Cite this article as: |
Yuntian Lou, Weiwei Chang, Yu Zhang, Shengyu He, Xudong Chen, Hongchang Qian, and Dawei Zhang, Microbiologically influenced corrosion resistance enhancement of copper-containing high entropy alloy FexCu(1−x)CoNiCrMn against Pseudomonas aeruginosa, Int. J. Miner. Metall. Mater., 31(2024), No. 11, pp. 2488-2497. https://doi.org/10.1007/s12613-024-2932-6 |
张达威 E-mail: dzhang@ustb.edu.cn
[1] |
N. Kip and J.A. van Veen, The dual role of microbes in corrosion, ISME J., 9(2015), No. 3, p. 542. doi: 10.1038/ismej.2014.169
|
[2] |
D.K. Xu, T.Y. Gu, and D.R. Lovley, Microbially mediated metal corrosion, Nat. Rev. Microbiol., 21(2023), No. 11, p. 705. doi: 10.1038/s41579-023-00920-3
|
[3] |
B.J. Little and J.S. Lee, Microbiologically influenced corrosion: An update, Int. Mater. Rev., 59(2014), No. 7, p. 384. doi: 10.1179/1743280414Y.0000000035
|
[4] |
Y.T. Lou, W.W. Chang, T.Y. Cui, et al., Microbiologically influenced corrosion inhibition of carbon steel via biomineralization induced by Shewanella putrefaciens, NPJ Mater. Degrad., 5(2021), art. No. 59. doi: 10.1038/s41529-021-00206-0
|
[5] |
M. Mehanna, I. Rouvre, M.L. Delia, D. Feron, A. Bergel, and R. Basseguy, Discerning different and opposite effects of hydrogenase on the corrosion of mild steel in the presence of phosphate species, Bioelectrochemistry, 111(2016), p. 31. doi: 10.1016/j.bioelechem.2016.04.005
|
[6] |
B.J. Little, J. Hinks, and D.J. Blackwood, Microbially influenced corrosion: Towards an interdisciplinary perspective on mechanisms, Int. Biodeterior. Biodegrad., 154(2020), art. No. 105062. doi: 10.1016/j.ibiod.2020.105062
|
[7] |
H.C. Qian, W.W. Chang, W.L. Liu, et al., Investigation of microbiologically influenced corrosion inhibition of 304 stainless steel by D-cysteine in the presence of Pseudomonas aeruginosa, Bioelectrochemistry, 143(2022), art. No. 107953. doi: 10.1016/j.bioelechem.2021.107953
|
[8] |
H.C. Qian, W.W. Chang, T.Y. Cui, et al., Multi-mode scanning electrochemical microscopic study of microbiologically influenced corrosion mechanism of 304 stainless steel by thermoacidophilic Archaea, Corros. Sci., 191(2021), art. No. 109751. doi: 10.1016/j.corsci.2021.109751
|
[9] |
G.P. Krantz, K. Lucas, E.L. Wunderlich, et al., Bulk phase resource ratio alters carbon steel corrosion rates and endogenously produced extracellular electron transfer mediators in a sulfate-reducing biofilm, Biofouling, 35(2019), No. 6, p. 669. doi: 10.1080/08927014.2019.1646731
|
[10] |
M. Yazdi, F. Khan, R. Abbassi, N. Quddus, and H. Castaneda-Lopez, A review of risk-based decision-making models for microbiologically influenced corrosion (MIC) in offshore pipelines, Reliab. Eng. Syst. Saf., 223(2022), art. No. 108474. doi: 10.1016/j.ress.2022.108474
|
[11] |
H.C. Qian, J.T. Zhang, T.Y. Cui, et al., Influence of NaCl concentration on microbiologically influenced corrosion of carbon steel by halophilic archaeon Natronorubrum tibetense, Bioelectrochemistry, 140(2021), art. No. 107746. doi: 10.1016/j.bioelechem.2021.107746
|
[12] |
S. Yu, Y.T. Lou, D.W. Zhang, et al., Microbiologically influenced corrosion of 304 stainless steel by nitrate reducing Bacillus cereus in simulated Beijing soil solution, Bioelectrochemistry, 133(2020), art. No. 107477. doi: 10.1016/j.bioelechem.2020.107477
|
[13] |
T.Y. Cui, H.C. Qian, Y.T. Lou, et al., Single-cell level investigation of microbiologically induced degradation of passive film of stainless steel via FIB-SEM/TEM and multi-mode AFM, Corros. Sci., 206(2022), art. No. 110543. doi: 10.1016/j.corsci.2022.110543
|
[14] |
M.J. Li, L. Nan, C.Y. Liang, Z.Q. Sun, L. Yang, and K. Yang, Antibacterial behavior and related mechanisms of martensitic Cu-bearing stainless steel evaluated by a mixed infection model of Escherichia coli and Staphylococcus aureus in vitro, J. Mater. Sci. Technol, 62(2021), p. 139. doi: 10.1016/j.jmst.2020.05.030
|
[15] |
W.P. Iverson, Research on the mechanisms of anaerobic corrosion, Int. Biodeterior. Biodegrad., 47(2001), No. 2, p. 63. doi: 10.1016/S0964-8305(00)00111-6
|
[16] |
Y.Z. Liang, C.Y. Li, P. Wang, and D. Zhang, Fabrication of a robust slippery liquid infused porous surface on Q235 carbon steel for inhibiting microbiologically influenced corrosion, Colloids Surf. A, 631(2021), art. No. 127696. doi: 10.1016/j.colsurfa.2021.127696
|
[17] |
W.W. Chang, Y.Y. Li, Z.Y. Li, et al., The effect of riboflavin on the microbiologically influenced corrosion of pure iron by Shewanella oneidensis MR-1, Bioelectrochemistry, 147(2022), art. No. 108173. doi: 10.1016/j.bioelechem.2022.108173
|
[18] |
Y.T. Hu, L.Y. Huang, Y.T. Lou, W.W. Chang, H.C. Qian, and D.W. Zhang, Microbiologically influenced corrosion of stainless steels by Bacillus subtilis via bidirectional extracellular electron transfer, Corros. Sci., 207(2022), art. No. 110608. doi: 10.1016/j.corsci.2022.110608
|
[19] |
S.H. Lu, W.W. Dou, T.Y. Gu, et al., Extracellular electron transfer corrosion mechanism of two marine structural steels caused by nitrate reducing Halomonas titanicae, Corros. Sci., 217(2023), art. No. 111125. doi: 10.1016/j.corsci.2023.111125
|
[20] |
J. Anguita, G. Pizarro, and I.T. Vargas, Mathematical modelling of microbial corrosion in carbon steel due to early-biofilm formation of sulfate-reducing bacteria via extracellular electron transfer, Bioelectrochemistry, 145(2022), art. No. 108058. doi: 10.1016/j.bioelechem.2022.108058
|
[21] |
T.Y. Gu, D. Wang, Y. Lekbach, and D.K. Xu, Extracellular electron transfer in microbial biocorrosion, Curr. Opin. Electrochem., 29(2021), art. No. 100763. doi: 10.1016/j.coelec.2021.100763
|
[22] |
Z.Y. Li, W.W. Chang, T.Y. Cui, et al., Adaptive bidirectional extracellular electron transfer during accelerated microbiologically influenced corrosion of stainless steel, Commun. Mater., 2(2021), art. No. 67. doi: 10.1038/s43246-021-00173-8
|
[23] |
Y. Fu, J. Li, H. Luo, C.W. Du, and X.G. Li, Recent advances on environmental corrosion behavior and mechanism of high-entropy alloys, J. Mater. Sci. Technol., 80(2021), p. 217. doi: 10.1016/j.jmst.2020.11.044
|
[24] |
Y. Wei, Y. Fu, Z.M. Pan, et al., Influencing factors and mechanism of high-temperature oxidation of high-entropy alloys: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 915. doi: 10.1007/s12613-021-2257-7
|
[25] |
X.H. Wang, Y.L. Deng, D.D. Zhu, D. Dong, and T.F. Ma, GPa level pressure-induced phase transitions and enhanced corrosion resistance of AlCrMoSiTi high-entropy alloys, J. Mater. Res. Technol., 26(2023), p. 6389. doi: 10.1016/j.jmrt.2023.08.274
|
[26] |
P. Muangtong, A. Rodchanarowan, D. Chaysuwan, N. Chanlek, and R. Goodall, The corrosion behaviour of CoCrFeNi-x (x = Cu, Al, Sn) high entropy alloy systems in chloride solution, Corros. Sci., 172(2020), art. No. 108740. doi: 10.1016/j.corsci.2020.108740
|
[27] |
J. Liu, S.L. Duan, X.K. Yue, and N.S. Qu, Comparison of electrochemical behaviors of Ti–5Al–2Sn–4Zr–4Mo–2Cr–1Fe and Ti–6Al–4V titanium alloys in NaNO3 solution, Int. J. Miner. Metall. Mater., 31(2024), No. 4, p. 750. doi: 10.1007/s12613-023-2762-y
|
[28] |
Z.B. Chen, K. Huang, B.W. Zhang, et al., Corrosion engineering on AlCoCrFeNi high-entropy alloys toward highly efficient electrocatalysts for the oxygen evolution of alkaline seawater, Int. J. Miner. Metall. Mater., 30(2023), No. 10, p. 1922. doi: 10.1007/s12613-023-2624-7
|
[29] |
X. Xiao, M.Z. Lin, C.H. Xu, J.W. Zhang, and W.B. Liao, An efficient approach to develop and screen out high-entropy alloy composition with high performance for biomedical application, Surf. Coat. Technol., 478(2024), art. No. 130504. doi: 10.1016/j.surfcoat.2024.130504
|
[30] |
C.D. Dai, T.L. Zhao, C.W. Du, Z.Y. Liu, and D.W. Zhang, Effect of molybdenum content on the microstructure and corrosion behavior of FeCoCrNiMo x high-entropy alloys, J. Mater. Sci. Technol., 46(2020), p. 64. doi: 10.1016/j.jmst.2019.10.020
|
[31] |
M.D. Zhang, L.J. Zhang, P.K. Liaw, G. Li, and R.P. Liu, Effect of Nb content on thermal stability, mechanical and corrosion behaviors of hypoeutectic CoCrFeNiNb x high-entropy alloys, J. Mater. Res., 33(2018), No. 19, p. 3276. doi: 10.1557/jmr.2018.103
|
[32] |
Q.C. Zhao, Z.M. Pan, X.F. Wang, H. Luo, Y. Liu, and X.G. Li, Corrosion and passive behavior of Al xCrFeNi3− x (x = 0.6, 0.8, 1.0) eutectic high entropy alloys in chloride environment, Corros. Sci., 208(2022), art. No. 110666. doi: 10.1016/j.corsci.2022.110666
|
[33] |
Y.T. Lou, C.D. Dai, W.W. Chang, et al., Microbiologically influenced corrosion of FeCoCrNiMo0.1 high-entropy alloys by marine Pseudomonas aeruginosa, Corros. Sci., 165(2020), art. No. 108390. doi: 10.1016/j.corsci.2019.108390
|
[34] |
W.W. Chang, Y.Y. Li, H.B. Zheng, et al., Microbiologically influenced corrosion behavior of Fe40(CoCrMnNi)60 and Fe60(CoCrMnNi)40 medium entropy alloys in the presence of pseudomonas aeruginosa, Acta Metall. Sin., 36(2023), No. 3, p. 379. doi: 10.1007/s40195-022-01488-2
|
[35] |
J.K. Yang, Y. Zhang, W.W. Chang, Y.T. Lou, and H.C. Qian, Microbiologically influenced corrosion of FeCoNiCrMn high-entropy alloys by Pseudomonas aeruginosa biofilm, Front. Microbiol., 13(2022), art. No. 1009310. doi: 10.3389/fmicb.2022.1009310
|
[36] |
P. Mahmoudi, M.R. Akbarpour, H.B. Lakeh, F.J. Jing, M.R. Hadidi, and B. Akhavan, Antibacterial Ti–Cu implants: A critical review on mechanisms of action, Mater. Today Bio, 17(2022), art. No. 100447. doi: 10.1016/j.mtbio.2022.100447
|
[37] |
S. Kumar, D.N. Roy, and V. Dey, A comprehensive review on techniques to create the anti-microbial surface of biomaterials to intervene in biofouling, Colloid Interface Sci. Commun., 43(2021), art. No. 100464. doi: 10.1016/j.colcom.2021.100464
|
[38] |
B.R. Zheng, D. Wang, M.H. Yang, et al., Enhancement of microbiologically influenced corrosion resistance of copper-containing nickel-free high nitrogen stainless steel against marine corrosive Pseudomonas aeruginosa, Colloid Interface Sci. Commun, 53(2023), art. No. 100706. doi: 10.1016/j.colcom.2023.100706
|
[39] |
J. Ju, R. Zan, Z. Shen, et al., Remarkable bioactivity, bio-tribological, antibacterial, and anti-corrosion properties in a Ti–6Al–4V–xCu alloy by laser powder bed fusion for superior biomedical implant applications, Chem. Eng. J., 471(2023), art. No. 144656. doi: 10.1016/j.cej.2023.144656
|
[40] |
J.Q. Li, D.Y. Zhang, X.B. Chen, et al., Laser directed energy deposited, ultrafine-grained functional titanium–copper alloys tailored for marine environments: Antibacterial and anti-microbial corrosion studies, J. Mater. Sci. Technol., 166(2023), p. 21. doi: 10.1016/j.jmst.2023.05.020
|
[41] |
M.S. Khan, C.G. Yang, H.B. Pan, K. Yang, and Y. Zhao, The effect of high temperature aging on the corrosion resistance, mechanical property and antibacterial activity of Cu-2205 DSS, Colloids Surf. B, 211(2022), art. No. 112309. doi: 10.1016/j.colsurfb.2021.112309
|
[42] |
S.Y. Zhang, H.B. Zheng, W.W. Chang, Y.T. Lou, and H.C. Qian, Microbiological deterioration of epoxy coating on carbon steel by Pseudomonas aeruginosa, Coatings, 13(2023), No. 3, art. No. 606. doi: 10.3390/coatings13030606
|
[43] |
D. Liu, H.Y. Yang, J.H. Li, et al., Electron transfer mediator PCN secreted by aerobic marine Pseudomonas aeruginosa accelerates microbiologically influenced corrosion of TC4 titanium alloy, J. Mater. Sci. Technol., 79(2021), p. 101. doi: 10.1016/j.jmst.2020.11.042
|
[44] |
H.W. Liu and Y.F. Cheng, Corrosion of X52 pipeline steel in a simulated soil solution with coexistence of Desulfovibrio desulfuricans and Pseudomonas aeruginosa bacteria, Corros. Sci., 173(2020), art. No. 108753. doi: 10.1016/j.corsci.2020.108753
|
[45] |
R. Jia, D.Q. Yang, D.K. Xu, and T.Y. Gu, Anaerobic corrosion of 304 stainless steel caused by the Pseudomonas aeruginosa biofilm, Front. Microbiol., 8(2017), art. No. 2335. doi: 10.3389/fmicb.2017.02335
|
[46] |
L.Y. Huang, W.W. Chang, D.W. Zhang, et al., Acceleration of corrosion of 304 stainless steel by outward extracellular electron transfer of Pseudomonas aeruginosa biofilm, Corros. Sci., 199(2022), art. No. 110159. doi: 10.1016/j.corsci.2022.110159
|
[47] |
D. Guo, J. Chen, X. Chen, et al., Pitting corrosion behavior of friction-surfaced 17-4PH stainless steel coatings with and without subsequent heat treatment, Corros. Sci., 193(2021), art. No. 109887. doi: 10.1016/j.corsci.2021.109887
|
[48] |
Y.T. Lou, L. Lin, D.K. Xu, et al., Antibacterial ability of a novel Cu-bearing 2205 duplex stainless steel against Pseudomonas aeruginosa biofilm in artificial seawater, Int. Biodeterior. Biodegrad., 110(2016), p. 199. doi: 10.1016/j.ibiod.2016.03.026
|
[49] |
B. Cantor, Multicomponent high-entropy Cantor alloys, Prog. Mater. Sci., 120(2021), art. No. 100754. doi: 10.1016/j.pmatsci.2020.100754
|
[50] |
C.C. Du, L. Hu, Q.H. Pan, K.M. Chen, P.J. Zhou, and G.J. Wang, Effect of Cu on the strengthening and embrittling of an FeCoNiCr–xCu HEA, Mater. Sci. Eng. A, 832(2022), art. No. 142413. doi: 10.1016/j.msea.2021.142413
|
[51] |
X.P. Hao, Y. Bai, C.H. Ren, et al., Self-healing effect of damaged coatings via biomineralization by Shewanella putrefaciens, Corros. Sci., 196(2022), art. No. 110067. doi: 10.1016/j.corsci.2021.110067
|
[52] |
S.P. Sah, Evolution of corrosion resistance of 310S stainless steel in carbonates melt at 650°C, Corros. Sci., 226(2024), art. No. 111663. doi: 10.1016/j.corsci.2023.111663
|
[53] |
L. Karygianni, Z. Ren, H. Koo, and T. Thurnheer, Biofilm matrixome: Extracellular components in structured microbial communities, Trends Microbiol., 28(2020), No. 8, p. 668. doi: 10.1016/j.tim.2020.03.016
|
[54] |
B.B. Yang, C.Y. Shi, J.W. Teng, et al., Corrosion behaviours of low Mo Ni–(Co)–Cr–Mo alloys with various contents of Co in HF acid solution, J. Alloys Compd., 791(2019), p. 215. doi: 10.1016/j.jallcom.2019.03.325
|
[55] |
E.Z. Zhou, D.X. Qiao, Y. Yang, et al., A novel Cu-bearing high-entropy alloy with significant antibacterial behavior against corrosive marine biofilms, J. Mater. Sci. Technol., 46(2020), p. 201. doi: 10.1016/j.jmst.2020.01.039
|