Cite this article as: |
Jia Zhao, Taixi Feng, and Guimin Lu, Understanding the local structure and thermophysical behavior of Mg–La liquid alloys via machine learning potential, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2928-2 |
路贵民 E-mail: gmlu@ecust.edu.cn
[1] |
T. Takenaka, T. Ono, Y. Narazaki, Y. Naka, and M. Kawakami, Improvement of corrosion resistance of magnesium metal by rare earth elements, Electrochim. Acta, 53(2007), No. 1, p. 117. doi: 10.1016/j.electacta.2007.03.027
|
[2] |
L.B. Tong, Q.X. Zhang, Z.H. Jiang, et al., Microstructures, mechanical properties and corrosion resistances of extruded Mg–Zn–Ca–xCe/La alloys, J. Mech. Behav. Biomed. Mater., 62(2016), p. 57. doi: 10.1016/j.jmbbm.2016.04.038
|
[3] |
Q.X. Zhang, L.B. Tong, L.R. Cheng, Z.H. Jiang, J. Meng, and H.J. Zhang, Effect of Ce/La microalloying on microstructural evolution of Mg–Zn–Ca alloy during solution treatment, J. Rare Earths, 33(2015), No. 1, p. 70. doi: 10.1016/S1002-0721(14)60385-9
|
[4] |
J. Rong, J.N. Zhu, W.L. Xiao, X.Q. Zhao, and C.L. Ma, A high pressure die cast magnesium alloy with superior thermal conductivity and high strength, Intermetallics, 139(2021), art. No. 107350. doi: 10.1016/j.intermet.2021.107350
|
[5] |
A. Gökçe, Metallurgical assessment of novel Mg–Sn–La alloys produced by high-pressure die casting, Met. Mater. Int., 26(2020), No. 7, p. 1036. doi: 10.1007/s12540-019-00539-1
|
[6] |
Y.C. Tsai, C.Y. Chou, S.L. Lee, C.K. Lin, J.C. Lin, and S.W. Lim, Effect of trace La addition on the microstructures and mechanical properties of A356 (Al–7Si–0.35Mg) aluminum alloys, J. Alloys Compd., 487(2009), No. 1-2, p. 157. doi: 10.1016/j.jallcom.2009.07.183
|
[7] |
C.P. Guo and Z.M. Du, Thermodynamic assessment of the La–Mg system, J. Alloys Compd., 385(2004), No. 1-2, p. 109. doi: 10.1016/j.jallcom.2004.04.105
|
[8] |
M.Y. Li, S.Z. Du, R.X. Liu, S.J. Lu, P. Jia, and H.R. Geng, Local structure and its change of Al–Ni alloy melts, J. Mol. Liq., 200(2014), p. 168. doi: 10.1016/j.molliq.2014.10.007
|
[9] |
P. Srirangam, M.J. Kramer, and S. Shankar, Effect of strontium on liquid structure of Al–Si hypoeutectic alloys using high-energy X-ray diffraction, Acta Mater., 59(2011), No. 2, p. 503. doi: 10.1016/j.actamat.2010.09.050
|
[10] |
C. Notthoff, B. Feuerbacher, H. Franz, D.M. Herlach, and D. Holland-Moritz, Direct determination of metastable phase diagram by synchrotron radiation experiments on undercooled metallic melts, Phys. Rev. Lett., 86(2001), No. 6, p. 1038. doi: 10.1103/PhysRevLett.86.1038
|
[11] |
Y.B. Wang, S.S. Jia, M.G. Wei, L.M. Peng, Y.J. Wu, and X.T. Liu, Research progress on solidification structure of alloys by synchrotron X-ray radiography: A review, J. Magnes. Alloys, 8(2020), No. 2, p. 396. doi: 10.1016/j.jma.2019.08.003
|
[12] |
L.F. Zhang, H. Wang, R. Car, and Weinan E, Phase diagram of a deep potential water model, Phys. Rev. Lett., 126(2021), No. 23, art. No. 236001. doi: 10.1103/PhysRevLett.126.236001
|
[13] |
J.Z. Zeng, L.Q. Cao, M.Y Xu, T. Zhu, and J.Z.H. Zhang, Complex reaction processes in combustion unraveled by neural network-based molecular dynamics simulation, Nat. Commun., 11(2020), No. 1, art. No. 5713. doi: 10.1038/s41467-020-19497-z
|
[14] |
M.Y. Yang, U. Raucci, and M. Parrinello, Reactant-induced dynamics of lithium imide surfaces during the ammonia decomposition process, Nat. Catal., 6(2023), No. 9, p. 829. doi: 10.1038/s41929-023-01006-2
|
[15] |
J.C. Liu, L.L. Luo, H. Xiao, J.F. Zhu, Y. He, and J. Li, Metal affinity of support dictates sintering of gold catalysts, J. Am. Chem. Soc., 144(2022), No. 45, p. 20601. doi: 10.1021/jacs.2c06785
|
[16] |
J.Y. Jiao, G.M. Lai, L. Zhao, et al., Self-healing mechanism of lithium in lithium metal, Adv. Sci., 9(2022), No. 12, art. No. 2105574. doi: 10.1002/advs.202105574
|
[17] |
J. Zhao, T.X. Feng, G.M. Lu, and J.G. Yu, Insights into the local structure evolution and thermophysical properties of NaCl–KCl–MgCl2–LaCl3 melt driven by machine learning, J. Mater. Chem. A, 11(2023), No. 44, p. 23999. doi: 10.1039/D3TA03434H
|
[18] |
T.R. Xu, X.J. Li, Y. Wang, and Z.F. Tang, Development of deep potentials of molten MgCl2–NaCl and MgCl2–KCl salts driven by machine learning, ACS Appl. Mater. Interfaces, 15(2023), No. 11, p. 14184.
|
[19] |
C.S. Zhu, W.J. Dong, Z.H. Gao, L.J. Wang, and G.Z. Li, Deep Potential fitting and mechanical properties study of MgAlSi alloy, Comput. Mater. Sci., 239(2024), art. No. 112966. doi: 10.1016/j.commatsci.2024.112966
|
[20] |
N. Xu, Y. Shi, Y. He, and Q. Shao, A deep-learning potential for crystalline and amorphous Li–Si alloys, J. Phys. Chem. C, 124(2020), No. 30, p. 16278. doi: 10.1021/acs.jpcc.0c03333
|
[21] |
Q. Wang, B. Zhai, H.P. Wang, and B. Wei, Atomic structure of liquid refractory Nb5Si3 intermetallic compound alloy based upon deep neural network potential, J. Appl. Phys., 130(2021), No. 18, art. No. 185103. doi: 10.1063/5.0067157
|
[22] |
T.Q. Wen, C.Z. Wang, M.J. Kramer, et al., Development of a deep machine learning interatomic potential for metalloid-containing Pd–Si compounds, Phys. Rev. B, 100(2019), No. 17, art. No. 174101. doi: 10.1103/PhysRevB.100.174101
|
[23] |
B. Zhai and H.P. Wang, Accurate interatomic potential for the nucleation in liquid Ti–Al binary alloy developed by deep neural network learning method, Comput. Mater. Sci., 216(2023), art. No. 111843. doi: 10.1016/j.commatsci.2022.111843
|
[24] |
R.E. Ryltsev and N.M. Chtchelkatchev, Deep machine learning potentials for multicomponent metallic melts: Development, predictability and compositional transferability, J. Mol. Liq., 349(2022), art. No. 118181. doi: 10.1016/j.molliq.2021.118181
|
[25] |
L. Tang, Z.J. Yang, T.Q. Wen, K.M. Ho, M.J. Kramer, and C.Z. Wang, Development of interatomic potential for Al–Tb alloys using a deep neural network learning method, Phys. Chem. Chem. Phys., 22(2020), No. 33, p. 18467. doi: 10.1039/D0CP01689F
|
[26] |
L. Tang, K.M. Ho, and C.Z. Wang, Molecular dynamics simulation of metallic Al-Ce liquids using a neural network machine learning interatomic potential, J. Chem. Phys., 155(2021), No. 19, art. No. 194503. doi: 10.1063/5.0066061
|
[27] |
X. He, J.D. Liu, C. Yang, and G. Jiang, Predicting thermodynamic stability of magnesium alloys in machine learning, Comput. Mater. Sci., 223(2023), art. No. 112111. doi: 10.1016/j.commatsci.2023.112111
|
[28] |
Y.N. Wang, X.Y. Wang, W.R. Jiang, H. Wang, and F.Z. Dai, Domain structures and stacking sequences of Mg–Zn–Y long-period stacking ordered (LPSO) structures predicted by deep-learning potential, Mater. Today Commun., 38(2024), art. No. 108301. doi: 10.1016/j.mtcomm.2024.108301
|
[29] |
W.R. Jiang, Y.Z. Zhang, L.F. Zhang, and H. Wang, Accurate deep potential model for the Al–Cu–Mg alloy in the full concentration space, Chin. Phys. B, 30(2021), No. 5, art. No. 050706. doi: 10.1088/1674-1056/abf134
|
[30] |
H.D. Wang, Y.Z. Zhang, L.F. Zhang, and H. Wang, Crystal structure prediction of binary alloys via deep potential, Front. Chem., 8(2020), art. No. 589795. doi: 10.3389/fchem.2020.589795
|
[31] |
C.H. Li, H.L. Zhang, D.L. Guo, and W. Zeng, Crystal structure prediction and property calculation of Al2CuMg by deep learning potential, J. Mater. Eng. Perform., (2023). https://doi.org/10.1007/s11665-023-08944-9
|
[32] |
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54(1996), No. 16, p. 11169. doi: 10.1103/PhysRevB.54.11169
|
[33] |
G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59(1999), No. 3, p. 1758. doi: 10.1103/PhysRevB.59.1758
|
[34] |
J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77(1996), No. 18, p. 3865. doi: 10.1103/PhysRevLett.77.3865
|
[35] |
S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu, J. Chem. Phys., 132(2010), No. 15, art. No. 154104. doi: 10.1063/1.3382344
|
[36] |
Y.Z. Zhang, H.D. Wang, W.J. Chen, et al., DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models, Comput. Phys. Commun., 253(2020), art. No. 107206. doi: 10.1016/j.cpc.2020.107206
|
[37] |
L.F. Zhang, J.Q. Han, H. Wang, R. Car, and Weinan E, Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics, Phys. Rev. Lett., 120(2018), No. 14, art. No. 143001. doi: 10.1103/PhysRevLett.120.143001
|
[38] |
L. Zhang, J. Han, H. Wang, W.A. Saidi, R. Car, and Weinan E, End-to-end symmetry preserving inter-atomic potential energy model for finite and extended systems, [in] Proceedings of the 32nd Conference on Neural Information Processing Systems, Montréal, 2018, p. 4441.
|
[39] |
S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., 117(1995), No. 1, p. 1. doi: 10.1006/jcph.1995.1039
|
[40] |
S.L. Roux and P. Jund, Ring statistics analysis of topological networks: New approach and application to amorphous GeS2 and SiO2 systems, Comput. Mater. Sci., 49(2010), No. 1, p. 70. doi: 10.1016/j.commatsci.2010.04.023
|
[41] |
S. Dalgic, S. Dalgic, S. Sengul, M. Celtek, and G. Tezgor, Liquid structure of some rare-earth metals using an analytic pair potential, J. Optoelectron. Adv. Mater., 3(2001), No. 4, p. 831.
|
[42] |
J.F. Wax, R. Albaki, and J.L. Bretonnet, Structural and dynamical properties of liquid alkaline-earth metals near the melting point, Phys. Rev. B, 62(2000), No. 22, p. 14818. doi: 10.1103/PhysRevB.62.14818
|
[43] |
J. Wang, Z. Sun, G. Lu, and J. Yu, Molecular dynamics simulations of the local structures and transport coefficients of molten alkali chlorides, J. Phys. Chem. B, 118(2014), No. 34, p. 10196. doi: 10.1021/jp5050332
|
[44] |
T.E. Faber and J.M. Ziman, A theory of the electrical properties of liquid metals, Philos. Mag., 11(1965), No. 109, p. 153. doi: 10.1080/14786436508211931
|
[45] |
H.T. Reijers, W. van der Lugt, and M.L. Saboungi, Molecular-dynamics study of liquid NaPb, KPb, RbPb, and CsPb alloys, Phys. Rev. B., 42(1990), No. 6, p. 3395. doi: 10.1103/PhysRevB.42.3395
|
[46] |
S. Takeda, S. Harada, S. Tamaki, E. Matsubara, and Y. Waseda, Structural study of liquid Na–Pb alloys by neutron diffraction, J. Phys. Soc. Jpn., 56(1987), No. 11, p. 3934. doi: 10.1143/JPSJ.56.3934
|
[47] |
V.I. Kohonenko, A.L. Sukhman, S.L. Gruverman, and V.V. Torokin, Density and surface tension of liquid rare earth metals, scandium, and yttrium, Phys. Status Solidi A, 84(1984), No. 2, p. 423. doi: 10.1002/pssa.2210840210
|
[48] |
P.J. McGonigal, A.D. Kirshenbaum, and A.V. Grosse, The liquid temperature range, density, and critical constants of magnesium, J. Phys. Chem., 66(1962), No. 4, p. 737. doi: 10.1021/j100810a038
|
[49] |
S.D. Korkmaz and Ş. Korkmaz, Atomic transport properties of liquid alkaline earth metals: A comparison of scaling laws proposed for diffusion and viscosity, Modelling Simul. Mater. Sci. Eng., 15(2007), No. 3, p. 285. doi: 10.1088/0965-0393/15/3/007
|
[50] |
R. Vuilleumier, A. Seitsonen, N. Sator, and B. Guillot, Structure, equation of state and transport properties of molten calcium carbonate (CaCO3) by atomistic simulations, Geochim. Cosmochim. Acta, 141(2014), p. 547. doi: 10.1016/j.gca.2014.06.037
|
[51] |
X.J. Li, J. Song, S.P. Shi, et al., Dynamic fluctuation of U3+ coordination structure in the molten LiCl–KCl eutectic via first principles molecular dynamics simulations, J. Phys. Chem. A, 121(2017), No. 3, p. 571. doi: 10.1021/acs.jpca.6b10193
|
[52] |
H.P. Patel, Y.A. Sonvane, P.B. Thakor, and A.V. Prajapati, Shear viscosity coefficient of liquid lanthanides, AIP Conf. Proc., 1661(2015), No. 1, art. No. 110012.
|
[53] |
I. Yokoyama and S. Tsuchiya, Excess entropy, diffusion coefficient, viscosity coefficient and surface tension of liquid simple metals from diffraction data, Mater. Trans., 43(2002), No. 1, p. 67. doi: 10.2320/matertrans.43.67
|
[54] |
T.T. Xu, J.Y. Li, R.L. Xiao, J.Y. Qin, Y. Ruan, and H. Li, The mixing enthalpy and liquid structural properties of Ti–Al alloys by ab inito molecular dynamics simulation, J. Phase Equilib. Diffus., 43(2022), No. 5, p. 585. doi: 10.1007/s11669-022-01015-x
|
[55] |
A. Berche, P. Benigni, J. Rogez, and M.C. Record, Thermodynamic assessment of the La–Mg system, Calphad, 35(2011), No. 4, p. 580. doi: 10.1016/j.calphad.2011.10.001
|
[56] |
R. Agarwal, H. Feufel, and F. Sommer, Calorimetric measurements of liquid La–Mg, Mg–Yb and Mg–Y alloys, J. Alloys Compd., 217(1995), No. 1, p. 59. doi: 10.1016/0925-8388(94)01290-X
|