.Y. Ni, T. Tanaka, M. Suzuki, M. Nakamoto, and P.G. Jönsson, A kinetic model on oxygen transfer at a steel/slag interface under effect of interfacial tension, ISIJ Int., 58(2018), No. 11, p. 1979. doi: 10.2355/isijinternational.ISIJINT-2018-303
      [21]
      Y.H. Sun, K.K. Cai and C.L. Zhao, Effect of transient casting operation on cleanliness of continuously cast strands, Iron Steel, 43(2008), No. 1, p. 22.
      [22]
      S. Garcia-Hernandez, R.D. Morales, J. de Jesus Barreto, I. Calderon-Ramos, and E. Gutierrez, Modeling study of slag emulsification during ladle change-over using a dissipative ladle shroud, Steel Res. Int., 87(2016), No. 9, p. 1154. doi: 10.1002/srin.201500299
      [23]
      R. Xu, H.T. Ling, H.J. Wang, L.Z. Chang, and S.T. Qiu, Investigation on the control of multiphase flow behavior in a continuous casting tundish during ladle change, Metall. Res. Technol., 117(2020), No. 6, art. No. 619. doi: 10.1051/metal/2020070
      [24]
      H.T. Ling, R. Xu, H.J. Wang, L.Z. Chang and S.T. Qiu, Multiphase flow behavior in a single-strand continuous casting tundish during ladle change, ISIJ Int., 60(2020), No. 3, p. 499. doi: 10.2355/isijinternational.ISIJINT-2019-506
      [25]
      H. Zhang, Q. Fang, R.H. Luo, C. Liu, Y. Wang, and H.W. Ni, Effect of ladle changeover condition on transient three-phase flow in a five-strand bloom casting tundish, Metall. Mater. Trans. B, 50(2019), No. 3, p. 1461. doi: 10.1007/s11663-019-01572-6
      [26]
      W.P. Jones and B.E. Launder, The prediction of laminarization with a two-equation model of turbulence, Int. J. Heat Mass Transfer, 15(1972), No. 2, p. 301. doi: 10.1016/0017-9310(72)90076-2
      [27]
      C.W. Hirt and B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys., 39(1981), No. 1, p. 201. doi: 10.1016/0021-9991(81)90145-5
      [28]
      N. Scapin, P. Costa, and L. Brandt, A volume-of-fluid method for interface-resolved simulations of phase-changing two-fluid flows, J. Comput. Phys., 407(2020), art. No. 109251. doi: 10.1016/j.jcp.2020.109251
      [29]
      J. Zhang, Physical Chemistry of Metallurgy, Metallurgical Industry Press, Beijing, 2004, p. 317.
      [30]
      K. Sasai and Y. Mizukami, Reoxidation behavior of molten steel in tundish, ISIJ Int., 40(2000), No. 1, p. 40. doi: 10.2355/isijinternational.40.40
      [31]
      K. Krishnapisharody and G.A. Irons, A unified approach to the fluid dynamics of gas–liquid plumes in ladle metallurgy, ISIJ Int., 50(2010), No. 10, p. 1413. doi: 10.2355/isijinternational.50.1413
      [32]
      J.J. Wang, L.F. Zhang, G. Cheng, Q. Ren, and Y. Ren, Dynamic mass variation and multiphase interaction among steel, slag, lining refractory and nonmetallic inclusions: Laboratory experiments and mathematical prediction, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1298. doi: 10.1007/s12613-021-2304-4
      [33]
      Y. Zhang, Y. Ren, and L.F. Zhang, Kinetic study on compositional variations of inclusions, steel and slag during refining process, Metall. Res. Technol., 115(2018), No. 4, art. No. 415. doi: 10.1051/metal/2018059
      [34]
      Y.Y. Zhao, W. Chen, S.S. Cheng, and L.F. Zhang, Mathematical simulation of hot metal desulfurization during KR process coupled with an unreacted core model, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 758. doi: 10.1007/s12613-022-2425-4
      [35]
      L.F. Zhang, Transient fluid flow phenomena in continuous casting tundishes, Iron Steel Technol., 7(2010), No. 7, p. 55.
      [36]
      Q. Ren, Y.X. Zhang, Y. Ren, L.F. Zhang, J.J. Wang, and Y.D. Wang, Prediction of spatial distribution of the composition of inclusions on the entire cross section of a linepipe steel continuous casting slab, J. Mater. Sci. Technol., 61(2021), p. 147. doi: 10.1016/j.jmst.2020.05.035

    Catalog


    • /

      返回文章
      返回