留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图(5)

数据统计

分享

计量
  • 文章访问数:  224
  • HTML全文浏览量:  102
  • PDF下载量:  10
  • 被引次数: 0
Xiaoxiao Wang and Qingsong Huang, Quickly obtaining densely dispersed coherent particles in steel matrix and its related mechanical property, Int. J. Miner. Metall. Mater.,(2025). https://doi.org/10.1007/s12613-024-2931-7
Cite this article as:
Xiaoxiao Wang and Qingsong Huang, Quickly obtaining densely dispersed coherent particles in steel matrix and its related mechanical property, Int. J. Miner. Metall. Mater.,(2025). https://doi.org/10.1007/s12613-024-2931-7
引用本文 PDF XML SpringerLink
研究论文

钢中密集分布纳米共格粒子的快速获取及其力学性能研究



  • 通讯作者:

    黄青松    E-mail: qshuang@scu.edu.cn

文章亮点

  • (1) 提出了动态磁场强化液相精炼工艺快速获取密集分布纳米共格粒子(<5 nm)的新策略。
  • (2) 分析并总结了动态磁场强化液相精炼工艺快速获取第二相纳米粒子的反应机理。
  • (3) 系统研究了第二相粒子与金属基体的界面结构关系和第二相粒子对钢的强化机制。
  • 对于传统工程结构材料而言,在不牺牲韧性的前提下提高强度或同时提高强度和韧性已成为各种应用的关键指标。当第二相粒子与基体之间形成稳定的共格界面时在提高材料强度的同时不会破坏其韧性。目前,在金属基体中引入高密度第二相共格粒子的制备工艺路线大致可以分为液相-固相路线和固相-固相路线两种。然而,这些方法均需要进一步的热处理来析出细小的第二相颗粒,其工艺复杂且耗时较长,通常需要几十小时以上。本文采用动态磁场强化的液相精炼工艺制备了共格纳米粒子强化钢(Fe–TYMO钢)和纯铁素体钢,并通过轧制及退火处理对铸态钢的晶粒尺寸进行优化和等轴化。分别对第二相颗粒(包括分布、尺寸、成分以及与金属基体的界面结构关系)、微观组织以及力学性能进行了研究。结果表明,通过该工艺可以快速(约3 min)将大粒子分裂和剪切为细小的第二相粒子(<5 nm)。Fe–TYMO钢中密集分布着第二相Ti–Y–Mn–O颗粒,其平均直径约为(3.53 ± 1.21) nm,并且与基体形成了良好的共格结构。经700°C轧制后,这些共格颗粒仍保持较高的热稳定性。铸态组织时,Fe–TYMO钢的晶粒尺寸为229 μm,对应的抗压屈服强度为303 MPa;在700°C下分别以应变速率0.1、1、10 s-1轧制后,Fe–TYMO钢的晶粒尺寸减小为78–136 μm,对应的抗压屈服强度分别为397、514和569 MPa。最后,研究了第二相粒子的加工硬化机制为Orowan机制。
  • Research Article

    Quickly obtaining densely dispersed coherent particles in steel matrix and its related mechanical property

    + Author Affiliations
    • Densely distributed coherent nanoparticles (DCN) in steel matrix can enhance the work-hardening ability and ductility of steel simultaneously. All the routes to this end can be generally classified into the liquid–solid route and the solid–solid route. However, the formation of DCN structures in steel requires long processes and complex steps. So far, obtaining steel with coherent particle enhancement in a short time remains a bottleneck, and some necessary steps remain unavoidable. Here, we show a high-efficiency liquid-phase refining process reinforced by a dynamic magnetic field. Ti–Y–Mn–O particles had an average size of around (3.53 ± 1.21) nm and can be obtained in just around 180 s. These small nanoparticles were coherent with the matrix, implying no accumulated dislocations between the particles and the steel matrix. Our findings have a potential application for improving material machining capacity, creep resistance, and radiation resistance.
    • loading
    • Supplementary Information-s12613-024-2931-7.docx
    • [1]
      K. Lu, L. Lu, and S. Suresh, Strengthening materials by engineering coherent internal boundaries at the nanoscale, Science, 324(2009), No. 5925, p. 349. doi: 10.1126/science.1159610
      [2]
      K. Kumar, H. Swygenhoven, and S. Suresh, Mechanical behavior of nanocrystalline metals and alloys, Acta Mater., 51(2003), p. 5743. doi: 10.1016/j.actamat.2003.08.032
      [3]
      M.K. Miller, C.L. Fu, M. Krcmar, D.T. Hoelzer, and C.T. Liu, Vacancies as a constitutive element for the design of nanocluster-strengthened ferritic steels, Front. Mater. Sci. China, 3(2009), No. 1, p. 9. doi: 10.1007/s11706-009-0001-8
      [4]
      J.H. Schneibel, C.T. Liu, M.K. Miller, et al., Ultrafine-grained nanocluster-strengthened alloys with unusually high creep strength, Scripta Mater., 61(2009), No. 8, p. 793. doi: 10.1016/j.scriptamat.2009.06.034
      [5]
      S.H. Jiang, H. Wang, Y. Wu, et al., Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation, Nature, 544(2017), No. 7651, p. 460. doi: 10.1038/nature22032
      [6]
      Y.J. Liang, L.J. Wang, Y.R. Wen, et al., High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys, Nat. Commun., 9(2018), No. 1, art. No. 4063. doi: 10.1038/s41467-018-06600-8
      [7]
      L.L. Han, Z.Y. Rao, I.R. Souza Filho, et al., Ultrastrong and ductile soft magnetic high-entropy alloys via coherent ordered nanoprecipitates, Adv. Mater., 33(2021), No. 37, art. No. 2102139. doi: 10.1002/adma.202102139
      [8]
      H. Tang, X.H. Chen, M.W. Chen, L.F. Zuo, B. Hou, and Z.D. Wang, Microstructure and mechanical property of in situ nano-particle strengthened ferritic steel by novel internal oxidation, Mater. Sci. Eng. A, 609(2014), p. 293. doi: 10.1016/j.msea.2014.05.020
      [9]
      X.H. Chen, L.L. Qiu, H. Tang, et al., Effect of nanoparticles formed in liquid melt on microstructure and mechanical property of high strength naval steel, J. Mater. Process. Technol., 222(2015), p. 224. doi: 10.1016/j.jmatprotec.2015.03.013
      [10]
      Z.F. Lei, X.J. Liu, Y. Wu, et al., Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes, Nature, 563(2018), No. 7732, p. 546. doi: 10.1038/s41586-018-0685-y
      [11]
      Z. Dong, Z.Q. Ma, L.M. Yu, and Y.C. Liu, Achieving high strength and ductility in ODS-W alloy by employing oxide@W core-shell nanopowder as precursor, Nat. Commun., 12(2021), No. 1, art. No. 5052. doi: 10.1038/s41467-021-25283-2
      [12]
      A.J. London, S. Santra, S. Amirthapandian, et al., Effect of Ti and Cr on dispersion, structure and composition of oxide nano-particles in model ODS alloys, Acta Mater., 97(2015), p. 223. doi: 10.1016/j.actamat.2015.06.032
      [13]
      J. Wu, H.G. Zhu, and Z.H. Xie, Strength and ductility synergy of Nb-alloyed Ni0.6CoFe1.4 alloys, Int. J. Miner. Metall. Mater., 30(2023), No. 4, p. 707. doi: 10.1007/s12613-022-2567-4
      [14]
      J.L. Du, S.H. Jiang, P.P. Cao, et al., Superior radiation tolerance via reversible disordering-ordering transition of coherent superlattices, Nat. Mater., 22(2023), No. 4, p. 442. doi: 10.1038/s41563-022-01260-y
      [15]
      Z.B. Jiao, J.H. Luan, M.K. Miller, C.Y. Yu, and C.T. Liu, Effects of Mn partitioning on nanoscale precipitation and mechanical properties of ferritic steels strengthened by NiAl nanoparticles, Acta Mater., 84(2015), p. 283. doi: 10.1016/j.actamat.2014.10.065
      [16]
      E.A. Marquis and D.N. Seidman, Nanoscale structural evolution of Al3Sc precipitates in Al(Sc) alloys, Acta Mater., 49(2001), No. 11, p. 1909. doi: 10.1016/S1359-6454(01)00116-1
      [17]
      P. Dou, A. Kimura, T. Okuda, et al., Polymorphic and coherency transition of Y–Al complex oxide particles with extrusion temperature in an Al-alloyed high-Cr oxide dispersion strengthened ferritic steel, Acta Mater., 59(2011), No. 3, p. 992. doi: 10.1016/j.actamat.2010.10.026
      [18]
      L.Y. Zhang, L.M. Yu, Y.C. Liu, C.X. Liu, H.J. Li, and J.F. Wu, Influence of Zr addition on the microstructures and mechanical properties of 14Cr ODS steels, Mater. Sci. Eng. A, 695(2017), p. 66. doi: 10.1016/j.msea.2017.04.020
      [19]
      Q.X. Sun, Q.F. Fang, Y. Zhou, et al., Development of oxide dispersion strengthened ferritic steel prepared by chemical reduction and mechanical milling, J. Nucl. Mater., 439(2013), No. 1-3, p. 103. doi: 10.1016/j.jnucmat.2013.03.087
      [20]
      C. Booth-Morrison, D.C. Dunand, and D.N. Seidman, Coarsening resistance at 400°C of precipitation-strengthened Al–Zr–Sc–Er alloys, Acta Mater., 59(2011), No. 18, p. 7029. doi: 10.1016/j.actamat.2011.07.057
      [21]
      J.Y. He, H. Wang, H.L. Huang, et al., A precipitation-hardened high-entropy alloy with outstanding tensile properties, Acta Mater., 102(2016), p. 187. doi: 10.1016/j.actamat.2015.08.076
      [22]
      J.J. Fischer, Dispersion Strengthened Ferritic Alloy for Use in Liquid-metal Fast Breeder Reactors, United States Patent, Appl. 4075010, 1978.
      [23]
      Y. Kimura, S. Takaki, S. Suejima, R. Uemori, and H. Tamehiro, Ultra grain refining and decomposition of oxide during super-heavy deformation in oxide dispersion ferritic stainless steel powder, ISIJ Int., 39(1999), No. 2, p. 176. doi: 10.2355/isijinternational.39.176
      [24]
      L. Dai, Y.C. Liu, and Z.Z. Dong, Size and structure evolution of yttria in ODS ferritic alloy powder during mechanical milling and subsequent annealing, Powder Technol., 217(2012), p. 281. doi: 10.1016/j.powtec.2011.10.039
      [25]
      S. Kim, S. Ohtsuka, T. Kaito, et al., Formation of nano-size oxide particles and δ-ferrite at elevated temperature in 9Cr-ODS steel, J. Nucl. Mater., 417(2011), No. 1-3, p. 209. doi: 10.1016/j.jnucmat.2011.01.063
      [26]
      Q. Zhao, L.M. Yu, Y.C. Liu, et al., Microstructure and tensile properties of a 14Cr ODS ferritic steel, Mater. Sci. Eng. A, 680(2017), p. 347. doi: 10.1016/j.msea.2016.10.118
      [27]
      P. Susila, D. Sturm, M. Heilmaier, B.S. Murty, and V. Subramanya Sarma, Microstructural studies on nanocrystalline oxide dispersion strengthened austenitic (Fe–18Cr–8Ni–2W–0.25Y2O3) alloy synthesized by high energy ball milling and vacuum hot pressing, J. Mater. Sci., 45(2010), No. 17, p. 4858. doi: 10.1007/s10853-010-4264-3
      [28]
      N. Al-Aqeeli, M.A. Hussein, and C. Suryanarayana, Phase evolution during high energy ball milling of immiscible Nb–Zr alloys, Adv. Powder Technol., 26(2015), No. 2, p. 385. doi: 10.1016/j.apt.2014.11.008
      [29]
      D.T. Hoelzer, J. Bentley, M.A. Sokolov, M.K. Miller, G.R. Odette, and M.J. Alinger, Influence of particle dispersions on the high-temperature strength of ferritic alloys, J. Nucl. Mater., 367-370(2007), p. 166. doi: 10.1016/j.jnucmat.2007.03.151
      [30]
      M. Laurent-Brocq, F. Legendre, M.H. Mathon, et al., Influence of ball-milling and annealing conditions on nanocluster characteristics in oxide dispersion strengthened steels, Acta Mater., 60(2012), No. 20, p. 7150. doi: 10.1016/j.actamat.2012.09.024
      [31]
      Q. Zhao, L.M. Yu, Y.C. Liu, Y. Huang, Z.Q. Ma, and H.J. Li, Effects of aluminum and titanium on the microstructure of ODS steels fabricated by hot pressing, Int. J. Miner. Metall. Mater., 25(2018), No. 10, p. 1156. doi: 10.1007/s12613-018-1667-7
      [32]
      E. Ma, Instabilities and ductility of nanocrystalline and ultrafine-grained metals, Scripta Mater., 49(2003), No. 7, p. 663. doi: 10.1016/S1359-6462(03)00396-8
      [33]
      A. Hirata, T. Fujita, Y.R. Wen, J.H. Schneibel, C.T. Liu, and M.W. Chen, Atomic structure of nanoclusters in oxide-dispersion-strengthened steels, Nat. Mater., 10(2011), No. 12, p. 922. doi: 10.1038/nmat3150
      [34]
      M.K. Miller, K.F. Russell, and D.T. Hoelzer, Characterization of precipitates in MA/ODS ferritic alloys, J. Nucl. Mater., 351(2006), No. 1-3, p. 261. doi: 10.1016/j.jnucmat.2006.02.004
      [35]
      H.L. Peng, I. Baker, L. Hu, and L.J. Li, Superior strength-ductility synergy in a novel tailored nanoparticles-strengthened medium-entropy alloy, Scripta Mater., 207(2022), art. No. 114278. doi: 10.1016/j.scriptamat.2021.114278
      [36]
      G.X. Qiu, X.L. Wei, C. Bai, D.J. Miao, L. Cao, and X.M. Li, Inclusion and mechanical properties of ODS-RAFM steels with Y, Ti, and Zr fabricated by melting, Nucl. Eng. Technol., 54(2022), No. 7, p. 2376. doi: 10.1016/j.net.2022.01.030
      [37]
      S. Chenna Krishna, N.K. Karthick, A.K. Jha, B. Pant, and R.M. Cherian, Effect of hot rolling on the microstructure and mechanical properties of nitrogen alloyed austenitic stainless steel, J. Mater. Eng. Perform., 27(2018), No. 5, p. 2388. doi: 10.1007/s11665-018-3317-7
      [38]
      Y. Shao, L.M. Yu, Y.C. Liu, Z.Q. Ma, H.J. Li, and J.F. Wu, Hot deformation behaviors of a 9Cr oxide dispersion-strengthened steel and its microstructure characterization, Int. J. Miner. Metall. Mater., 26(2019), No. 5, p. 597. doi: 10.1007/s12613-019-1768-y
      [39]
      S.L. Sheng, Y.X. Qiao, R.Z. Zhai, M.Y. Sun, and B. Xu, Processing map and dynamic recrystallization behaviours of 316LN-Mn austenitic stainless steel, Int. J. Miner. Metall. Mater., 30(2023), No. 12, p. 2386. doi: 10.1007/s12613-023-2714-6
      [40]
      H.T. Lu, D.Z. Li, S.Y. Li, and Y.A. Chen, Hot deformation behavior of Fe–27.34Mn–8.63Al–1.03C lightweight steel, Int. J. Miner. Metall. Mater., 30(2023), No. 4, p. 734. doi: 10.1007/s12613-022-2531-3
      [41]
      H. Chen, Y.M. Yang, C.L. Hu, et al., Hot deformation behavior of novel high-strength Mg–0.6Mn–0.5Al–0.5Zn–0.4Ca alloy, Int. J. Miner. Metall. Mater., 30(2023), No. 12, p. 2397. doi: 10.1007/s12613-023-2706-6
      [42]
      T. Hayashi, P.M. Sarosi, J.H. Schneibel, and M.J. Mills, Creep response and deformation processes in nanocluster-strengthened ferritic steels, Acta Mater., 56(2008), No. 7, p. 1407. doi: 10.1016/j.actamat.2007.11.038
      [43]
      M.C. Brandes, L. Kovarik, M.K. Miller, G.S. Daehn, and M.J. Mills, Creep behavior and deformation mechanisms in a nanocluster strengthened ferritic steel, Acta Mater., 60(2012), No. 4, p. 1827. doi: 10.1016/j.actamat.2011.11.057
      [44]
      J. Chen, L. Lu, and K. Lu, Hardness and strain rate sensitivity of nanocrystalline Cu, Scripta Mater., 54(2006), No. 11, p. 1913. doi: 10.1016/j.scriptamat.2006.02.022
      [45]
      L. Hsiung, M. Fluss, S. Tumey, et al., HRTEM study of oxide nanoparticles in K3-ODS ferritic steel developed for radiation tolerance, J. Nucl. Mater., 409(2011), No. 2, p. 72. doi: 10.1016/j.jnucmat.2010.09.014
      [46]
      D. Häussler, M. Bartsch, U. Messerschmidt, and B. Reppich, HVTEM in situ observations of dislocation motion in the oxide dispersion strengthened superalloy MA 754, Acta Mater., 49(2001), No. 18, p. 3647. doi: 10.1016/S1359-6454(01)00285-3
      [47]
      G. Liu, G.J. Zhang, F. Jiang, et al., Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility, Nat. Mater., 12(2013), No. 4, p. 344. doi: 10.1038/nmat3544
      [48]
      J. Ribis and Y. de Carlan, Interfacial strained structure and orientation relationships of the nanosized oxide particles deduced from elasticity-driven morphology in oxide dispersion strengthened materials, Acta Mater., 60(2012), No. 1, p. 238. doi: 10.1016/j.actamat.2011.09.042
      [49]
      C. Zener, Theory of growth of spherical precipitates from solid solution, J. Appl. Phys., 20(1949), No. 10, p. 950. doi: 10.1063/1.1698258

    Catalog


    • /

      返回文章
      返回