留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图(10)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  293
  • HTML全文浏览量:  133
  • PDF下载量:  29
  • 被引次数: 0
Yumeng Wang, Qinyi Guo, Bin Hu, and Haiwen Luo, Effect of Nb–V microalloying on the hot deformation behavior of medium Mn steels, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2914-8
Cite this article as:
Yumeng Wang, Qinyi Guo, Bin Hu, and Haiwen Luo, Effect of Nb–V microalloying on the hot deformation behavior of medium Mn steels, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2914-8
引用本文 PDF XML SpringerLink
研究论文

铌钒微合金化对中锰钢热变形行为的影响


  • 通讯作者:

    罗海文    E-mail: luohaiwen@ustb.edu.cn

文章亮点

  • (1) 构建了两种中锰钢的本构方程和热加工图
  • (2) 比较了固溶铌和碳化铌析出对动态再结晶的抑制效果
  • (3) 系统地研究了铌钒微化对中锰钢热加工性能的影响
  • 中锰钢因其优异的力学性能和较低的合金成本被认为是第三代先进高强钢的理想候选材料之一。然而,目前对于中锰钢热变形行为的研究有限,尤其缺乏铌钒微合金化对中锰钢热变形行为影响的量化研究。本文通过单轴热压缩试验建立了本构方程,并进一步构建了变形激活能图和热加工图可识别导致金属流动失稳的工艺窗口,并对比总结了铌钒微合金化对中锰钢热变形的影响:(1)铌钒微合金化导致低速变形时动态再结晶所需的临界应变增加,但该增加量随着变形温度升高而逐渐减小至不明显,这表明低温下析出的碳化铌对中锰钢动态再结晶的抑制作用强于较高温下固溶Nb。(2)导致中锰钢的变形激活能显著提高,甚至高于一些高锰钢,表明铌钒微合金元素对动态再结晶的迟滞作用强于固溶锰。(3)铌钒微合金化缩小了热加工窗口中流动失稳区域,即更大程度地避免形成细小再结晶晶粒与粗大未再结晶晶粒的混晶组织,从而改善中锰钢的热加工性能。
  • Research Article

    Effect of Nb–V microalloying on the hot deformation behavior of medium Mn steelsEffect of Nb–V microalloying on the hot deformation behavior of medium Mn steels

    + Author Affiliations
    • The influence of Nb–V microalloying on the hot deformation behavior and microstructures of medium Mn steel (MMS) was investigated by uniaxial hot compression tests. By establishing the constitutive equations for simulating the measured flow curves, we successfully constructed deformation activation energy (Q) maps and processing maps for identifying the region of flow instability. We concluded the following consequences of Nb–V alloying for MMS. (i) The critical strain increases and the increment diminishes with the increasing deformation temperature, suggesting that NbC precipitates more efficiently retard dynamic recrystallization (DRX) in MMS compared with solute Nb. (ii) The deformation activation energy of MMS is significantly increased and even higher than that of some reported high Mn steels, suggesting that its ability to retard DRX is greater than that of the high Mn content. (iii) The hot workability of MMS is improved by narrowing the hot processing window for the unstable flow stress, in which fine recrystallized and coarse unrecrystallized grains are present.
    • loading
    • [1]
      A. Grajcar, R. Kuziak, and W. Zalecki, Third generation of AHSS with increased fraction of retained austenite for the automotive industry, Arch. Civ. Mech. Eng., 12(2012), No. 3, p. 334. doi: 10.1016/j.acme.2012.06.011
      [2]
      B. Hu, H. Sui, Q.H. Wen, Z. Wang, A. Gramlich, and H.W. Luo, Review on the plastic instability of medium-Mn steels for identifying the formation mechanisms of Lüders and Portevin–Le Chatelier bands, Int. J. Miner. Metall. Mater., 31(2024), No. 6, p. 1285. doi: 10.1007/s12613-023-2751-1
      [3]
      B.B. He, B. Hu, H.W. Yen, et al., High dislocation density-induced large ductility in deformed and partitioned steels, Science, 357(2017), No. 6355, p. 1029. doi: 10.1126/science.aan0177
      [4]
      S.S. Li and H.W. Luo, Medium-Mn steels for hot forming application in the automotive industry, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 741. doi: 10.1007/s12613-020-2179-9
      [5]
      J.W. Zhao and Z.Y. Jiang, Thermomechanical processing of advanced high strength steels, Prog. Mater. Sci., 94(2018), p. 174. doi: 10.1016/j.pmatsci.2018.01.006
      [6]
      Y.J. Wang, S. Zhao, R.B. Song, and B. Hu, Hot ductility behavior of a Fe–0.3C–9Mn–2Al medium Mn steel, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 422. doi: 10.1007/s12613-020-2206-x
      [7]
      G.Z. Quan, X. Wang, Y.L. Li, and L. Zhang, Analytical descriptions of dynamic softening mechanisms for Ti–13Nb–13Zr biomedical alloy in single phase and two phase regions, Arch. Metall. Mater., 62(2017), No. 4, p. 2029. doi: 10.1515/amm-2017-0302
      [8]
      T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Prog. Mater. Sci., 60(2014), p. 130. doi: 10.1016/j.pmatsci.2013.09.002
      [9]
      J. Han, S.J. Lee, J.G. Jung, and Y.K. Lee, The effects of the initial martensite microstructure on the microstructure and tensile properties of intercritically annealed Fe–9Mn–0.05C steel, Acta Mater., 78(2014), p. 369. doi: 10.1016/j.actamat.2014.07.005
      [10]
      H.B. Feng, S.H. Li, K.X. Wang, et al., Effect of deformation parameters on the austenite dynamic recrystallization behavior of a eutectoid pearlite rail steel, Int. J. Miner. Metall. Mater., 31(2024), No. 5, p. 833. doi: 10.1007/s12613-023-2805-4
      [11]
      X.Y. Sun, M. Zhang, Y. Wang, Y.Y. Sun, and Y.H. Wang, Kinetics and numerical simulation of dynamic recrystallization behavior of medium Mn steel in hot working, Steel Res. Int., 91(2020), No. 7, art. No. 1900675. doi: 10.1002/srin.201900675
      [12]
      X.Z. Liu, Y. Sun, X.Y. Zhang, H.P. Li, Z.C. Li, and L.F. He, Thermal deformation behavior and microstructure evolution of Fe−8.5Mn−1.5Al light-weight medium manganese steel, J. Mater. Res. Technol., 26(2023), p. 605.
      [13]
      T. Niu, Y.L. Kang, H.W. Gu, Y.Q. Yin, M.L. Qiao, and J.X. Jiang, Effect of Nb on the dynamic recrystallization behavior of high-grade pipeline steels, Int. J. Miner. Metall. Mater., 17(2010), No. 6, p. 742. doi: 10.1007/s12613-010-0383-8
      [14]
      B.H. Chen and H. Yu, Hot ductility behavior of V–N and V–Nb microalloyed steels, Int. J. Miner. Metall. Mater., 19(2012), No. 6, p. 525. doi: 10.1007/s12613-012-0590-6
      [15]
      Y. Luo, H.Z. Lu, N. Min, W. Li, and X.J. Jin, Effect of Mo and Nb on mechanical properties and hydrogen embrittlement of hot-rolled medium-Mn steels, Mater. Sci. Eng. A, 844(2022), art. No. 143108. doi: 10.1016/j.msea.2022.143108
      [16]
      R.S. Varanasi, B. Gault, and D. Ponge, Effect of Nb micro-alloying on austenite nucleation and growth in a medium manganese steel during intercritical annealing, Acta Mater., 229(2022), art. No. 117786. doi: 10.1016/j.actamat.2022.117786
      [17]
      Y.S. Zhu, B. Hu, and H.W. Luo, Influence of Nb and V on microstructure and mechanical properties of hot–rolled medium Mn steels, Steel Res. Int., 89(2018), No. 9, art. No. 1700389. doi: 10.1002/srin.201700389
      [18]
      P.P. Singh, S. Ghosh, and S. Mula, Flow stress modeling and microstructural characteristics of a low carbon Nb–V microalloyed steel, Mater. Today Commun., 30(2022), art. No. 103156. doi: 10.1016/j.mtcomm.2022.103156
      [19]
      N. Tsuji, Y. Matsubara, and Y. Saito, Dynamic recrystallization of ferrite in interstitial free steel, Scripta. Mater., 37(1997), No. 4, p. 477. doi: 10.1016/S1359-6462(97)00123-1
      [20]
      X.H. Wang, Z.B. Liu, and H.W. Luo, Hot deformation characterization of ultrahigh strength stainless steel through processing maps generated using different instability criteria, Mater. Charact., 131(2017), p. 480. doi: 10.1016/j.matchar.2017.07.041
      [21]
      K.M. Liu, Z.Y. Jiang, H.T. Zhou, D.P. Lu, A. Atrens, and Y.L. Yang, Effect of heat treatment on the microstructure and properties of deformation-processed Cu–7Cr in situ composites, J. Mater. Eng. Perform., 24(2015), No. 11, p. 4340. doi: 10.1007/s11665-015-1747-z
      [22]
      D.L. Yin, K.F. Zhang, G.F. Wang, and W.B. Han, Warm deformation behavior of hot-rolled AZ31 Mg alloy, Mater. Sci. Eng. A, 392(2005), No. 1-2, p. 320. doi: 10.1016/j.msea.2004.09.039
      [23]
      E.I. Poliak and J.J. Jonas, A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization, Acta Mater., 44(1996), No. 1, p. 127. doi: 10.1016/1359-6454(95)00146-7
      [24]
      G.J. Richardson, C.M. Sellars, and W.J.M. Tegart, Recrystallization during creep of nickel, Acta Metall., 14(1966), No. 10, p. 1225. doi: 10.1016/0001-6160(66)90240-9
      [25]
      C.M. Sellars and W.J.McG. Tegart, Hot workability, Int. Metall. Rev., 17(1972), No. 1, p. 1. doi: 10.1179/095066072790137765
      [26]
      H. Mirzadeh, J.M. Cabrera, J.M. Prado, and A. Najafizadeh, Hot deformation behavior of a medium carbon microalloyed steel, Mater. Sci. Eng. A, 528(2011), No. 10-11, p. 3876. doi: 10.1016/j.msea.2011.01.098
      [27]
      Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, et al., Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242, Metall. Trans. A, 15(1984), No. 10, p. 1883. doi: 10.1007/BF02664902
      [28]
      H. Mirzadeh, A. Najafizadeh, and M. Moazeny, Flow curve analysis of 17-4 PH stainless steel under hot compression test, Metall. Mater. Trans. A, 40(2009), No. 12, p. 2950. doi: 10.1007/s11661-009-0029-5
      [29]
      H.J. McQueen and N.D. Ryan, Constitutive analysis in hot working, Mater. Sci. Eng. A, 322(2002), No. 1-2, p. 43. doi: 10.1016/S0921-5093(01)01117-0
      [30]
      H.J. McQueen and D.L. Bourell, Hot workability of metals and alloys, JOM, 39(1987), No. 9, p. 28. doi: 10.1007/BF03257647
      [31]
      J.Q. Zhang, H.S. Di, X.Y. Wang, Y. Cao, J.C. Zhang, and T.J. Ma, Constitutive analysis of the hot deformation behavior of Fe–23Mn–2Al–0.2C twinning induced plasticity steel in consideration of strain, Mater. Des., 44(2013), p. 354. doi: 10.1016/j.matdes.2012.08.004
      [32]
      D.J. Li, Y.R. Feng, Z.F. Yin, et al. Hot deformation behavior of an austenitic Fe–20Mn–3Si–3Al transformation induced plasticity steel, Mater. Des., 34(2012), p. 713. doi: 10.1016/j.matdes.2011.05.031
      [33]
      H.J. McQueen, S. Yue, N.D. Ryan, and E. Fry, Hot working characteristics of steels in austenitic state, J. Mater. Process. Technol., 53(1995), No. 1-2, p. 293. doi: 10.1016/0924-0136(95)01987-P
      [34]
      F. Reyes-Calderón, I. Mejía, and J.M. Cabrera, Hot deformation activation energy (QHW) of austenitic Fe–22Mn–1.5Al–1.5Si–0.4C TWIP steels microalloyed with Nb, V, and Ti, Mater. Sci. Eng. A, 562(2013), p. 46. doi: 10.1016/j.msea.2012.10.091
      [35]
      A. Momeni, The physical interpretation of the activation energy for hot deformation of Ni and Ni–30Cu alloys, J. Mater. Res., 31(2016), No. 8, p. 1077. doi: 10.1557/jmr.2016.81
      [36]
      D. Samantaray, S. Mandal, V. Kumar, S.K. Albert, A.K. Bhaduri, and T. Jayakumar, Optimization of processing parameters based on high temperature flow behavior and microstructural evolution of a nitrogen enhanced 316L(N) stainless steel, Mater. Sci. Eng. A, 552(2012), p. 236. doi: 10.1016/j.msea.2012.05.036
      [37]
      S. Wang, L.G. Hou, J.R. Luo, J.S. Zhang, and L.Z. Zhuang, Characterization of hot workability in AA 7050 aluminum alloy using activation energy and 3-D processing map, J. Mater. Process. Technol., 225(2015), p. 110. doi: 10.1016/j.jmatprotec.2015.05.018
      [38]
      Y.V.R.K. Prasad and T. Seshacharyulu, Modelling of hot deformation for microstructural control, Int. Mater. Rev., 43(1998), No. 6, p. 243. doi: 10.1179/imr.1998.43.6.243
      [39]
      Y. Sun, W.D. Zeng, Y.Q. Zhao, X.M. Zhang, Y. Shu, and Y.G. Zhou, Research on the hot deformation behavior of Ti40 alloy using processing map, Mater. Sci. Eng. A, 528(2011), No. 3, p. 1205. doi: 10.1016/j.msea.2010.10.019

    Catalog


    • /

      返回文章
      返回