Cite this article as: |
Xiaoxiao Wang and Qingsong Huang, Quickly obtaining densely dispersed coherent particles in steel matrix and its related mechanical property, Int. J. Miner. Metall. Mater.,(2025). https://doi.org/10.1007/s12613-024-2931-7 |
黄青松 E-mail: qshuang@scu.edu.cn
Supplementary Information-s12613-024-2931-7.docx |
[1] |
K. Lu, L. Lu, and S. Suresh, Strengthening materials by engineering coherent internal boundaries at the nanoscale, Science, 324(2009), No. 5925, p. 349. doi: 10.1126/science.1159610
|
[2] |
K. Kumar, H. Swygenhoven, and S. Suresh, Mechanical behavior of nanocrystalline metals and alloys, Acta Mater., 51(2003), p. 5743. doi: 10.1016/j.actamat.2003.08.032
|
[3] |
M.K. Miller, C.L. Fu, M. Krcmar, D.T. Hoelzer, and C.T. Liu, Vacancies as a constitutive element for the design of nanocluster-strengthened ferritic steels, Front. Mater. Sci. China, 3(2009), No. 1, p. 9. doi: 10.1007/s11706-009-0001-8
|
[4] |
J.H. Schneibel, C.T. Liu, M.K. Miller, et al., Ultrafine-grained nanocluster-strengthened alloys with unusually high creep strength, Scripta Mater., 61(2009), No. 8, p. 793. doi: 10.1016/j.scriptamat.2009.06.034
|
[5] |
S.H. Jiang, H. Wang, Y. Wu, et al., Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation, Nature, 544(2017), No. 7651, p. 460. doi: 10.1038/nature22032
|
[6] |
Y.J. Liang, L.J. Wang, Y.R. Wen, et al., High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys, Nat. Commun., 9(2018), No. 1, art. No. 4063. doi: 10.1038/s41467-018-06600-8
|
[7] |
L.L. Han, Z.Y. Rao, I.R. Souza Filho, et al., Ultrastrong and ductile soft magnetic high-entropy alloys via coherent ordered nanoprecipitates, Adv. Mater., 33(2021), No. 37, art. No. 2102139. doi: 10.1002/adma.202102139
|
[8] |
H. Tang, X.H. Chen, M.W. Chen, L.F. Zuo, B. Hou, and Z.D. Wang, Microstructure and mechanical property of in situ nano-particle strengthened ferritic steel by novel internal oxidation, Mater. Sci. Eng. A, 609(2014), p. 293. doi: 10.1016/j.msea.2014.05.020
|
[9] |
X.H. Chen, L.L. Qiu, H. Tang, et al., Effect of nanoparticles formed in liquid melt on microstructure and mechanical property of high strength naval steel, J. Mater. Process. Technol., 222(2015), p. 224. doi: 10.1016/j.jmatprotec.2015.03.013
|
[10] |
Z.F. Lei, X.J. Liu, Y. Wu, et al., Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes, Nature, 563(2018), No. 7732, p. 546. doi: 10.1038/s41586-018-0685-y
|
[11] |
Z. Dong, Z.Q. Ma, L.M. Yu, and Y.C. Liu, Achieving high strength and ductility in ODS-W alloy by employing oxide@W core-shell nanopowder as precursor, Nat. Commun., 12(2021), No. 1, art. No. 5052. doi: 10.1038/s41467-021-25283-2
|
[12] |
A.J. London, S. Santra, S. Amirthapandian, et al., Effect of Ti and Cr on dispersion, structure and composition of oxide nano-particles in model ODS alloys, Acta Mater., 97(2015), p. 223. doi: 10.1016/j.actamat.2015.06.032
|
[13] |
J. Wu, H.G. Zhu, and Z.H. Xie, Strength and ductility synergy of Nb-alloyed Ni0.6CoFe1.4 alloys, Int. J. Miner. Metall. Mater., 30(2023), No. 4, p. 707. doi: 10.1007/s12613-022-2567-4
|
[14] |
J.L. Du, S.H. Jiang, P.P. Cao, et al., Superior radiation tolerance via reversible disordering-ordering transition of coherent superlattices, Nat. Mater., 22(2023), No. 4, p. 442. doi: 10.1038/s41563-022-01260-y
|
[15] |
Z.B. Jiao, J.H. Luan, M.K. Miller, C.Y. Yu, and C.T. Liu, Effects of Mn partitioning on nanoscale precipitation and mechanical properties of ferritic steels strengthened by NiAl nanoparticles, Acta Mater., 84(2015), p. 283. doi: 10.1016/j.actamat.2014.10.065
|
[16] |
E.A. Marquis and D.N. Seidman, Nanoscale structural evolution of Al3Sc precipitates in Al(Sc) alloys, Acta Mater., 49(2001), No. 11, p. 1909. doi: 10.1016/S1359-6454(01)00116-1
|
[17] |
P. Dou, A. Kimura, T. Okuda, et al., Polymorphic and coherency transition of Y–Al complex oxide particles with extrusion temperature in an Al-alloyed high-Cr oxide dispersion strengthened ferritic steel, Acta Mater., 59(2011), No. 3, p. 992. doi: 10.1016/j.actamat.2010.10.026
|
[18] |
L.Y. Zhang, L.M. Yu, Y.C. Liu, C.X. Liu, H.J. Li, and J.F. Wu, Influence of Zr addition on the microstructures and mechanical properties of 14Cr ODS steels, Mater. Sci. Eng. A, 695(2017), p. 66. doi: 10.1016/j.msea.2017.04.020
|
[19] |
Q.X. Sun, Q.F. Fang, Y. Zhou, et al., Development of oxide dispersion strengthened ferritic steel prepared by chemical reduction and mechanical milling, J. Nucl. Mater., 439(2013), No. 1-3, p. 103. doi: 10.1016/j.jnucmat.2013.03.087
|
[20] |
C. Booth-Morrison, D.C. Dunand, and D.N. Seidman, Coarsening resistance at 400°C of precipitation-strengthened Al–Zr–Sc–Er alloys, Acta Mater., 59(2011), No. 18, p. 7029. doi: 10.1016/j.actamat.2011.07.057
|
[21] |
J.Y. He, H. Wang, H.L. Huang, et al., A precipitation-hardened high-entropy alloy with outstanding tensile properties, Acta Mater., 102(2016), p. 187. doi: 10.1016/j.actamat.2015.08.076
|
[22] |
J.J. Fischer, Dispersion Strengthened Ferritic Alloy for Use in Liquid-metal Fast Breeder Reactors, United States Patent, Appl. 4075010, 1978.
|
[23] |
Y. Kimura, S. Takaki, S. Suejima, R. Uemori, and H. Tamehiro, Ultra grain refining and decomposition of oxide during super-heavy deformation in oxide dispersion ferritic stainless steel powder, ISIJ Int., 39(1999), No. 2, p. 176. doi: 10.2355/isijinternational.39.176
|
[24] |
L. Dai, Y.C. Liu, and Z.Z. Dong, Size and structure evolution of yttria in ODS ferritic alloy powder during mechanical milling and subsequent annealing, Powder Technol., 217(2012), p. 281. doi: 10.1016/j.powtec.2011.10.039
|
[25] |
S. Kim, S. Ohtsuka, T. Kaito, et al., Formation of nano-size oxide particles and δ-ferrite at elevated temperature in 9Cr-ODS steel, J. Nucl. Mater., 417(2011), No. 1-3, p. 209. doi: 10.1016/j.jnucmat.2011.01.063
|
[26] |
Q. Zhao, L.M. Yu, Y.C. Liu, et al., Microstructure and tensile properties of a 14Cr ODS ferritic steel, Mater. Sci. Eng. A, 680(2017), p. 347. doi: 10.1016/j.msea.2016.10.118
|
[27] |
P. Susila, D. Sturm, M. Heilmaier, B.S. Murty, and V. Subramanya Sarma, Microstructural studies on nanocrystalline oxide dispersion strengthened austenitic (Fe–18Cr–8Ni–2W–0.25Y2O3) alloy synthesized by high energy ball milling and vacuum hot pressing, J. Mater. Sci., 45(2010), No. 17, p. 4858. doi: 10.1007/s10853-010-4264-3
|
[28] |
N. Al-Aqeeli, M.A. Hussein, and C. Suryanarayana, Phase evolution during high energy ball milling of immiscible Nb–Zr alloys, Adv. Powder Technol., 26(2015), No. 2, p. 385. doi: 10.1016/j.apt.2014.11.008
|
[29] |
D.T. Hoelzer, J. Bentley, M.A. Sokolov, M.K. Miller, G.R. Odette, and M.J. Alinger, Influence of particle dispersions on the high-temperature strength of ferritic alloys, J. Nucl. Mater., 367-370(2007), p. 166. doi: 10.1016/j.jnucmat.2007.03.151
|
[30] |
M. Laurent-Brocq, F. Legendre, M.H. Mathon, et al., Influence of ball-milling and annealing conditions on nanocluster characteristics in oxide dispersion strengthened steels, Acta Mater., 60(2012), No. 20, p. 7150. doi: 10.1016/j.actamat.2012.09.024
|
[31] |
Q. Zhao, L.M. Yu, Y.C. Liu, Y. Huang, Z.Q. Ma, and H.J. Li, Effects of aluminum and titanium on the microstructure of ODS steels fabricated by hot pressing, Int. J. Miner. Metall. Mater., 25(2018), No. 10, p. 1156. doi: 10.1007/s12613-018-1667-7
|
[32] |
E. Ma, Instabilities and ductility of nanocrystalline and ultrafine-grained metals, Scripta Mater., 49(2003), No. 7, p. 663. doi: 10.1016/S1359-6462(03)00396-8
|
[33] |
A. Hirata, T. Fujita, Y.R. Wen, J.H. Schneibel, C.T. Liu, and M.W. Chen, Atomic structure of nanoclusters in oxide-dispersion-strengthened steels, Nat. Mater., 10(2011), No. 12, p. 922. doi: 10.1038/nmat3150
|
[34] |
M.K. Miller, K.F. Russell, and D.T. Hoelzer, Characterization of precipitates in MA/ODS ferritic alloys, J. Nucl. Mater., 351(2006), No. 1-3, p. 261. doi: 10.1016/j.jnucmat.2006.02.004
|
[35] |
H.L. Peng, I. Baker, L. Hu, and L.J. Li, Superior strength-ductility synergy in a novel tailored nanoparticles-strengthened medium-entropy alloy, Scripta Mater., 207(2022), art. No. 114278. doi: 10.1016/j.scriptamat.2021.114278
|
[36] |
G.X. Qiu, X.L. Wei, C. Bai, D.J. Miao, L. Cao, and X.M. Li, Inclusion and mechanical properties of ODS-RAFM steels with Y, Ti, and Zr fabricated by melting, Nucl. Eng. Technol., 54(2022), No. 7, p. 2376. doi: 10.1016/j.net.2022.01.030
|
[37] |
S. Chenna Krishna, N.K. Karthick, A.K. Jha, B. Pant, and R.M. Cherian, Effect of hot rolling on the microstructure and mechanical properties of nitrogen alloyed austenitic stainless steel, J. Mater. Eng. Perform., 27(2018), No. 5, p. 2388. doi: 10.1007/s11665-018-3317-7
|
[38] |
Y. Shao, L.M. Yu, Y.C. Liu, Z.Q. Ma, H.J. Li, and J.F. Wu, Hot deformation behaviors of a 9Cr oxide dispersion-strengthened steel and its microstructure characterization, Int. J. Miner. Metall. Mater., 26(2019), No. 5, p. 597. doi: 10.1007/s12613-019-1768-y
|
[39] |
S.L. Sheng, Y.X. Qiao, R.Z. Zhai, M.Y. Sun, and B. Xu, Processing map and dynamic recrystallization behaviours of 316LN-Mn austenitic stainless steel, Int. J. Miner. Metall. Mater., 30(2023), No. 12, p. 2386. doi: 10.1007/s12613-023-2714-6
|
[40] |
H.T. Lu, D.Z. Li, S.Y. Li, and Y.A. Chen, Hot deformation behavior of Fe–27.34Mn–8.63Al–1.03C lightweight steel, Int. J. Miner. Metall. Mater., 30(2023), No. 4, p. 734. doi: 10.1007/s12613-022-2531-3
|
[41] |
H. Chen, Y.M. Yang, C.L. Hu, et al., Hot deformation behavior of novel high-strength Mg–0.6Mn–0.5Al–0.5Zn–0.4Ca alloy, Int. J. Miner. Metall. Mater., 30(2023), No. 12, p. 2397. doi: 10.1007/s12613-023-2706-6
|
[42] |
T. Hayashi, P.M. Sarosi, J.H. Schneibel, and M.J. Mills, Creep response and deformation processes in nanocluster-strengthened ferritic steels, Acta Mater., 56(2008), No. 7, p. 1407. doi: 10.1016/j.actamat.2007.11.038
|
[43] |
M.C. Brandes, L. Kovarik, M.K. Miller, G.S. Daehn, and M.J. Mills, Creep behavior and deformation mechanisms in a nanocluster strengthened ferritic steel, Acta Mater., 60(2012), No. 4, p. 1827. doi: 10.1016/j.actamat.2011.11.057
|
[44] |
J. Chen, L. Lu, and K. Lu, Hardness and strain rate sensitivity of nanocrystalline Cu, Scripta Mater., 54(2006), No. 11, p. 1913. doi: 10.1016/j.scriptamat.2006.02.022
|
[45] |
L. Hsiung, M. Fluss, S. Tumey, et al., HRTEM study of oxide nanoparticles in K3-ODS ferritic steel developed for radiation tolerance, J. Nucl. Mater., 409(2011), No. 2, p. 72. doi: 10.1016/j.jnucmat.2010.09.014
|
[46] |
D. Häussler, M. Bartsch, U. Messerschmidt, and B. Reppich, HVTEM in situ observations of dislocation motion in the oxide dispersion strengthened superalloy MA 754, Acta Mater., 49(2001), No. 18, p. 3647. doi: 10.1016/S1359-6454(01)00285-3
|
[47] |
G. Liu, G.J. Zhang, F. Jiang, et al., Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility, Nat. Mater., 12(2013), No. 4, p. 344. doi: 10.1038/nmat3544
|
[48] |
J. Ribis and Y. de Carlan, Interfacial strained structure and orientation relationships of the nanosized oxide particles deduced from elasticity-driven morphology in oxide dispersion strengthened materials, Acta Mater., 60(2012), No. 1, p. 238. doi: 10.1016/j.actamat.2011.09.042
|
[49] |
C. Zener, Theory of growth of spherical precipitates from solid solution, J. Appl. Phys., 20(1949), No. 10, p. 950. doi: 10.1063/1.1698258
|