留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图(8)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  259
  • HTML全文浏览量:  107
  • PDF下载量:  29
  • 被引次数: 0
Yong Hou, Shuo Zhang, Jie Dang, Jia Guo, Hanghang Zhou,  and Xuewei Lü, Viscosity and structure relationship with equimolar substitution of CaO with MgO in the CaO–MgO–Al2O3–SiO2 slag melts, Int. J. Miner. Metall. Mater.,(2025). https://doi.org/10.1007/s12613-024-2913-9
Cite this article as:
Yong Hou, Shuo Zhang, Jie Dang, Jia Guo, Hanghang Zhou,  and Xuewei Lü, Viscosity and structure relationship with equimolar substitution of CaO with MgO in the CaO–MgO–Al2O3–SiO2 slag melts, Int. J. Miner. Metall. Mater.,(2025). https://doi.org/10.1007/s12613-024-2913-9
引用本文 PDF XML SpringerLink
研究论文

CaO–MgO–Al2O3–SiO2熔渣中MgO等摩尔取代CaO时的粘度和结构关系


  • 通讯作者:

    侯勇    E-mail: yhou1004@cqu.edu.cn

    吕学伟    E-mail: lvxuewei@163.com

文章亮点

  • (1) 研究了MgO等摩尔替代CaO对CaO–MgO–Al2O3–SiO2熔渣粘度和结构的影响规律
  • (2) 随着MgO替代CaO,熔渣粘度先降低后增加,而聚合度呈现单调增加趋势
  • (3) 替代过程中非桥氧的键强变化是导致粘度出现最小值的主要因素
  • 作为冶金过程中的基础渣系,CaO–MgO–Al2O3–SiO2熔渣一直备受关注。尽管该体系的粘度在文献中已有大量报道,但仍有一些科学问题尚未澄清,特别是在高Al2O3体系中MgO替代CaO所引起的粘度变化。从高炉炼铁的角度来看,铁矿石中Al2O3含量的增加会导致炉渣中Al2O3含量的相应增加。目前,高炉中高铝渣系的Al2O3含量一般限制在16wt%–18.5wt%,无法进一步突破。因此,了解Al2O3含量在16wt%–18.5wt%范围内的炉渣粘度变化有助于促进高铝铁矿石的规模化应用。本文研究了MgO等摩尔替代CaO对CaO–MgO–10mol%Al2O3–45mol%SiO2熔渣(Al2O3含量换算成质量分数为16wt%–18.5wt%)粘度和结构的影响。研究发现,随着MgO替代量从0增加到15mol%,熔渣粘度先下降,然后随着替代量的进一步增加而上升。然而,现有文献中的粘度模型无法预测这种变化趋势。在替代过程中,与每个配位硅原子相连的桥氧的平均数量呈上升趋势。此外,MgO对桥氧的弱打断能力导致非桥氧减少,从而增加了熔渣的聚合度。结构分析表明,聚合度是决定熔渣粘度总体趋势的主要因素,但不是唯一因素。键强是影响粘度的另一个重要因素。粘度最小值的出现可归因于CaO和MgO解聚[SiO4]和[AlO4]四面体结构时产生的非桥氧的键强的复杂演变。
  • Research Article

    Viscosity and structure relationship with equimolar substitution of CaO with MgO in the CaO–MgO–Al2O3–SiO2 slag melts

    + Author Affiliations
    • Currently, the Al2O3 content in the high-alumina slag systems within blast furnaces is generally limited to 16wt%–18.5wt%, making it challenging to overcome this limitation. Unlike most studies that concentrated on managing the MgO/Al2O3 ratio or basicity, this paper explored the effect of equimolar substitution of MgO for CaO on the viscosity and structure of a high-alumina CaO–MgO–Al2O3–SiO2 slag system, providing theoretical guidance and data to facilitate the application of high-alumina ores. The results revealed that the viscosity first decreased and then increased with higher MgO substitution, reaching a minimum at 15mol% MgO concentration. Fourier transform infrared spectroscopy (FTIR) results found that the depths of the troughs representing [SiO4] tetrahedra, [AlO4] tetrahedra, and Si–O–Al bending became progressively deeper with increased MgO substitution. Deconvolution of the Raman spectra showed that the average number of bridging oxygens per Si atom and the $ {X_{{{\text{Q}}^3}}}{\text{/}}{X_{{{\text{Q}}^2}}} $ ($ {X_{{{\text{Q}}^i}}} $ is the molar fraction of Qi unit, and i is the number of bridging oxygens in a [SiO4] tetrahedral unit) ratio increased from 2.30 and 1.02 to 2.52 and 2.14, respectively, indicating a progressive polymerization of the silicate structure. X-ray photoelectron spectroscopy (XPS) results highlighted that non-bridging oxygen content decreased from 77.97mol% to 63.41mol% with increasing MgO concentration, whereas bridging oxygen and free oxygen contents increased. Structural analysis demonstrated a gradual increase in the polymerization degree of the tetrahedral structure with the increase in MgO substitution. However, bond strength is another important factor affecting the slag viscosity. The occurrence of a viscosity minimum can be attributed to the complex evolution of bond strengths of non-bridging oxygens generated during depolymerization of the [SiO4] and [AlO4] tetrahedral structures by CaO and MgO.
    • loading
    • [1]
      K.H. Kim, S. Sukenaga, M. Tashiro, K. Kanehashi, S. Yoshida, and H. Shibata, Variation in viscosity of aluminosilicate melts with MgO/CaO molar ratio: Influence of five-fold coordinated aluminum, J. Non Cryst. Solids, 587(2022), art. No. 121600. doi: 10.1016/j.jnoncrysol.2022.121600
      [2]
      T. Talapaneni, N. Yedla, S. Pal, and S. Sarkar, Experimental and theoretical studies on the viscosity–structure correlation for high alumina-silicate melts, Metall. Mater. Trans. B, 48(2017), No. 3, p. 1450. doi: 10.1007/s11663-017-0963-3
      [3]
      J. Ma, G.Q. Fu, W. Li, and M.Y. Zhu, Influence of TiO2 on the melting property and viscosity of Cr-containing high-Ti melting slag, Int. J. Miner. Metall. Mater., 27(2020), No. 3, p. 310. doi: 10.1007/s12613-019-1914-6
      [4]
      Y.H. Yu, W.G. Liu, and H.B. Zuo, Viscosity and desulphurisation behaviour of CaO–SiO2–MgO–Al2O3–BaO–MnO slag, Ironmaking Steelmaking., 50(2023), No. 10, p. 1420. doi: 10.1080/03019233.2023.2188525
      [5]
      Z.H. Yan, Q. Zhao, C.Z. Han, X.H. Mei, C.J. Liu, and M.F. Jiang, Effects of iron oxide on crystallization behavior and spatial distribution of spinel in stainless steel slag, Int. J. Miner. Metall. Mater., 31(2024), No. 2, p. 292. doi: 10.1007/s12613-023-2713-7
      [6]
      Y. Hou, G.H. Zhang, and K.C. Chou, Mixed alkali effect in SiO2–CaO–Al2O3–TiO2–R2O (R = Li, Na) glass ceramics, J. Alloys Compd., 856(2021), art. No. 158239. doi: 10.1016/j.jallcom.2020.158239
      [7]
      R.Y. Shao, X. Liu, H. Li, and H. Zhou, Experimental study on flow properties of blast furnace slag with different alumina contents based on the image measurement method, Ceram. Int., 49(2023), No. 22, p. 34603. doi: 10.1016/j.ceramint.2023.08.109
      [8]
      B.M. Abel, J.C. Mauro, M.M. Smedskjaer, et al., Liquidus surface of MgO–CaO–Al2O3–SiO2 glass-forming systems, J. Non Cryst. Solids, 363(2013), p. 39. doi: 10.1016/j.jnoncrysol.2012.12.020
      [9]
      S. Zhang, Y.L. Zhang, and S.W. Wu, Effects of ZnO, FeO and Fe2O3 on the spinel formation, microstructure and physicochemical properties of augite-based glass ceramics, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1207. doi: 10.1007/s12613-022-2489-1
      [10]
      Y.M. Gao, S.B. Wang, C. Hong, X.J. Ma, and F. Yang, Effects of basicity and MgO content on the viscosity of the SiO2–CaO–MgO–9wt%Al2O3 slag system, Int. J. Miner. Metall. Mater., 21(2014), No. 4, p. 353. doi: 10.1007/s12613-014-0916-7
      [11]
      G.X. Qiu, D.J. Miao, X.L. Wei, C. Bai, and X.M. Li, Effect of MgO/Al2O3 and CaO/SiO2 on the metallurgical properties of CaO–SiO2–Al2O3–MgO–TiO2 slag, J. Non Cryst. Solids, 585(2022), art. No. 121545. doi: 10.1016/j.jnoncrysol.2022.121545
      [12]
      P.C. Li and X.J. Ning, Effects of MgO/Al2O3 ratio and basicity on the viscosities of CaO–MgO–SiO2–Al2O3 slags: Experiments and modeling, Metall. Mater. Trans. B, 47(2016), No. 1, p. 446. doi: 10.1007/s11663-015-0470-3
      [13]
      N. Saito, N. Hori, K. Nakashima, and K. Mori, Viscosity of blast furnace type slags, Metall. Mater. Trans. B, 34(2003), No. 5, p. 509. doi: 10.1007/s11663-003-0018-9
      [14]
      J.S. Machin, T.B. Yee, and D.L. Hanna, Viscosity studies of system CaO–MgO–Al2O3–SiO2: III, 35, 45, and 50% SiO2, J. Am. Ceram. Soc., 35(1952), No. 12, p. 322. doi: 10.1111/j.1151-2916.1952.tb13057.x
      [15]
      H. Kim, W.H. Kim, I. Sohn, and D.J. Min, The effect of MgO on the viscosity of the CaO–SiO2–20 wt%Al2O3–MgO slag system, Steel Res. Int., 81(2010), No. 4, p. 261. doi: 10.1002/srin.201000019
      [16]
      F. Johannsen and H. Brunion, Untersuchungen zur Viskositat von Rennschlacken, Z. Erzbergbau MetallhuttenWes., 12(1959), No. 5-6, p. 272.
      [17]
      U. Veit and C. Rüssel, Viscosity and liquidus temperature of quaternary glasses close to an eutectic composition in the CaO–MgO–Al2O3–SiO2 system, J. Mater. Sci., 52(2017), No. 13, p. 8280. doi: 10.1007/s10853-017-1044-3
      [18]
      S. Li, Z.A. Liu, L.Q. Yin, et al., The fiber spinnability and mixed alkaline effect for calcium magnesium aluminosilicate glasses, J. Non Cryst. Solids, 557(2021), art. No. 120643. doi: 10.1016/j.jnoncrysol.2021.120643
      [19]
      W.G. Liu, Z.G. Pang, J.S. Wang, H.B. Zuo, and Q.G. Xue, Investigation of viscosity and structure of CaO–SiO2–MgO–Al2O3–BaO–B2O3 slag melt, Ceram. Int., 48(2022), No. 12, p. 17123. doi: 10.1016/j.ceramint.2022.02.268
      [20]
      G.H. Zhang, K.C. Chou, and K. Mills, Modelling viscosities of CaO–MgO–Al2O3–SiO2 molten slags, ISIJ Int., 52(2012), No. 3, p. 355. doi: 10.2355/isijinternational.52.355
      [21]
      H.Y. Tian, D.Q. Zhu, J. Pan, C.C. Yang, W.Q. Huang, and M.S. Chu, Effect mechanism of aluminum occurrence and content on the induration characteristics of iron ore pellets, Int. J. Miner. Metall. Mater., 30(2023), No. 12, p. 2334. doi: 10.1007/s12613-023-2725-3
      [22]
      H. Park, J.Y. Park, G.H. Kim, and I. Sohn, Effect of TiO2 on the viscosity and slag structure in blast furnace type slags, Steel Res. Int., 83(2012), No. 2, p. 150. doi: 10.1002/srin.201100249
      [23]
      M. Chen, D.W. Zhang, M.Y. Kou, and B.J. Zhao, Viscosities of iron blast furnace slags, ISIJ Int., 54(2014), No. 9, p. 2025. doi: 10.2355/isijinternational.54.2025
      [24]
      Z.M. Yan, R.G. Reddy, X.W. Lv, Z.D. Pang, and W.C. He, Structure-based viscosity model development for titania aluminosilicate slags, Ironmaking Steelmaking, 47(2020), No. 2, p. 203. doi: 10.1080/03019233.2018.1510876
      [25]
      Q.F. Shu, A viscosity estimation model for molten slags in Al2O3–CaO–MgO–SiO2 system, Steel Res. Int., 80(2009), No. 2, p. 107.
      [26]
      K.C. Mills and S. Sridhar, Viscosities of ironmaking and steelmaking slags, Ironmaking Steelmaking., 26(1999), No. 4, p. 262. doi: 10.1179/030192399677121
      [27]
      G. Urbain, Viscosity estimation of slags, Steel Res., 58(1987), p. 111. doi: 10.1002/srin.198701513
      [28]
      S.S. Zhang, Z.Y. Wang, J.L. Zhang, P.M. Guo, D.W. Jiang, and R.S. Si, Effect of TiO2 and FeO on viscosity and structure of HIsmelt titanium-containing slag, Ceram. Int., 50(2024), No. 1, p. 791. doi: 10.1016/j.ceramint.2023.10.163
      [29]
      X. Shen, M. Chen, N. Wang, and D. Wang, Viscosity property and melt structure of CaO–MgO–SiO2–Al2O3–FeO slag system, ISIJ Int., 59(2019), No. 1, p. 9. doi: 10.2355/isijinternational.ISIJINT-2018-479
      [30]
      G.H. Kim and I. Sohn, Effect of Al2O3 on the viscosity and structure of calcium silicate-based melts containing Na2O and CaF2, J. Non Cryst. Solids, 358(2012), No. 12-13, p. 1530. doi: 10.1016/j.jnoncrysol.2012.04.009
      [31]
      Y. Hou, S. Zhang, J. Guo, H.H. Zhou, and X.W. Lv, Effect of BaO/Al2O3 molar ratio on the viscosity and structure of CaO–SiO2–MgO–Al2O3–BaO slag, J. Non Cryst. Solids, 626(2024), art. No. 122815. doi: 10.1016/j.jnoncrysol.2023.122815
      [32]
      P. Gillet, Raman spectroscopy at high pressure and high temperature. Phase transitions and thermodynamic properties of minerals, Phys. Chem. Miner., 23(1996), No. 4, p. 263.
      [33]
      I. Daniel, P.F. McMillan, P. Gillet, and B.T. Poe, Raman spectroscopic study of structural changes in calcium aluminate (CaAl2O4) glass at high pressure and high temperature, Chem. Geol., 128(1996), No. 1-4, p. 5. doi: 10.1016/0009-2541(95)00159-X
      [34]
      L.G. Hwa, S.L. Hwang, and L.C. Liu, Infrared and Raman spectra of calcium alumino–silicate glasses, J. Non Cryst. Solids, 238(1998), No. 3, p. 193. doi: 10.1016/S0022-3093(98)00688-7
      [35]
      R.F. Wang, B. Zhang, Y.D. Liang, C.J. Liu, and M.F. Jiang, Micro insight into foaming behavior of CaO–SiO2–Fe xO–MgO-based slag induced by slag/metal reaction, Ceram. Int., 49(2023), No. 11, p. 17185. doi: 10.1016/j.ceramint.2023.02.082
      [36]
      H.Y. Wang, Y. Li, S.Q. Jiao, and G.H. Zhang, Preparation of glass-ceramic by low-pressure hot-pressing sintering of CaO–MgO–Al2O3–SiO2 (–CaCl2) glass powder, J. Eur. Ceram. Soc., 43(2023), No. 15, p. 7134. doi: 10.1016/j.jeurceramsoc.2023.07.057
      [37]
      B.O. Mysen, D. Virgo, and C.M. Scarfe, Relations between the anionic structure and viscosity of silicate melts—A Raman spectroscopic study, Am. Mineral., 65(1980), No. 7-8, p. 690.
      [38]
      J.D. Frantza and B.O. Mysen, Raman spectra and structure of BaO–SiO2, SrO–SiO2 and CaO–SiO2 melts to 1600°C, Chem. Geol., 121(1995), No. 1-4, p. 155. doi: 10.1016/0009-2541(94)00127-T
      [39]
      P. McMillan, Structural studies of silicate glasses and melts—Applications and limitations of Raman spectroscopy, Am. Mineral., 69(1984), p. 622.
      [40]
      T. Wu, Y.L. Zhang, F. Yuan, and Z.Q. An, Effects of the Cr2O3 content on the viscosity of CaO–SiO2–10pct Al2O3–Cr2O3 quaternary slag, Metall. Mater. Trans. B, 49(2018), No. 4, p. 1719. doi: 10.1007/s11663-018-1258-z
      [41]
      Y. Hou, G.H. Zhang, K.C. Chou, and D.Q. Fan, Mixed alkali effect in viscosity of CaO–SiO2–Al2O3–R2O melts, Metall. Mater. Trans. B, 51(2020), No. 3, p. 985. doi: 10.1007/s11663-020-01830-y
      [42]
      J.H. Park, Structure–property relationship of CaO–MgO–SiO2 slag: Quantitative analysis of Raman spectra, Metall. Mater. Trans. B, 44(2013), No. 4, p. 938. doi: 10.1007/s11663-013-9825-9
      [43]
      J.H. Park and P.C.H. Rhee, Ionic properties of oxygen in slag, J. Non Cryst. Solids, 282(2001), No. 1, p. 7. doi: 10.1016/S0022-3093(01)00323-4
      [44]
      Y.P. Wen, Q.F. Shu, Y. Lin, and T. Fabritius, Effect of SiO2 content and mass ratio of CaO to Al2O3 on the viscosity and structure of CaO–Al2O3–B2O3–SiO2 slags, ISIJ Int., 63(2023), No. 1, p. 1. doi: 10.2355/isijinternational.ISIJINT-2022-288
      [45]
      H. Kim and I. Sohn, Effect of CaF2 and Li2O additives on the viscosity of CaO–SiO2–Na2O slags, ISIJ Int., 51(2011), No. 1, p. 1. doi: 10.2355/isijinternational.51.1
      [46]
      G.H. Zhang, K.C. Chou, and K. Mills, A structurally based viscosity model for oxide melts, Metall. Mater. Trans. B, 45(2014), No. 2, p. 698. doi: 10.1007/s11663-013-9980-z
      [47]
      W.G. Liu, Y.B. Chen, J.S. Chen, J.S. Wang, and H.B. Zuo, Viscosity and structure evolution of bearing-BaO slag melt with the low CaO/SiO2 mass ratio of 0.7, J Am Ceram Soc., 105(2022), No. 2, p. 842. doi: 10.1111/jace.18110
      [48]
      L. Mongalo, A.S. Lopis, and G.A. Venter, Molecular dynamics simulations of the structural properties and electrical conductivities of CaO–MgO–Al2O3–SiO2 melts, J. Non Cryst. Solids, 452(2016), p. 194. doi: 10.1016/j.jnoncrysol.2016.08.042
      [49]
      M.J. Toplis and D.B. Dingwell, Shear viscosities of CaO–Al2O3–SiO2 and MgO–Al2O3–SiO2 liquids: Implications for the structural role of aluminium and the degree of polymerisation of synthetic and natural aluminosilicate melts, Geochim. Cosmochim. Acta, 68(2004), No. 24, p. 5169. doi: 10.1016/j.gca.2004.05.041
      [50]
      J.A. Duffy, A review of optical basicity and its applications to oxidic systems, Geochim. Cosmochim. Acta, 57(1993), No. 16, p. 3961. doi: 10.1016/0016-7037(93)90346-X
      [51]
      S.F. Zhang, X. Zhang, H.J. Peng, et al., Structure analysis of CaO–SiO2–Al2O3–TiO2 slag by molecular dynamics simulation and FT-IR spectroscopy, ISIJ Int., 54(2014), No. 4, p. 734. doi: 10.2355/isijinternational.54.734
      [52]
      J.H. Liu, Y.W. Yu, W.G. Kong, Q. Wang, Z.J. He, and X. Yang, Effect of Al2O3 on the molten slag microstructure information by molecular dynamics simulation and experimental analysis, J. Non Cryst. Solids, 578(2022), art. No. 121354. doi: 10.1016/j.jnoncrysol.2021.121354
      [53]
      G.H. Zhang, K.C. Chou, and X.Y. Lv, Influences of different components on viscosities of CaO–MgO–Al2O3–SiO2 melts, J. Min. Metall. Sect. B, 50(2014), No. 2, p. 157. doi: 10.2298/JMMB130819016Z

    Catalog


    • /

      返回文章
      返回