Cite this article as: |
Yumeng Wang, Qinyi Guo, Bin Hu, and Haiwen Luo, Effect of Nb–V microalloying on the hot deformation behavior of medium Mn steels, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2914-8 |
罗海文 E-mail: luohaiwen@ustb.edu.cn
[1] |
A. Grajcar, R. Kuziak, and W. Zalecki, Third generation of AHSS with increased fraction of retained austenite for the automotive industry, Arch. Civ. Mech. Eng., 12(2012), No. 3, p. 334. doi: 10.1016/j.acme.2012.06.011
|
[2] |
B. Hu, H. Sui, Q.H. Wen, Z. Wang, A. Gramlich, and H.W. Luo, Review on the plastic instability of medium-Mn steels for identifying the formation mechanisms of Lüders and Portevin–Le Chatelier bands, Int. J. Miner. Metall. Mater., 31(2024), No. 6, p. 1285. doi: 10.1007/s12613-023-2751-1
|
[3] |
B.B. He, B. Hu, H.W. Yen, et al., High dislocation density-induced large ductility in deformed and partitioned steels, Science, 357(2017), No. 6355, p. 1029. doi: 10.1126/science.aan0177
|
[4] |
S.S. Li and H.W. Luo, Medium-Mn steels for hot forming application in the automotive industry, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 741. doi: 10.1007/s12613-020-2179-9
|
[5] |
J.W. Zhao and Z.Y. Jiang, Thermomechanical processing of advanced high strength steels, Prog. Mater. Sci., 94(2018), p. 174. doi: 10.1016/j.pmatsci.2018.01.006
|
[6] |
Y.J. Wang, S. Zhao, R.B. Song, and B. Hu, Hot ductility behavior of a Fe–0.3C–9Mn–2Al medium Mn steel, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 422. doi: 10.1007/s12613-020-2206-x
|
[7] |
G.Z. Quan, X. Wang, Y.L. Li, and L. Zhang, Analytical descriptions of dynamic softening mechanisms for Ti–13Nb–13Zr biomedical alloy in single phase and two phase regions, Arch. Metall. Mater., 62(2017), No. 4, p. 2029. doi: 10.1515/amm-2017-0302
|
[8] |
T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Prog. Mater. Sci., 60(2014), p. 130. doi: 10.1016/j.pmatsci.2013.09.002
|
[9] |
J. Han, S.J. Lee, J.G. Jung, and Y.K. Lee, The effects of the initial martensite microstructure on the microstructure and tensile properties of intercritically annealed Fe–9Mn–0.05C steel, Acta Mater., 78(2014), p. 369. doi: 10.1016/j.actamat.2014.07.005
|
[10] |
H.B. Feng, S.H. Li, K.X. Wang, et al., Effect of deformation parameters on the austenite dynamic recrystallization behavior of a eutectoid pearlite rail steel, Int. J. Miner. Metall. Mater., 31(2024), No. 5, p. 833. doi: 10.1007/s12613-023-2805-4
|
[11] |
X.Y. Sun, M. Zhang, Y. Wang, Y.Y. Sun, and Y.H. Wang, Kinetics and numerical simulation of dynamic recrystallization behavior of medium Mn steel in hot working, Steel Res. Int., 91(2020), No. 7, art. No. 1900675. doi: 10.1002/srin.201900675
|
[12] |
X.Z. Liu, Y. Sun, X.Y. Zhang, H.P. Li, Z.C. Li, and L.F. He, Thermal deformation behavior and microstructure evolution of Fe−8.5Mn−1.5Al light-weight medium manganese steel, J. Mater. Res. Technol., 26(2023), p. 605.
|
[13] |
T. Niu, Y.L. Kang, H.W. Gu, Y.Q. Yin, M.L. Qiao, and J.X. Jiang, Effect of Nb on the dynamic recrystallization behavior of high-grade pipeline steels, Int. J. Miner. Metall. Mater., 17(2010), No. 6, p. 742. doi: 10.1007/s12613-010-0383-8
|
[14] |
B.H. Chen and H. Yu, Hot ductility behavior of V–N and V–Nb microalloyed steels, Int. J. Miner. Metall. Mater., 19(2012), No. 6, p. 525. doi: 10.1007/s12613-012-0590-6
|
[15] |
Y. Luo, H.Z. Lu, N. Min, W. Li, and X.J. Jin, Effect of Mo and Nb on mechanical properties and hydrogen embrittlement of hot-rolled medium-Mn steels, Mater. Sci. Eng. A, 844(2022), art. No. 143108. doi: 10.1016/j.msea.2022.143108
|
[16] |
R.S. Varanasi, B. Gault, and D. Ponge, Effect of Nb micro-alloying on austenite nucleation and growth in a medium manganese steel during intercritical annealing, Acta Mater., 229(2022), art. No. 117786. doi: 10.1016/j.actamat.2022.117786
|
[17] |
Y.S. Zhu, B. Hu, and H.W. Luo, Influence of Nb and V on microstructure and mechanical properties of hot–rolled medium Mn steels, Steel Res. Int., 89(2018), No. 9, art. No. 1700389. doi: 10.1002/srin.201700389
|
[18] |
P.P. Singh, S. Ghosh, and S. Mula, Flow stress modeling and microstructural characteristics of a low carbon Nb–V microalloyed steel, Mater. Today Commun., 30(2022), art. No. 103156. doi: 10.1016/j.mtcomm.2022.103156
|
[19] |
N. Tsuji, Y. Matsubara, and Y. Saito, Dynamic recrystallization of ferrite in interstitial free steel, Scripta. Mater., 37(1997), No. 4, p. 477. doi: 10.1016/S1359-6462(97)00123-1
|
[20] |
X.H. Wang, Z.B. Liu, and H.W. Luo, Hot deformation characterization of ultrahigh strength stainless steel through processing maps generated using different instability criteria, Mater. Charact., 131(2017), p. 480. doi: 10.1016/j.matchar.2017.07.041
|
[21] |
K.M. Liu, Z.Y. Jiang, H.T. Zhou, D.P. Lu, A. Atrens, and Y.L. Yang, Effect of heat treatment on the microstructure and properties of deformation-processed Cu–7Cr in situ composites, J. Mater. Eng. Perform., 24(2015), No. 11, p. 4340. doi: 10.1007/s11665-015-1747-z
|
[22] |
D.L. Yin, K.F. Zhang, G.F. Wang, and W.B. Han, Warm deformation behavior of hot-rolled AZ31 Mg alloy, Mater. Sci. Eng. A, 392(2005), No. 1-2, p. 320. doi: 10.1016/j.msea.2004.09.039
|
[23] |
E.I. Poliak and J.J. Jonas, A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization, Acta Mater., 44(1996), No. 1, p. 127. doi: 10.1016/1359-6454(95)00146-7
|
[24] |
G.J. Richardson, C.M. Sellars, and W.J.M. Tegart, Recrystallization during creep of nickel, Acta Metall., 14(1966), No. 10, p. 1225. doi: 10.1016/0001-6160(66)90240-9
|
[25] |
C.M. Sellars and W.J.McG. Tegart, Hot workability, Int. Metall. Rev., 17(1972), No. 1, p. 1. doi: 10.1179/095066072790137765
|
[26] |
H. Mirzadeh, J.M. Cabrera, J.M. Prado, and A. Najafizadeh, Hot deformation behavior of a medium carbon microalloyed steel, Mater. Sci. Eng. A, 528(2011), No. 10-11, p. 3876. doi: 10.1016/j.msea.2011.01.098
|
[27] |
Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, et al., Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242, Metall. Trans. A, 15(1984), No. 10, p. 1883. doi: 10.1007/BF02664902
|
[28] |
H. Mirzadeh, A. Najafizadeh, and M. Moazeny, Flow curve analysis of 17-4 PH stainless steel under hot compression test, Metall. Mater. Trans. A, 40(2009), No. 12, p. 2950. doi: 10.1007/s11661-009-0029-5
|
[29] |
H.J. McQueen and N.D. Ryan, Constitutive analysis in hot working, Mater. Sci. Eng. A, 322(2002), No. 1-2, p. 43. doi: 10.1016/S0921-5093(01)01117-0
|
[30] |
H.J. McQueen and D.L. Bourell, Hot workability of metals and alloys, JOM, 39(1987), No. 9, p. 28. doi: 10.1007/BF03257647
|
[31] |
J.Q. Zhang, H.S. Di, X.Y. Wang, Y. Cao, J.C. Zhang, and T.J. Ma, Constitutive analysis of the hot deformation behavior of Fe–23Mn–2Al–0.2C twinning induced plasticity steel in consideration of strain, Mater. Des., 44(2013), p. 354. doi: 10.1016/j.matdes.2012.08.004
|
[32] |
D.J. Li, Y.R. Feng, Z.F. Yin, et al. Hot deformation behavior of an austenitic Fe–20Mn–3Si–3Al transformation induced plasticity steel, Mater. Des., 34(2012), p. 713. doi: 10.1016/j.matdes.2011.05.031
|
[33] |
H.J. McQueen, S. Yue, N.D. Ryan, and E. Fry, Hot working characteristics of steels in austenitic state, J. Mater. Process. Technol., 53(1995), No. 1-2, p. 293. doi: 10.1016/0924-0136(95)01987-P
|
[34] |
F. Reyes-Calderón, I. Mejía, and J.M. Cabrera, Hot deformation activation energy (QHW) of austenitic Fe–22Mn–1.5Al–1.5Si–0.4C TWIP steels microalloyed with Nb, V, and Ti, Mater. Sci. Eng. A, 562(2013), p. 46. doi: 10.1016/j.msea.2012.10.091
|
[35] |
A. Momeni, The physical interpretation of the activation energy for hot deformation of Ni and Ni–30Cu alloys, J. Mater. Res., 31(2016), No. 8, p. 1077. doi: 10.1557/jmr.2016.81
|
[36] |
D. Samantaray, S. Mandal, V. Kumar, S.K. Albert, A.K. Bhaduri, and T. Jayakumar, Optimization of processing parameters based on high temperature flow behavior and microstructural evolution of a nitrogen enhanced 316L(N) stainless steel, Mater. Sci. Eng. A, 552(2012), p. 236. doi: 10.1016/j.msea.2012.05.036
|
[37] |
S. Wang, L.G. Hou, J.R. Luo, J.S. Zhang, and L.Z. Zhuang, Characterization of hot workability in AA 7050 aluminum alloy using activation energy and 3-D processing map, J. Mater. Process. Technol., 225(2015), p. 110. doi: 10.1016/j.jmatprotec.2015.05.018
|
[38] |
Y.V.R.K. Prasad and T. Seshacharyulu, Modelling of hot deformation for microstructural control, Int. Mater. Rev., 43(1998), No. 6, p. 243. doi: 10.1179/imr.1998.43.6.243
|
[39] |
Y. Sun, W.D. Zeng, Y.Q. Zhao, X.M. Zhang, Y. Shu, and Y.G. Zhou, Research on the hot deformation behavior of Ti40 alloy using processing map, Mater. Sci. Eng. A, 528(2011), No. 3, p. 1205. doi: 10.1016/j.msea.2010.10.019
|