留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 10
Oct.  2024

图(6)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  591
  • HTML全文浏览量:  267
  • PDF下载量:  41
  • 被引次数: 0
Sarfraz, Shahzad Rasool, Muhammad Khalid, M.A.K. Yousaf Shah, Bin Zhu, Jung-Sik Kim, Muhammad Imran Asghar, Nabeela Akbar, and Wenjing Dong, Al3+ doped CeO2 for proton conducting fuel cells, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2253-2262. https://doi.org/10.1007/s12613-024-2910-z
Cite this article as:
Sarfraz, Shahzad Rasool, Muhammad Khalid, M.A.K. Yousaf Shah, Bin Zhu, Jung-Sik Kim, Muhammad Imran Asghar, Nabeela Akbar, and Wenjing Dong, Al3+ doped CeO2 for proton conducting fuel cells, Int. J. Miner. Metall. Mater., 31(2024), No. 10, pp. 2253-2262. https://doi.org/10.1007/s12613-024-2910-z
引用本文 PDF XML SpringerLink
研究论文

用于质子导电燃料电池的Al3+掺杂CeO2研究


  • 通讯作者:

    朱斌    E-mail: zhu-bin@seu.edu.cn

    Nabeela Akbar    E-mail: nabeela4426@gmail.com

    董文静    E-mail: wenjingd@hubu.edu.cn

文章亮点

  • (1) 通过直接烧结法成功制备了萤石结构Al掺杂CeO2
  • (2) Al掺杂使CeO2中形成了大量的氧空位。
  • (3) Al掺杂使CeO2在500°C下获得了0.15 S/cm的电导率。
  • (4) 500°C下获得了923 mW/cm2的电池性能。
  • (5) 通过氧离子阻挡层证实了Al掺杂CeO2的质子导电能力。
  • 开发具有高离子导电性的电解质是质子导电燃料电池(PCFCs)实际应用的关键。本研究探讨了铝掺杂对氧化铈的结构、形貌、电学和电化学性能的影响。Al掺杂使氧化铈中形成大量的氧空位,进而使得基于该电解质的PCFCs在低温范围(300–500°C)下具备快速离子传导能力。X射线衍射(XRD)精修确定了铝掺杂氧化铈(ADC)材料属于纯立方萤石结构,并证实了铝离子成功掺入氧化铈晶格。研究了材料中不同含量铝掺杂氧化铈(10ADC、20ADC和30ADC)的电子结构,结果表明,30ADC电解质是最优组分,其具有最多的晶格氧空位。以其制备的PCFC在500°C时的最大输出功率密度为923 mW/cm2。此外,利用氧离子阻挡层证明了铝掺杂铈基燃料电池具有质子导电能力。
  • Research Article

    Al3+ doped CeO2 for proton conducting fuel cells

    + Author Affiliations
    • Developing high ionic conducting electrolytes is crucial for applying proton-conducting fuel cell (PCFCs) practically. The current study investigates the effect of alumina on the structural, morphological, electrical, and electrochemical properties of CeO2. Lattice oxygen vacancies are induced in CeO2 by a general doping concept that enables fast ionic conduction at low-temperature ranges (300–500°C) for PCFCs. Rietveld refinement of the X-ray diffraction (XRD) patterns established the pure cubic fluorite structure of Al-doped CeO2 (ADC) samples and confirmed Al ions’ fruitful integration in the CeO2 lattice. The electronic structure of the alumina-doped ceria of the materials (10ADC, 20ADC, and 30ADC) has been investigated. As a result, it was found that the best composition of 30ADC-based electrolytes induced maximum lattice oxygen vacancies. The corresponding PCFC exhibited a maximum power output of 923 mW/cm2 at 500°C. Moreover, the investigation proves the proton-conducting ability of alumina-doped ceria-based fuel cells by using an oxide ion-blocking layer.
    • loading
    • [1]
      F.Y. Liang, J.R. Yang, H.Q. Wang, and J.W. Wu, Fabrication of Gd2O3-doped CeO2 thin films through DC reactive sputtering and their application in solid oxide fuel cells, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1190. doi: 10.1007/s12613-023-2620-y
      [2]
      X. Yang, Z.H. Du, Q. Zhang, et al., Effects of operating conditions on the performance degradation and anode microstructure evolution of anode-supported solid oxide fuel cells, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1181. doi: 10.1007/s12613-023-2616-7
      [3]
      C.C. Duan, J.H. Tong, M. Shang, et al., Readily processed protonic ceramic fuel cells with high performance at low temperatures, Science, 349(2015), No. 6254, p. 1321. doi: 10.1126/science.aab3987
      [4]
      H.P. Ding, W. Wu, C. Jiang, et al., Self-sustainable protonic ceramic electrochemical cells using a triple conducting electrode for hydrogen and power production, Nat. Commun., 11(2020), No. 1, art. No. 1907. doi: 10.1038/s41467-020-15677-z
      [5]
      X. Zhang, Y.K. Li, W. Zhao, J.X. Guo, P.F. Yin, and T. Ling, Technical factors affecting the performance of anion exchange membrane water electrolyzer, Int. J. Miner. Metall. Mater., 30(2023), No. 11, p. 2259. doi: 10.1007/s12613-023-2648-z
      [6]
      S. Han, T. Wei, S.J. Wang, et al., Recent progresses in the development of tubular segmented-in-series solid oxide fuel cells: Experimental and numerical study, Int. J. Miner. Metall. Mater., 31(2024), No. 3, p. 427. doi: 10.1007/s12613-023-2771-x
      [7]
      T. Norby and A. Magrasó, On the development of proton ceramic fuel cells based on Ca-doped LaNbO4 as electrolyte, J. Power Sources, 282(2015), p. 28. doi: 10.1016/j.jpowsour.2015.02.027
      [8]
      Y. Zhou, X.F. Guan, H. Zhou, et al., Strongly correlated perovskite fuel cells, Nature, 534(2016), No. 7606, p. 231. doi: 10.1038/nature17653
      [9]
      Y.M. Xing, Y. Wu, L.Y. Li, et al., Proton shuttles in CeO2/CeO2− δ core–shell structure, ACS Energy Lett., 4(2019), No. 11, p. 2601. doi: 10.1021/acsenergylett.9b01829
      [10]
      Y.Y. Liu, L.D. Fan, Y.X. Cai, W. Zhang, B.Y. Wang, and B. Zhu, Superionic conductivity of Sm3+, Pr3+, and Nd3+ triple-doped ceria through bulk and surface two-step doping approach, ACS Appl. Mater. Interfaces, 9(2017), No. 28, p. 23614. doi: 10.1021/acsami.7b02224
      [11]
      S. Choi, C.J. Kucharczyk, Y.G. Liang, et al., Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells, Nat. Energy, 3(2018), p. 202. doi: 10.1038/s41560-017-0085-9
      [12]
      C.M. Li, Y.W. Zeng, Z.T. Wang, Z.P. Ye, and Y. Zhang, Processing temperature tuned interfacial microstructure and protonic and oxide ionic conductivities of well-sintered Sm0.2Ce0.8O1.9–Na2CO3 nanocomposite electrolytes for intermediate temperature solid oxide fuel cells, J. Power Sources, 360(2017), p. 114. doi: 10.1016/j.jpowsour.2017.06.002
      [13]
      B.Y. Wang, B. Zhu, S.N. Yun, et al., Fast ionic conduction in semiconductor CeO2− δ electrolyte fuel cells, NPG Asia Mater., 11(2019), art. No. 51. doi: 10.1038/s41427-019-0152-8
      [14]
      G. Chen, W.K. Sun, Y.D. Luo, et al., Advanced fuel cell based on new nanocrystalline structure Gd0.1Ce0.9O2 electrolyte, ACS Appl. Mater. Interfaces, 11(2019), No. 11, p. 10642. doi: 10.1021/acsami.8b20454
      [15]
      M.A.K.Y. Shah, Y.Z. Lu, N. Mushtaq, et al., Designing Gadolinium-doped ceria electrolyte for low temperature electrochemical energy conversion, Int. J. Hydrogen Energy, 48(2023), No. 37, p. 14000. doi: 10.1016/j.ijhydene.2022.12.314
      [16]
      G. Chen, W.K. Sun, Y.D. Luo, et al., Investigation of layered Ni0.8Co0.15Al0.05LiO2 in electrode for low-temperature solid oxide fuel cells, Int. J. Hydrogen Energy, 43(2018), No. 1, p. 417. doi: 10.1016/j.ijhydene.2017.11.056
      [17]
      J.J. Liu, F. Yang, Z. Jiang, et al., Enhanced ionic conductivity and durability of novel solid oxide fuel cells by constructing a heterojunction based on transition and rare earth metal Co-doped ceria, ACS Appl. Energy Mater., 4(2021), No. 12, p. 13492. doi: 10.1021/acsaem.1c01873
      [18]
      C.Y. Kang, H. Kusaba, H. Yahiro, K. Sasaki, and Y. Teraoka, Preparation, characterization and electrical property of Mn-doped ceria-based oxides, Solid State Ionics, 177(2006), No. 19-25, p. 1799. doi: 10.1016/j.ssi.2006.04.016
      [19]
      C. Alvarez-Galvan, J.L. Martínez, M. Capel-Sanchez, L. Pascual, and J.A. Alonso, Magnetic properties of efficient catalysts based on La-doped ceria-supported nickel nanoparticles for rWGS reaction. influence of Ni loading, Adv. Sustainable Syst., 5(2021), No. 11, art. No. 2100029. doi: 10.1002/adsu.202100029
      [20]
      E. Sartoretti, C. Novara, A. Chiodoni, et al., Nanostructured ceria-based catalysts doped with La and Nd: How acid-base sites and redox properties determine the oxidation mechanisms, Catal. Today, 390(2022), p. 117.
      [21]
      H. Knözinger and P. Ratnasamy, Catalytic aluminas: Surface models and characterization of surface sites, Catal. Rev., 17(1978), No. 1, p. 31. doi: 10.1080/03602457808080878
      [22]
      J. Sánchez-Valente, X. Bokhimi, and F. Hernández, Physicochemical and catalytic properties of sol–gel aluminas aged under hydrothermal conditions, Langmuir, 19(2003), No. 9, p. 3583. doi: 10.1021/la020423+
      [23]
      K. Jirátová and L. Beránek, Properties of modified aluminas, Appl. Catal., 2(1982), No. 3, p. 125. doi: 10.1016/0166-9834(82)80196-6
      [24]
      T. Asada, T. Kayama, H. Kusaba, H. Einaga, and Y. Teraoka, Preparation of alumina-supported LaFeO3 catalysts and their catalytic activity for propane combustion, Catal. Today, 139(2008), No. 1-2, p. 37. doi: 10.1016/j.cattod.2008.08.006
      [25]
      M.A.K. Y. Shah, Y.Z. Lu, N. Mushtaq, M. Yousaf, and B. Zhu, Doped ceria electrolyte rich in oxygen vacancies for boosting the fuel cell performance of LT-CFCs, Int. J. Hydrogen Energy, 48(2023), No. 33, p. 12474. doi: 10.1016/j.ijhydene.2022.12.153
      [26]
      S. Anirban, T. Paul, P.T. Das, T.K. Nath, and A. Dutta, Microstructure and electrical relaxation studies of chemically derived Gd–Nd co-doped nanocrystalline ceria electrolytes, Solid State Ionics, 270(2015), p. 73. doi: 10.1016/j.ssi.2014.12.011
      [27]
      M. Kahlaoui, A. Inoubli, S. Chefi, et al., Structural, chemical, and electrochemical properties of co-doped fluorite oxides Ce0.8La0.2− xTl xO2− δ as electrolyte materials for solid oxide fuel cells, Int. J. Hydrogen Energy, 41(2016), No. 8, p. 4751. doi: 10.1016/j.ijhydene.2016.01.044
      [28]
      Z.T. Wang, Y.W. Zeng, C.M. Li, Z.P. Ye, L.L. Cao, and Y. Zhang, Structures and electrical conductivities of Gd3+ and Fe3+ co-doped cerium oxide electrolytes sintered at low temperature for ILT-SOFCs, Ceram. Int., 44(2018), No. 9, p. 10328. doi: 10.1016/j.ceramint.2018.03.041
      [29]
      Z.L. Wu, M.J. Li, J. Howe, H.M. Meyer, III, and S.H. Overbury, Probing defect sites on CeO2 nanocrystals with well-defined surface planes by Raman spectroscopy and O2 adsorption, Langmuir, 26(2010), No. 21, p. 16595. doi: 10.1021/la101723w
      [30]
      S. Anirban and A. Dutta, Revisiting ionic conductivity of rare earth doped ceria: Dependency on different factors, Int. J. Hydrogen Energy, 45(2020), No. 46, p. 25139. doi: 10.1016/j.ijhydene.2020.06.119
      [31]
      R. Schmitt, A. Nenning, O. Kraynis, et al., A review of defect structure and chemistry in ceria and its solid solutions, Chem. Soc. Rev., 49(2020), No. 2, p. 554. doi: 10.1039/C9CS00588A
      [32]
      Y.C. Wu and C.C. Lin, The microstructures and property analysis of aliovalent cations (Sm3+, Mg2+, Ca2+, Sr2+, Ba2+) co-doped ceria-base electrolytes after an aging treatment, Int. J. Hydrogen Energy, 39(2014), No. 15, p. 7988. doi: 10.1016/j.ijhydene.2014.03.063
      [33]
      I. Kosacki, T. Suzuki, H.U. Anderson, and P. Colomban, Raman scattering and lattice defects in nanocrystalline CeO2 thin films, Solid State Ionics, 149(2002), No. 1-2, p. 99. doi: 10.1016/S0167-2738(02)00104-2
      [34]
      A. Mineshige, T. Taji, Y. Muroi, et al., Oxygen chemical potential variation in ceria-based solid oxide fuel cells determined by Raman spectroscopy, Solid State Ionics, 135(2000), No. 1-4, p. 481. doi: 10.1016/S0167-2738(00)00403-3
      [35]
      S.A. Ansari, M.M. Khan, M.O. Ansari, S. Kalathil, J. Lee, and M.H. Cho, Band gap engineering of CeO2 nanostructure using an electrochemically active biofilm for visible light applications, RSC Adv., 4(2014), No. 32, p. 16782. doi: 10.1039/C4RA00861H
      [36]
      X.Y. Zhang, J.Q. Qin, Y.N. Xue, et al., Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods, Sci. Rep., 4(2014), art. No. 4596. doi: 10.1038/srep04596
      [37]
      S. Sonsupap, P. Kidkhunthod, N. Chanlek, S. Pinitsoontorn, and S. Maensiri, Fabrication, structure, and magnetic properties of electrospun Ce0.96Fe0.04O2 nanofibers, Appl. Surf. Sci., 380(2016), p. 16. doi: 10.1016/j.apsusc.2016.02.105
      [38]
      M. Caglar and F. Yakuphanoglu, Structural and optical properties of copper doped ZnO films derived by sol–gel, Appl. Surf. Sci., 258(2012), No. 7, p. 3039. doi: 10.1016/j.apsusc.2011.11.033
      [39]
      N. Shaheen, Z. Chen, M. Alomar, et al., Enabling fast ionic transport in CeO2–La1−2 xBa xBi xFeO3 nanocomposite electrolyte for low temperature solid oxide fuel cell application, RSC Adv., 13(2023), No. 30, p. 20663. doi: 10.1039/D3RA01698F
      [40]
      M. Yousaf, Y.Z. Lu, E.Y. Hu, et al., Interfacial disordering and heterojunction enabling fast proton conduction, Small Methods, 7(2023), No. 9, art. No. 2300450. doi: 10.1002/smtd.202300450
      [41]
      J.M. Zheng, H. Zhu, W.Q. Li, et al., Numerical study on the electron-blocking effect and optimized operation parameters of ceria-SOFCs with the pure Sm doping CeO2 electrolyte, Int. J. Hydrogen Energy, 46(2021), No. 24, p. 13318. doi: 10.1016/j.ijhydene.2021.01.164
      [42]
      T. Mori, J. Drennan, J.H. Lee, J.G. Li, and T. Ikegami, Oxide ionic conductivity and microstructures of Sm- or La-doped CeO2-based systems, Solid State Ionics, 154-155(2002), p. 461. doi: 10.1016/S0167-2738(02)00483-6
      [43]
      S.F. Wang, Y.L. Liao, Y.F. Hsu, and P. Jasinski, Effects of LiNi0.8Co0.15Al0.05O2 electrodes on the conduction mechanism of Sm0.2Ce0.8O2− δ electrolyte and performance of low-temperature solid oxide fuel cells, J. Power Sources, 546(2022), p. 231995. doi: 10.1016/j.jpowsour.2022.231995
      [44]
      X.Z. Peng, Y.F. Tian, Y. Liu, et al., A double perovskite decorated carbon-tolerant redox electrode for symmetrical SOFC, Int. J. Hydrogen Energy, 45(2020), No. 28, p. 14461. doi: 10.1016/j.ijhydene.2020.03.151
      [45]
      X.M. Zhou and F. Zhou, Application of La0.3Sr0.7Fe0.7Ti0.3O3− δ/GDC electrolyte in LT-SOFC, Int. J. Hydrogen Energy, 46(2021), No. 15, p. 9988. doi: 10.1016/j.ijhydene.2020.01.171
      [46]
      Y.J. Meng, W. Zhang, Z.L. He, et al., Partially reduced Ni0.8Co0.15Al0.05LiO2− δ for low-temperature SOFC cathode, Int. J. Hydrogen Energy, 46(2021), No. 15, p. 9874. doi: 10.1016/j.ijhydene.2020.05.150
      [47]
      N. Shi, F. Su, D.M. Huan, et al., Performance and DRT analysis of P-SOFCs fabricated using new phase inversion combined tape casting technology, J. Mater. Chem. A, 5(2017), No. 37, p. 19664. doi: 10.1039/C7TA04967F
      [48]
      A. Oz, K. Singh, D. Gelman, V. Thangadurai, and Y. Tsur, Understanding of oxygen reduction reaction on perovskite-type Ba0.5Sr0.5Fe0.91Al0.09O3− δ and Ba0.5Sr0.5Fe0.8Cu0.2O3− δ using AC impedance spectroscopy genetic programming, J. Phys. Chem. C, 122(2018), No. 27, p. 15097. doi: 10.1021/acs.jpcc.8b03036
      [49]
      I. Garbayo, D. Pla, A. Morata, L. Fonseca, N. Sabaté, and A. Tarancón, Full ceramic micro solid oxide fuel cells: Towards more reliable MEMS power generators operating at high temperatures, Energy Environ. Sci., 7(2014), No. 11, p. 3617. doi: 10.1039/C4EE00748D
      [50]
      N. Mahato, A. Banerjee, A. Gupta, S. Omar, and K. Balani, Progress in material selection for solid oxide fuel cell technology: A review, Prog. Mater. Sci., 72(2015), p. 141. doi: 10.1016/j.pmatsci.2015.01.001
      [51]
      K. Prabhakaran, M.O. Beigh, J. Lakra, N.M. Gokhale, and S.C. Sharma, Characteristics of 8mol% yttria stabilized zirconia powder prepared by spray drying process, J. Mater. Process. Technol., 189(2007), No. 1-3, p. 178. doi: 10.1016/j.jmatprotec.2007.01.019
      [52]
      E. Fabbri, A. D'Epifanio, E.D. Bartolomeo, S. Licoccia, and E. Traversa, Tailoring the chemical stability of Ba(Ce0.8− xZr x)Y0.2O3− δ protonic conductors for intermediate temperature solid oxide fuel cells (IT-SOFCs), Solid State Ionics, 179(2008), No. 15-16, p. 558. doi: 10.1016/j.ssi.2008.04.002
      [53]
      C. Zuo, S. Zha, M. Liu, M. Hatano, and M. Uchiyama, Ba(Zr0.1Ce0.7Y0.2)O3− δ as an electrolyte for low-temperature solid-oxide fuel cells, Adv. Mater., 18(2006), No. 24, p. 3318. doi: 10.1002/adma.200601366
      [54]
      M.A.K.Y. Shah, Y.Z. Lu, N. Mushtaq, et al., Perovskite Al–SrTiO3 semiconductor electrolyte with superionic conduction in ceramic fuel cells, Sustain. Energy Fuels, 6(2022), No. 16, p. 3794. doi: 10.1039/D2SE00643J
      [55]
      F.Z. Wang, E.Y. Hu, H. Wu, et al., Surface-engineered homostructure for enhancing proton transport, Small Meth., 6(2022), No. 1, art. No. 2100901. doi: 10.1002/smtd.202100901
      [56]
      D.A. Medvedev, J.G. Lyagaeva, E.V. Gorbova, A.K. Demin, and P. Tsiakaras, Advanced materials for SOFC application: Strategies for the development of highly conductive and stable solid oxide proton electrolytes, Prog. Mater. Sci., 75(2016), p. 38. doi: 10.1016/j.pmatsci.2015.08.001

    Catalog


    • /

      返回文章
      返回