Cite this article as: |
Sarfraz, Shahzad Rasool, Muhammad Khalid, M.A.K. Yousaf Shah, Bin Zhu, Jung-Sik Kim, Muhammad Imran Asghar, Nabeela Akbar, and Wenjing Dong, Al3+ doped CeO2 for proton conducting fuel cells, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2253-2262. https://doi.org/10.1007/s12613-024-2910-z |
朱斌 E-mail: zhu-bin@seu.edu.cn
Nabeela Akbar E-mail: nabeela4426@gmail.com
董文静 E-mail: wenjingd@hubu.edu.cn
[1] |
F.Y. Liang, J.R. Yang, H.Q. Wang, and J.W. Wu, Fabrication of Gd2O3-doped CeO2 thin films through DC reactive sputtering and their application in solid oxide fuel cells, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1190. doi: 10.1007/s12613-023-2620-y
|
[2] |
X. Yang, Z.H. Du, Q. Zhang, et al., Effects of operating conditions on the performance degradation and anode microstructure evolution of anode-supported solid oxide fuel cells, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1181. doi: 10.1007/s12613-023-2616-7
|
[3] |
C.C. Duan, J.H. Tong, M. Shang, et al., Readily processed protonic ceramic fuel cells with high performance at low temperatures, Science, 349(2015), No. 6254, p. 1321. doi: 10.1126/science.aab3987
|
[4] |
H.P. Ding, W. Wu, C. Jiang, et al., Self-sustainable protonic ceramic electrochemical cells using a triple conducting electrode for hydrogen and power production, Nat. Commun., 11(2020), No. 1, art. No. 1907. doi: 10.1038/s41467-020-15677-z
|
[5] |
X. Zhang, Y.K. Li, W. Zhao, J.X. Guo, P.F. Yin, and T. Ling, Technical factors affecting the performance of anion exchange membrane water electrolyzer, Int. J. Miner. Metall. Mater., 30(2023), No. 11, p. 2259. doi: 10.1007/s12613-023-2648-z
|
[6] |
S. Han, T. Wei, S.J. Wang, et al., Recent progresses in the development of tubular segmented-in-series solid oxide fuel cells: Experimental and numerical study, Int. J. Miner. Metall. Mater., 31(2024), No. 3, p. 427. doi: 10.1007/s12613-023-2771-x
|
[7] |
T. Norby and A. Magrasó, On the development of proton ceramic fuel cells based on Ca-doped LaNbO4 as electrolyte, J. Power Sources, 282(2015), p. 28. doi: 10.1016/j.jpowsour.2015.02.027
|
[8] |
Y. Zhou, X.F. Guan, H. Zhou, et al., Strongly correlated perovskite fuel cells, Nature, 534(2016), No. 7606, p. 231. doi: 10.1038/nature17653
|
[9] |
Y.M. Xing, Y. Wu, L.Y. Li, et al., Proton shuttles in CeO2/CeO2− δ core–shell structure, ACS Energy Lett., 4(2019), No. 11, p. 2601. doi: 10.1021/acsenergylett.9b01829
|
[10] |
Y.Y. Liu, L.D. Fan, Y.X. Cai, W. Zhang, B.Y. Wang, and B. Zhu, Superionic conductivity of Sm3+, Pr3+, and Nd3+ triple-doped ceria through bulk and surface two-step doping approach, ACS Appl. Mater. Interfaces, 9(2017), No. 28, p. 23614. doi: 10.1021/acsami.7b02224
|
[11] |
S. Choi, C.J. Kucharczyk, Y.G. Liang, et al., Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells, Nat. Energy, 3(2018), p. 202. doi: 10.1038/s41560-017-0085-9
|
[12] |
C.M. Li, Y.W. Zeng, Z.T. Wang, Z.P. Ye, and Y. Zhang, Processing temperature tuned interfacial microstructure and protonic and oxide ionic conductivities of well-sintered Sm0.2Ce0.8O1.9–Na2CO3 nanocomposite electrolytes for intermediate temperature solid oxide fuel cells, J. Power Sources, 360(2017), p. 114. doi: 10.1016/j.jpowsour.2017.06.002
|
[13] |
B.Y. Wang, B. Zhu, S.N. Yun, et al., Fast ionic conduction in semiconductor CeO2− δ electrolyte fuel cells, NPG Asia Mater., 11(2019), art. No. 51. doi: 10.1038/s41427-019-0152-8
|
[14] |
G. Chen, W.K. Sun, Y.D. Luo, et al., Advanced fuel cell based on new nanocrystalline structure Gd0.1Ce0.9O2 electrolyte, ACS Appl. Mater. Interfaces, 11(2019), No. 11, p. 10642. doi: 10.1021/acsami.8b20454
|
[15] |
M.A.K.Y. Shah, Y.Z. Lu, N. Mushtaq, et al., Designing Gadolinium-doped ceria electrolyte for low temperature electrochemical energy conversion, Int. J. Hydrogen Energy, 48(2023), No. 37, p. 14000. doi: 10.1016/j.ijhydene.2022.12.314
|
[16] |
G. Chen, W.K. Sun, Y.D. Luo, et al., Investigation of layered Ni0.8Co0.15Al0.05LiO2 in electrode for low-temperature solid oxide fuel cells, Int. J. Hydrogen Energy, 43(2018), No. 1, p. 417. doi: 10.1016/j.ijhydene.2017.11.056
|
[17] |
J.J. Liu, F. Yang, Z. Jiang, et al., Enhanced ionic conductivity and durability of novel solid oxide fuel cells by constructing a heterojunction based on transition and rare earth metal Co-doped ceria, ACS Appl. Energy Mater., 4(2021), No. 12, p. 13492. doi: 10.1021/acsaem.1c01873
|
[18] |
C.Y. Kang, H. Kusaba, H. Yahiro, K. Sasaki, and Y. Teraoka, Preparation, characterization and electrical property of Mn-doped ceria-based oxides, Solid State Ionics, 177(2006), No. 19-25, p. 1799. doi: 10.1016/j.ssi.2006.04.016
|
[19] |
C. Alvarez-Galvan, J.L. Martínez, M. Capel-Sanchez, L. Pascual, and J.A. Alonso, Magnetic properties of efficient catalysts based on La-doped ceria-supported nickel nanoparticles for rWGS reaction. influence of Ni loading, Adv. Sustainable Syst., 5(2021), No. 11, art. No. 2100029. doi: 10.1002/adsu.202100029
|
[20] |
E. Sartoretti, C. Novara, A. Chiodoni, et al., Nanostructured ceria-based catalysts doped with La and Nd: How acid-base sites and redox properties determine the oxidation mechanisms, Catal. Today, 390(2022), p. 117.
|
[21] |
H. Knözinger and P. Ratnasamy, Catalytic aluminas: Surface models and characterization of surface sites, Catal. Rev., 17(1978), No. 1, p. 31. doi: 10.1080/03602457808080878
|
[22] |
J. Sánchez-Valente, X. Bokhimi, and F. Hernández, Physicochemical and catalytic properties of sol–gel aluminas aged under hydrothermal conditions, Langmuir, 19(2003), No. 9, p. 3583. doi: 10.1021/la020423+
|
[23] |
K. Jirátová and L. Beránek, Properties of modified aluminas, Appl. Catal., 2(1982), No. 3, p. 125. doi: 10.1016/0166-9834(82)80196-6
|
[24] |
T. Asada, T. Kayama, H. Kusaba, H. Einaga, and Y. Teraoka, Preparation of alumina-supported LaFeO3 catalysts and their catalytic activity for propane combustion, Catal. Today, 139(2008), No. 1-2, p. 37. doi: 10.1016/j.cattod.2008.08.006
|
[25] |
M.A.K. Y. Shah, Y.Z. Lu, N. Mushtaq, M. Yousaf, and B. Zhu, Doped ceria electrolyte rich in oxygen vacancies for boosting the fuel cell performance of LT-CFCs, Int. J. Hydrogen Energy, 48(2023), No. 33, p. 12474. doi: 10.1016/j.ijhydene.2022.12.153
|
[26] |
S. Anirban, T. Paul, P.T. Das, T.K. Nath, and A. Dutta, Microstructure and electrical relaxation studies of chemically derived Gd–Nd co-doped nanocrystalline ceria electrolytes, Solid State Ionics, 270(2015), p. 73. doi: 10.1016/j.ssi.2014.12.011
|
[27] |
M. Kahlaoui, A. Inoubli, S. Chefi, et al., Structural, chemical, and electrochemical properties of co-doped fluorite oxides Ce0.8La0.2− xTl xO2− δ as electrolyte materials for solid oxide fuel cells, Int. J. Hydrogen Energy, 41(2016), No. 8, p. 4751. doi: 10.1016/j.ijhydene.2016.01.044
|
[28] |
Z.T. Wang, Y.W. Zeng, C.M. Li, Z.P. Ye, L.L. Cao, and Y. Zhang, Structures and electrical conductivities of Gd3+ and Fe3+ co-doped cerium oxide electrolytes sintered at low temperature for ILT-SOFCs, Ceram. Int., 44(2018), No. 9, p. 10328. doi: 10.1016/j.ceramint.2018.03.041
|
[29] |
Z.L. Wu, M.J. Li, J. Howe, H.M. Meyer, III, and S.H. Overbury, Probing defect sites on CeO2 nanocrystals with well-defined surface planes by Raman spectroscopy and O2 adsorption, Langmuir, 26(2010), No. 21, p. 16595. doi: 10.1021/la101723w
|
[30] |
S. Anirban and A. Dutta, Revisiting ionic conductivity of rare earth doped ceria: Dependency on different factors, Int. J. Hydrogen Energy, 45(2020), No. 46, p. 25139. doi: 10.1016/j.ijhydene.2020.06.119
|
[31] |
R. Schmitt, A. Nenning, O. Kraynis, et al., A review of defect structure and chemistry in ceria and its solid solutions, Chem. Soc. Rev., 49(2020), No. 2, p. 554. doi: 10.1039/C9CS00588A
|
[32] |
Y.C. Wu and C.C. Lin, The microstructures and property analysis of aliovalent cations (Sm3+, Mg2+, Ca2+, Sr2+, Ba2+) co-doped ceria-base electrolytes after an aging treatment, Int. J. Hydrogen Energy, 39(2014), No. 15, p. 7988. doi: 10.1016/j.ijhydene.2014.03.063
|
[33] |
I. Kosacki, T. Suzuki, H.U. Anderson, and P. Colomban, Raman scattering and lattice defects in nanocrystalline CeO2 thin films, Solid State Ionics, 149(2002), No. 1-2, p. 99. doi: 10.1016/S0167-2738(02)00104-2
|
[34] |
A. Mineshige, T. Taji, Y. Muroi, et al., Oxygen chemical potential variation in ceria-based solid oxide fuel cells determined by Raman spectroscopy, Solid State Ionics, 135(2000), No. 1-4, p. 481. doi: 10.1016/S0167-2738(00)00403-3
|
[35] |
S.A. Ansari, M.M. Khan, M.O. Ansari, S. Kalathil, J. Lee, and M.H. Cho, Band gap engineering of CeO2 nanostructure using an electrochemically active biofilm for visible light applications, RSC Adv., 4(2014), No. 32, p. 16782. doi: 10.1039/C4RA00861H
|
[36] |
X.Y. Zhang, J.Q. Qin, Y.N. Xue, et al., Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods, Sci. Rep., 4(2014), art. No. 4596. doi: 10.1038/srep04596
|
[37] |
S. Sonsupap, P. Kidkhunthod, N. Chanlek, S. Pinitsoontorn, and S. Maensiri, Fabrication, structure, and magnetic properties of electrospun Ce0.96Fe0.04O2 nanofibers, Appl. Surf. Sci., 380(2016), p. 16. doi: 10.1016/j.apsusc.2016.02.105
|
[38] |
M. Caglar and F. Yakuphanoglu, Structural and optical properties of copper doped ZnO films derived by sol–gel, Appl. Surf. Sci., 258(2012), No. 7, p. 3039. doi: 10.1016/j.apsusc.2011.11.033
|
[39] |
N. Shaheen, Z. Chen, M. Alomar, et al., Enabling fast ionic transport in CeO2–La1−2 xBa xBi xFeO3 nanocomposite electrolyte for low temperature solid oxide fuel cell application, RSC Adv., 13(2023), No. 30, p. 20663. doi: 10.1039/D3RA01698F
|
[40] |
M. Yousaf, Y.Z. Lu, E.Y. Hu, et al., Interfacial disordering and heterojunction enabling fast proton conduction, Small Methods, 7(2023), No. 9, art. No. 2300450. doi: 10.1002/smtd.202300450
|
[41] |
J.M. Zheng, H. Zhu, W.Q. Li, et al., Numerical study on the electron-blocking effect and optimized operation parameters of ceria-SOFCs with the pure Sm doping CeO2 electrolyte, Int. J. Hydrogen Energy, 46(2021), No. 24, p. 13318. doi: 10.1016/j.ijhydene.2021.01.164
|
[42] |
T. Mori, J. Drennan, J.H. Lee, J.G. Li, and T. Ikegami, Oxide ionic conductivity and microstructures of Sm- or La-doped CeO2-based systems, Solid State Ionics, 154-155(2002), p. 461. doi: 10.1016/S0167-2738(02)00483-6
|
[43] |
S.F. Wang, Y.L. Liao, Y.F. Hsu, and P. Jasinski, Effects of LiNi0.8Co0.15Al0.05O2 electrodes on the conduction mechanism of Sm0.2Ce0.8O2− δ electrolyte and performance of low-temperature solid oxide fuel cells, J. Power Sources, 546(2022), p. 231995. doi: 10.1016/j.jpowsour.2022.231995
|
[44] |
X.Z. Peng, Y.F. Tian, Y. Liu, et al., A double perovskite decorated carbon-tolerant redox electrode for symmetrical SOFC, Int. J. Hydrogen Energy, 45(2020), No. 28, p. 14461. doi: 10.1016/j.ijhydene.2020.03.151
|
[45] |
X.M. Zhou and F. Zhou, Application of La0.3Sr0.7Fe0.7Ti0.3O3− δ/GDC electrolyte in LT-SOFC, Int. J. Hydrogen Energy, 46(2021), No. 15, p. 9988. doi: 10.1016/j.ijhydene.2020.01.171
|
[46] |
Y.J. Meng, W. Zhang, Z.L. He, et al., Partially reduced Ni0.8Co0.15Al0.05LiO2− δ for low-temperature SOFC cathode, Int. J. Hydrogen Energy, 46(2021), No. 15, p. 9874. doi: 10.1016/j.ijhydene.2020.05.150
|
[47] |
N. Shi, F. Su, D.M. Huan, et al., Performance and DRT analysis of P-SOFCs fabricated using new phase inversion combined tape casting technology, J. Mater. Chem. A, 5(2017), No. 37, p. 19664. doi: 10.1039/C7TA04967F
|
[48] |
A. Oz, K. Singh, D. Gelman, V. Thangadurai, and Y. Tsur, Understanding of oxygen reduction reaction on perovskite-type Ba0.5Sr0.5Fe0.91Al0.09O3− δ and Ba0.5Sr0.5Fe0.8Cu0.2O3− δ using AC impedance spectroscopy genetic programming, J. Phys. Chem. C, 122(2018), No. 27, p. 15097. doi: 10.1021/acs.jpcc.8b03036
|
[49] |
I. Garbayo, D. Pla, A. Morata, L. Fonseca, N. Sabaté, and A. Tarancón, Full ceramic micro solid oxide fuel cells: Towards more reliable MEMS power generators operating at high temperatures, Energy Environ. Sci., 7(2014), No. 11, p. 3617. doi: 10.1039/C4EE00748D
|
[50] |
N. Mahato, A. Banerjee, A. Gupta, S. Omar, and K. Balani, Progress in material selection for solid oxide fuel cell technology: A review, Prog. Mater. Sci., 72(2015), p. 141. doi: 10.1016/j.pmatsci.2015.01.001
|
[51] |
K. Prabhakaran, M.O. Beigh, J. Lakra, N.M. Gokhale, and S.C. Sharma, Characteristics of 8mol% yttria stabilized zirconia powder prepared by spray drying process, J. Mater. Process. Technol., 189(2007), No. 1-3, p. 178. doi: 10.1016/j.jmatprotec.2007.01.019
|
[52] |
E. Fabbri, A. D'Epifanio, E.D. Bartolomeo, S. Licoccia, and E. Traversa, Tailoring the chemical stability of Ba(Ce0.8− xZr x)Y0.2O3− δ protonic conductors for intermediate temperature solid oxide fuel cells (IT-SOFCs), Solid State Ionics, 179(2008), No. 15-16, p. 558. doi: 10.1016/j.ssi.2008.04.002
|
[53] |
C. Zuo, S. Zha, M. Liu, M. Hatano, and M. Uchiyama, Ba(Zr0.1Ce0.7Y0.2)O3− δ as an electrolyte for low-temperature solid-oxide fuel cells, Adv. Mater., 18(2006), No. 24, p. 3318. doi: 10.1002/adma.200601366
|
[54] |
M.A.K.Y. Shah, Y.Z. Lu, N. Mushtaq, et al., Perovskite Al–SrTiO3 semiconductor electrolyte with superionic conduction in ceramic fuel cells, Sustain. Energy Fuels, 6(2022), No. 16, p. 3794. doi: 10.1039/D2SE00643J
|
[55] |
F.Z. Wang, E.Y. Hu, H. Wu, et al., Surface-engineered homostructure for enhancing proton transport, Small Meth., 6(2022), No. 1, art. No. 2100901. doi: 10.1002/smtd.202100901
|
[56] |
D.A. Medvedev, J.G. Lyagaeva, E.V. Gorbova, A.K. Demin, and P. Tsiakaras, Advanced materials for SOFC application: Strategies for the development of highly conductive and stable solid oxide proton electrolytes, Prog. Mater. Sci., 75(2016), p. 38. doi: 10.1016/j.pmatsci.2015.08.001
|