留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图(9)

数据统计

分享

计量
  • 文章访问数:  211
  • HTML全文浏览量:  83
  • PDF下载量:  8
  • 被引次数: 0
Yiling Li, Xiaoyao Yu, Yingjie Zhou, Yao Lin, and Ying Wu, Nanostructured ZnO/BiVO4 I-scheme heterojunctions for piezocatalytic degradation of organic dyes via harvesting ultrasonic vibration energy, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2920-x
Cite this article as:
Yiling Li, Xiaoyao Yu, Yingjie Zhou, Yao Lin, and Ying Wu, Nanostructured ZnO/BiVO4 I-scheme heterojunctions for piezocatalytic degradation of organic dyes via harvesting ultrasonic vibration energy, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2920-x
引用本文 PDF XML SpringerLink
研究论文

Ⅰ型异质结构纳米ZnO/BiVO4复合物压电催化降解有机染料



  • 通讯作者:

    吴瑛    E-mail: yingwu@zjnu.cn

文章亮点

  • (1) ZnO/BiVO4催化剂首次应用于染料的压电催化降解
  • (2) ZnO与BiVO4复合增强了电荷分离能力从而具有更好的活性
  • (3) 复合催化剂的Ⅰ型异质结构有利于提高反应性能
  • (4) 40%ZnO/BiVO4显示出最高的活性和良好的可回收性
  • 压电催化能够利用自然界中的低频机械能来实现污染物的降解,具有广泛的应用前景。目前钙钛矿材料BiVO4在压电领域的应用很少。因此,本文以BiVO4为研究对象,通过构建异质结来对其进行改性,高效地抑制电荷载体重组,从而提高载流子分离效率,提升压电催化性能,为压电催化领域高效催化剂的设计提供一种新策略。采用两步法成功制备了由ZnO和BiVO4纳米球组成的ZnO/ BiVO4 Ⅰ型异质结,在降解RhB方面表现出比纯ZnO或BiVO4更好的压电催化性能。ZnO和BiVO4的协同作用增强了压电催化活性,有效地分离了电子空穴对,有利于污染物的降解。40% ZnO/BiVO4催化剂上可获得最佳的反应性能,RhB的降解速率常数为0.0765 min-1。此外,·O2-和h+作为反应活性物种能有效稳定地降解有机污染物。因此,Ⅰ型异质结构的ZnO/ BiVO4复合催化剂作为一种环境修复压电催化剂具有巨大的潜力,可为开发新型半导体异质结的实际应用提供新的见解。
  • Research Article

    Nanostructured ZnO/BiVO4 I-scheme heterojunctions for piezocatalytic degradation of organic dyes via harvesting ultrasonic vibration energy

    + Author Affiliations
    • BiVO4 porous spheres modified by ZnO were designed and synthesized using a facile two-step method. The resulting ZnO/BiVO4 composite catalysts have shown remarkable efficiency as piezoelectric catalysts for degrading Rhodamine B (RhB) under mechanical vibrations, they exhibit superior activity compared to pure ZnO. The 40wt% ZnO/BiVO4 heterojunction composite displayed the highest activity, along with good stability and recyclability. The enhanced piezoelectric catalytic activity can be attributed to the formation of an Ⅰ-scheme heterojunction structure, which can effectively inhibit the electron-hole recombination. Furthermore, hole (h+) and superoxide radical (·O2) are proved to be the primary active species. Therefore, ZnO/BiVO4 stands as an efficient and stable piezoelectric catalyst with broad potential application in the field of environmental water pollution treatment.
    • loading
    • Supplementary Information-10.1007s12613-024-2920-x.docx
    • [1]
      F.P. Peng, H.Z. Li, W.X. Xu, et al., A discovery of field-controlling selective adsorption for micro ZnO rods with unexpected piezoelectric catalytic performance, Appl. Surf. Sci., 545(2021), art. No. 149032. doi: 10.1016/j.apsusc.2021.149032
      [2]
      F. Mushtaq, X.Z. Chen, M. Hoop, et al., Piezoelectrically enhanced photocatalysis with BiFeO3 nanostructures for efficient water remediation, iScience, 4(2018), p. 236. doi: 10.1016/j.isci.2018.06.003
      [3]
      L.K. Wang, J.F. Wang, C.Y. Ye, et al., Photodeposition of CoO x nanoparticles on BiFeO3 nanodisk for efficiently piezocatalytic degradation of Rhodamine B by utilizing ultrasonic vibration energy, Ultrason. Sonochem., 80(2021), art. No. 105813. doi: 10.1016/j.ultsonch.2021.105813
      [4]
      C.C. Jin, D.M. Liu, M. Li, et al., Preparation of multifunctional PLZT nanowires and their applications in piezocatalysis and transparent flexible films, J. Alloys Compd., 811(2019), art. No. 152063. doi: 10.1016/j.jallcom.2019.152063
      [5]
      H. Lin, Z. Wu, Y.M. Jia, W.J. Li, R.K. Zheng, and H.S. Luo, Piezoelectrically induced mechano-catalytic effect for degradation of dye wastewater through vibrating Pb(Zr0.52Ti0.48)O3 fibers, Appl. Phys. Lett., 104(2014), No. 16, art. No. 162907. doi: 10.1063/1.4873522
      [6]
      Y. Bai, J.Z. Zhao, Z.L. Lv, and K. Lu, Enhanced piezocatalytic performance of ZnO nanosheet microspheres by enriching the surface oxygen vacancies, J. Mater. Sci., 55(2020), No. 29, p. 14112. doi: 10.1007/s10853-020-05053-z
      [7]
      X.E. Ning, A.Z. Hao, Y.L. Cao, J.D. Hu, J. Xie, and D.Z. Jia, Effective promoting piezocatalytic property of zinc oxide for degradation of organic pollutants and insight into piezocatalytic mechanism, J. Colloid Interface Sci., 577(2020), p. 290. doi: 10.1016/j.jcis.2020.05.082
      [8]
      X.J. Li, J.F. Wang, J.Y. Zhang, C.R. Zhao, Y. Wu, and Y.M. He, Cadmium sulfide modified zinc oxide heterojunction harvesting ultrasonic mechanical energy for efficient decomposition of dye wastewater, J. Colloid Interface Sci., 607(2022), p. 412. doi: 10.1016/j.jcis.2021.09.004
      [9]
      X.F. Zhou, S.H. Wu, C.B. Li, et al., Piezophototronic effect in enhancing charge carrier separation and transfer in ZnO/BaTiO3 heterostructures for high-efficiency catalytic oxidation, Nano Energy, 66(2019), art. No. 104127. doi: 10.1016/j.nanoen.2019.104127
      [10]
      H.L. Jiang, Q. Wang, P.H. Chen, et al., Photocatalytic degradation of tetracycline by using a regenerable (Bi)BiOBr/rGO composite, J. Clean. Prod., 339(2022), art. No. 130771. doi: 10.1016/j.jclepro.2022.130771
      [11]
      A. Biswas, S. Saha, and N.R. Jana, ZnSnO3–hBN nanocomposite-based piezocatalyst: Ultrasound assisted reactive oxygen species generation for degradation of organic pollutants, New J. Chem., 44(2020), No. 22, p. 9278. doi: 10.1039/D0NJ01026J
      [12]
      M. Sheydaei, M. Fattahi, L. Ghalamchi, and V. Vatanpour, Systematic comparison of sono-synthesized Ce-, La- and Ho-doped ZnO nanoparticles and using the optimum catalyst in a visible light assisted continuous sono-photocatalytic membrane reactor, Ultrason. Sonochem., 56(2019), p. 361. doi: 10.1016/j.ultsonch.2019.04.031
      [13]
      B. Krishnakumar, A. Alsalme, F.A. Alharthi, et al., Synthesis, characterization of gelatin assisted ZnO and its effective utilization of toxic azo dye degradation under direct sunlight, Opt. Mater., 113(2021), art. No. 110854. doi: 10.1016/j.optmat.2021.110854
      [14]
      B. Krishnakumar, A. Balakrishna, S.A. Nawabjan, V. Pandiyan, A. Aguiar, and A.J.F.N. Sobral, Solar and visible active amino porphyrin/SiO2–ZnO for the degradation of naphthol blue black, J. Phys. Chem. Solids, 111(2017), p. 364. doi: 10.1016/j.jpcs.2017.08.012
      [15]
      B. Krishnakumar and T. Imae, Chemically modified novel PAMAM–ZnO nanocomposite: Synthesis, characterization and photocatalytic activity, Appl. Catal. A Gen., 486(2014), p. 170. doi: 10.1016/j.apcata.2014.08.010
      [16]
      B. Krishnakumar, T. Imae, J. Miras, and J. Esquena, Synthesis and azo dye photodegradation activity of ZrS2–ZnO nano-composites, Sep. Purif. Technol., 132(2014), p. 281. doi: 10.1016/j.seppur.2014.05.018
      [17]
      X.L. Xu, Y.M. Jia, L.B. Xiao, and Z. Wu, Strong vibration-catalysis of ZnO nanorods for dye wastewater decolorization via piezo-electro-chemical coupling, Chemosphere, 193(2018), p. 1143. doi: 10.1016/j.chemosphere.2017.11.116
      [18]
      X.D. Fu, M.Z. Xie, P. Luan, and L.Q. Jing, Effective visible-excited charge separation in silicate-bridged ZnO/BiVO4 nanocomposite and its contribution to enhanced photocatalytic activity, ACS Appl. Mater. Interfaces, 6(2014), No. 21, p. 18550. doi: 10.1021/am505651d
      [19]
      K. Hemavibool, T. Sansenya, and S. Nanan, Enhanced photocatalytic degradation of tetracycline and oxytetracycline antibiotics by BiVO4 photocatalyst under visible light and solar light irradiation, Antibiotics, 11(2022), No. 6, art. No. 761. doi: 10.3390/antibiotics11060761
      [20]
      D.M. Liu, C.C. Jin, F.K. Shan, J.J. He, and F. Wang, Synthesizing BaTiO3 nanostructures to explore morphological influence, kinetics, and mechanism of piezocatalytic dye degradation, ACS Appl. Mater. Interfaces, 12(2020), No. 15, p. 17443. doi: 10.1021/acsami.9b23351
      [21]
      C.Y. Wang, C. Hu, F. Chen, T.Y. Ma, Y.H. Zhang, and H.W. Huang, Design strategies and effect comparisons toward efficient piezocatalytic system, Nano Energy, 107(2023), art. No. 108093. doi: 10.1016/j.nanoen.2022.108093
      [22]
      A.G. Milekhin, N.A. Yeryukov, and L.L. Sveshnikova, Resonant Raman scattering of ZnS, ZnO, and ZnS/ZnO core/shell quantum dots, Appl. Phys. A, 107(2012), No. 2, p. 275. doi: 10.1007/s00339-012-6880-z
      [23]
      A. Phuruangrat, S. Wannapop, T. Sakhon, B. Kuntalue, T. Thongtem, and S. Thongtem, Characterization and photocatalytic properties of BiVO4 synthesized by combustion method, J. Mol. Struct., 1274(2023), art. No. 134420. doi: 10.1016/j.molstruc.2022.134420
      [24]
      H.L. Li, Y.J. Chen, W. Zhou, H.J. Gao, and G.H. Tian, Tuning in BiVO4/Bi4V2O10 porous heterophase nanospheres for synergistic photocatalytic degradation of organic pollutants, Appl. Surf. Sci., 470(2019), p. 631. doi: 10.1016/j.apsusc.2018.11.183
      [25]
      Y.H. Wang, C.L. Kang, X.Y. Li, Q. Hu, and C. Wang, Ag NPs decorated C–TiO2/Cd0.5Zn0.5S Z-scheme heterojunction for simultaneous RhB degradation and Cr(VI) reduction, Environ. Pollut., 286(2021), art. No. 117305. doi: 10.1016/j.envpol.2021.117305
      [26]
      Y.F. Qian, J. Shi, X.N. Yang, et al., Integration of biochar into Ag3PO4/α-Fe2O3 heterojunction for enhanced reactive oxygen species generation towards organic pollutants removal, Environ. Pollut., 303(2022), art. No. 119131. doi: 10.1016/j.envpol.2022.119131
      [27]
      X.K. Wang, Z.Y. Yao, J.G. Wang, W.L. Guo, and G.L. Li, Degradation of reactive brilliant red in aqueous solution by ultrasonic cavitation, Ultrason. Sonochem., 15(2008), No. 1, p. 43. doi: 10.1016/j.ultsonch.2007.01.008
      [28]
      K. Wang, C. Han, J.Q. Li, J.S. Qiu, J. Sunarso, and S.M. Liu, The mechanism of piezocatalysis: Energy band theory or screening charge effect? Angew. Chem., 134(2022), No. 6, art. No. e202110429. doi: 10.1002/ange.202110429
      [29]
      A. Zhang, Z.Y. Liu, X.H. Geng, et al., Ultrasonic vibration driven piezocatalytic activity of lead-free K0.5Na0.5NbO3 materials, Ceram. Int., 45(2019), No. 17, p. 22486. doi: 10.1016/j.ceramint.2019.07.271
      [30]
      H.L. Luo, Z.Y. Liu, C.Y. Ma, A. Zhang, Q.Z. Zhang, and F. Wang, 2D/2D KNbO3/MoS2 heterojunctions for piezocatalysis: Insights into interfacial electric-fields and reactive oxygen species, J. Environ. Chem. Eng., 11(2023), No. 6, art. No. 111521. doi: 10.1016/j.jece.2023.111521
      [31]
      T. Xian, X.F. Sun, L.J. Di, et al., Enhancing the piezo-photocatalytic tetracycline degradation activity of BiOBr by the decoration of AuPt alloy nanoparaticles: Degradation pathways and mechanism investigation, Appl. Surf. Sci., 638(2023), art. No. 158136. doi: 10.1016/j.apsusc.2023.158136
      [32]
      Y.M. He, J. Cai, T.T. Li, et al., Efficient degradation of RhB over GdVO4/g-C3N4 composites under visible-light irradiation, Chem. Eng. J., 215(2013), p. 721.
      [33]
      H.W. Huang, X. Han, X.W. Li, S.C. Wang, P.K. Chu, and Y.H. Zhang, Fabrication of multiple heterojunctions with tunable visible-light-active photocatalytic reactivity in BiOBr–BiOI full-range composites based on microstructure modulation and band structures, ACS Appl. Mater. Interfaces, 7(2015), No. 1, p. 482. doi: 10.1021/am5065409
      [34]
      K.Q. Wang, Z.Y. Guan, X.Y. Liang, et al., Remarkably enhanced catalytic performance in CoO x/Bi4Ti3O12 heterostructures for methyl orange degradation via piezocatalysis and piezo-photocatalysis, Ultrason. Sonochem., 100(2023), art. No. 106616. doi: 10.1016/j.ultsonch.2023.106616
      [35]
      L. Chen, X.Q. Dai, X.J. Li, et al., A novel Bi2S3/KTa0.75Nb0.25O3 nanocomposite with high efficiency for photocatalytic and piezocatalytic N2 fixation, J. Mater. Chem. A, 9(2021), No. 22, p. 13344. doi: 10.1039/D1TA02270A

    Catalog


    • /

      返回文章
      返回