留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 11
Nov.  2024

图(10)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  1191
  • HTML全文浏览量:  124
  • PDF下载量:  31
  • 被引次数: 0
Yuntian Lou, Weiwei Chang, Yu Zhang, Shengyu He, Xudong Chen, Hongchang Qian, and Dawei Zhang, Microbiologically influenced corrosion resistance enhancement of copper-containing high entropy alloy FexCu(1−x)CoNiCrMn against Pseudomonas aeruginosa, Int. J. Miner. Metall. Mater., 31(2024), No. 11, pp. 2488-2497. https://doi.org/10.1007/s12613-024-2932-6
Cite this article as:
Yuntian Lou, Weiwei Chang, Yu Zhang, Shengyu He, Xudong Chen, Hongchang Qian, and Dawei Zhang, Microbiologically influenced corrosion resistance enhancement of copper-containing high entropy alloy FexCu(1−x)CoNiCrMn against Pseudomonas aeruginosa, Int. J. Miner. Metall. Mater., 31(2024), No. 11, pp. 2488-2497. https://doi.org/10.1007/s12613-024-2932-6
引用本文 PDF XML SpringerLink
研究论文

含铜高熵合金FexCu(1−x)CoNiCrMn对铜绿假单胞菌诱导的微生物腐蚀抗性增强


    * 共同第一作者
  • 通讯作者:

    张达威    E-mail: dzhang@ustb.edu.cn

文章亮点

  • (1) 发现在FexCu(1−x)CoNiCrMn中铜含量超过5%晶粒尺寸显著增大。
  • (2) 铜含量的持续增加会导致FexCu(1−x)CoNiCrMn表面钝化能力下降。
  • (3) 筛选出兼具耐蚀性、抗菌性的耐微生物腐蚀Fe0.75Cu0.25CoNiCrMn高熵合金。
  • 由于合金元素的多样性和复杂性,高熵合金往往在特定的腐蚀环境下表现出优异的耐蚀性,因此被认为是极具潜力的腐蚀研究对象。本文旨在提高FeCoNiCrMn高熵合金(HEAs)的耐微生物腐蚀(MIC)能力,制备了一系列FexCu(1−x)CoNiCrMn(x = 1、0.75、0.5 和 0.25)的HEAs试样,并研究了它们在典型腐蚀性微生物——铜绿假单胞菌(Pseudomonas aeruginosa)培养基中的微观结构特征、腐蚀行为(包括形貌观察和电化学性能)以及抗菌性能。研究目的是筛选出最优铜含量的FexCu(1−x)CoNiCrMn,使之兼顾耐腐蚀性和抗菌性能。结果表明,所有FexCu(1−x)CoNiCrMn试样均表现为FCC相,且Fe0.75Cu0.25CoNiCrMn试样的晶粒细化效果显著。电化学测试结果显示,与无菌条件相比,Fe0.75Cu0.25CoNiCrMn在接种了铜绿假单胞菌的培养基中具有较低的腐蚀电流密度(icorr)和点蚀电位(Epit),表现出良好的耐MIC性能。抑菌试验结果显示,经过14天的浸泡,Fe0.75Cu0.25CoNiCrMnn的抑菌率达到89.5%,有效抑制了铜绿假单胞菌的附着和生物膜的形成,同时表现出对MIC的耐受性。
  • Research Article

    Microbiologically influenced corrosion resistance enhancement of copper-containing high entropy alloy FexCu(1−x)CoNiCrMn against Pseudomonas aeruginosa

    + Author Affiliations
    • To enhance the microbiologically influenced corrosion (MIC) resistance of FeCoNiCrMn high entropy alloy (HEAs), a series of FexCu(1−x)CoNiCrMn (x = 1, 0.75, 0.5, and 0.25) HEAs were prepared. Microstructural characteristics, corrosion behavior (morphology observation and electrochemical properties), and antimicrobial performance of FexCu(1−x)CoNiCrMn HEAs were evaluated in a medium inoculated with typical corrosive microorganism Pseudomonas aeruginosa. The aim was to identify copper-containing FeCoNiCrMn HEAs that balance corrosion resistance and antimicrobial properties. Results revealed that all FexCu(1−x)CoNiCrMn (x = 1, 0.75, 0.5, and 0.25) HEAs exhibited an FCC (face centered cubic) phase, with significant grain refinement observed in Fe0.75Cu0.25CoNiCrMn HEA. Electrochemical tests indicated that Fe0.75Cu0.25CoNiCrMn HEA demonstrated lower corrosion current density (icorr) and pitting potential (Epit) compared to other FexCu(1−x)CoNiCrMn HEAs in P. aeruginosa-inoculated medium, exhibiting superior resistance to MIC. Anti-microbial tests showed that after 14 d of immersion, Fe0.75Cu0.25CoNiCrMn achieved an antibacterial rate of 89.5%, effectively inhibiting the adhesion and biofilm formation of P. aeruginosa, thereby achieving resistance to MIC.
    • loading
    • [1]
      N. Kip and J.A. van Veen, The dual role of microbes in corrosion, ISME J., 9(2015), No. 3, p. 542. doi: 10.1038/ismej.2014.169
      [2]
      D.K. Xu, T.Y. Gu, and D.R. Lovley, Microbially mediated metal corrosion, Nat. Rev. Microbiol., 21(2023), No. 11, p. 705. doi: 10.1038/s41579-023-00920-3
      [3]
      B.J. Little and J.S. Lee, Microbiologically influenced corrosion: An update, Int. Mater. Rev., 59(2014), No. 7, p. 384. doi: 10.1179/1743280414Y.0000000035
      [4]
      Y.T. Lou, W.W. Chang, T.Y. Cui, et al., Microbiologically influenced corrosion inhibition of carbon steel via biomineralization induced by Shewanella putrefaciens, NPJ Mater. Degrad., 5(2021), art. No. 59. doi: 10.1038/s41529-021-00206-0
      [5]
      M. Mehanna, I. Rouvre, M.L. Delia, D. Feron, A. Bergel, and R. Basseguy, Discerning different and opposite effects of hydrogenase on the corrosion of mild steel in the presence of phosphate species, Bioelectrochemistry, 111(2016), p. 31. doi: 10.1016/j.bioelechem.2016.04.005
      [6]
      B.J. Little, J. Hinks, and D.J. Blackwood, Microbially influenced corrosion: Towards an interdisciplinary perspective on mechanisms, Int. Biodeterior. Biodegrad., 154(2020), art. No. 105062. doi: 10.1016/j.ibiod.2020.105062
      [7]
      H.C. Qian, W.W. Chang, W.L. Liu, et al., Investigation of microbiologically influenced corrosion inhibition of 304 stainless steel by D-cysteine in the presence of Pseudomonas aeruginosa, Bioelectrochemistry, 143(2022), art. No. 107953. doi: 10.1016/j.bioelechem.2021.107953
      [8]
      H.C. Qian, W.W. Chang, T.Y. Cui, et al., Multi-mode scanning electrochemical microscopic study of microbiologically influenced corrosion mechanism of 304 stainless steel by thermoacidophilic Archaea, Corros. Sci., 191(2021), art. No. 109751. doi: 10.1016/j.corsci.2021.109751
      [9]
      G.P. Krantz, K. Lucas, E.L. Wunderlich, et al., Bulk phase resource ratio alters carbon steel corrosion rates and endogenously produced extracellular electron transfer mediators in a sulfate-reducing biofilm, Biofouling, 35(2019), No. 6, p. 669. doi: 10.1080/08927014.2019.1646731
      [10]
      M. Yazdi, F. Khan, R. Abbassi, N. Quddus, and H. Castaneda-Lopez, A review of risk-based decision-making models for microbiologically influenced corrosion (MIC) in offshore pipelines, Reliab. Eng. Syst. Saf., 223(2022), art. No. 108474. doi: 10.1016/j.ress.2022.108474
      [11]
      H.C. Qian, J.T. Zhang, T.Y. Cui, et al., Influence of NaCl concentration on microbiologically influenced corrosion of carbon steel by halophilic archaeon Natronorubrum tibetense, Bioelectrochemistry, 140(2021), art. No. 107746. doi: 10.1016/j.bioelechem.2021.107746
      [12]
      S. Yu, Y.T. Lou, D.W. Zhang, et al., Microbiologically influenced corrosion of 304 stainless steel by nitrate reducing Bacillus cereus in simulated Beijing soil solution, Bioelectrochemistry, 133(2020), art. No. 107477. doi: 10.1016/j.bioelechem.2020.107477
      [13]
      T.Y. Cui, H.C. Qian, Y.T. Lou, et al., Single-cell level investigation of microbiologically induced degradation of passive film of stainless steel via FIB-SEM/TEM and multi-mode AFM, Corros. Sci., 206(2022), art. No. 110543. doi: 10.1016/j.corsci.2022.110543
      [14]
      M.J. Li, L. Nan, C.Y. Liang, Z.Q. Sun, L. Yang, and K. Yang, Antibacterial behavior and related mechanisms of martensitic Cu-bearing stainless steel evaluated by a mixed infection model of Escherichia coli and Staphylococcus aureus in vitro, J. Mater. Sci. Technol, 62(2021), p. 139. doi: 10.1016/j.jmst.2020.05.030
      [15]
      W.P. Iverson, Research on the mechanisms of anaerobic corrosion, Int. Biodeterior. Biodegrad., 47(2001), No. 2, p. 63. doi: 10.1016/S0964-8305(00)00111-6
      [16]
      Y.Z. Liang, C.Y. Li, P. Wang, and D. Zhang, Fabrication of a robust slippery liquid infused porous surface on Q235 carbon steel for inhibiting microbiologically influenced corrosion, Colloids Surf. A, 631(2021), art. No. 127696. doi: 10.1016/j.colsurfa.2021.127696
      [17]
      W.W. Chang, Y.Y. Li, Z.Y. Li, et al., The effect of riboflavin on the microbiologically influenced corrosion of pure iron by Shewanella oneidensis MR-1, Bioelectrochemistry, 147(2022), art. No. 108173. doi: 10.1016/j.bioelechem.2022.108173
      [18]
      Y.T. Hu, L.Y. Huang, Y.T. Lou, W.W. Chang, H.C. Qian, and D.W. Zhang, Microbiologically influenced corrosion of stainless steels by Bacillus subtilis via bidirectional extracellular electron transfer, Corros. Sci., 207(2022), art. No. 110608. doi: 10.1016/j.corsci.2022.110608
      [19]
      S.H. Lu, W.W. Dou, T.Y. Gu, et al., Extracellular electron transfer corrosion mechanism of two marine structural steels caused by nitrate reducing Halomonas titanicae, Corros. Sci., 217(2023), art. No. 111125. doi: 10.1016/j.corsci.2023.111125
      [20]
      J. Anguita, G. Pizarro, and I.T. Vargas, Mathematical modelling of microbial corrosion in carbon steel due to early-biofilm formation of sulfate-reducing bacteria via extracellular electron transfer, Bioelectrochemistry, 145(2022), art. No. 108058. doi: 10.1016/j.bioelechem.2022.108058
      [21]
      T.Y. Gu, D. Wang, Y. Lekbach, and D.K. Xu, Extracellular electron transfer in microbial biocorrosion, Curr. Opin. Electrochem., 29(2021), art. No. 100763. doi: 10.1016/j.coelec.2021.100763
      [22]
      Z.Y. Li, W.W. Chang, T.Y. Cui, et al., Adaptive bidirectional extracellular electron transfer during accelerated microbiologically influenced corrosion of stainless steel, Commun. Mater., 2(2021), art. No. 67. doi: 10.1038/s43246-021-00173-8
      [23]
      Y. Fu, J. Li, H. Luo, C.W. Du, and X.G. Li, Recent advances on environmental corrosion behavior and mechanism of high-entropy alloys, J. Mater. Sci. Technol., 80(2021), p. 217. doi: 10.1016/j.jmst.2020.11.044
      [24]
      Y. Wei, Y. Fu, Z.M. Pan, et al., Influencing factors and mechanism of high-temperature oxidation of high-entropy alloys: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 915. doi: 10.1007/s12613-021-2257-7
      [25]
      X.H. Wang, Y.L. Deng, D.D. Zhu, D. Dong, and T.F. Ma, GPa level pressure-induced phase transitions and enhanced corrosion resistance of AlCrMoSiTi high-entropy alloys, J. Mater. Res. Technol., 26(2023), p. 6389. doi: 10.1016/j.jmrt.2023.08.274
      [26]
      P. Muangtong, A. Rodchanarowan, D. Chaysuwan, N. Chanlek, and R. Goodall, The corrosion behaviour of CoCrFeNi-x (x = Cu, Al, Sn) high entropy alloy systems in chloride solution, Corros. Sci., 172(2020), art. No. 108740. doi: 10.1016/j.corsci.2020.108740
      [27]
      J. Liu, S.L. Duan, X.K. Yue, and N.S. Qu, Comparison of electrochemical behaviors of Ti–5Al–2Sn–4Zr–4Mo–2Cr–1Fe and Ti–6Al–4V titanium alloys in NaNO3 solution, Int. J. Miner. Metall. Mater., 31(2024), No. 4, p. 750. doi: 10.1007/s12613-023-2762-y
      [28]
      Z.B. Chen, K. Huang, B.W. Zhang, et al., Corrosion engineering on AlCoCrFeNi high-entropy alloys toward highly efficient electrocatalysts for the oxygen evolution of alkaline seawater, Int. J. Miner. Metall. Mater., 30(2023), No. 10, p. 1922. doi: 10.1007/s12613-023-2624-7
      [29]
      X. Xiao, M.Z. Lin, C.H. Xu, J.W. Zhang, and W.B. Liao, An efficient approach to develop and screen out high-entropy alloy composition with high performance for biomedical application, Surf. Coat. Technol., 478(2024), art. No. 130504. doi: 10.1016/j.surfcoat.2024.130504
      [30]
      C.D. Dai, T.L. Zhao, C.W. Du, Z.Y. Liu, and D.W. Zhang, Effect of molybdenum content on the microstructure and corrosion behavior of FeCoCrNiMo x high-entropy alloys, J. Mater. Sci. Technol., 46(2020), p. 64. doi: 10.1016/j.jmst.2019.10.020
      [31]
      M.D. Zhang, L.J. Zhang, P.K. Liaw, G. Li, and R.P. Liu, Effect of Nb content on thermal stability, mechanical and corrosion behaviors of hypoeutectic CoCrFeNiNb x high-entropy alloys, J. Mater. Res., 33(2018), No. 19, p. 3276. doi: 10.1557/jmr.2018.103
      [32]
      Q.C. Zhao, Z.M. Pan, X.F. Wang, H. Luo, Y. Liu, and X.G. Li, Corrosion and passive behavior of Al xCrFeNi3− x (x = 0.6, 0.8, 1.0) eutectic high entropy alloys in chloride environment, Corros. Sci., 208(2022), art. No. 110666. doi: 10.1016/j.corsci.2022.110666
      [33]
      Y.T. Lou, C.D. Dai, W.W. Chang, et al., Microbiologically influenced corrosion of FeCoCrNiMo0.1 high-entropy alloys by marine Pseudomonas aeruginosa, Corros. Sci., 165(2020), art. No. 108390. doi: 10.1016/j.corsci.2019.108390
      [34]
      W.W. Chang, Y.Y. Li, H.B. Zheng, et al., Microbiologically influenced corrosion behavior of Fe40(CoCrMnNi)60 and Fe60(CoCrMnNi)40 medium entropy alloys in the presence of pseudomonas aeruginosa, Acta Metall. Sin., 36(2023), No. 3, p. 379. doi: 10.1007/s40195-022-01488-2
      [35]
      J.K. Yang, Y. Zhang, W.W. Chang, Y.T. Lou, and H.C. Qian, Microbiologically influenced corrosion of FeCoNiCrMn high-entropy alloys by Pseudomonas aeruginosa biofilm, Front. Microbiol., 13(2022), art. No. 1009310. doi: 10.3389/fmicb.2022.1009310
      [36]
      P. Mahmoudi, M.R. Akbarpour, H.B. Lakeh, F.J. Jing, M.R. Hadidi, and B. Akhavan, Antibacterial Ti–Cu implants: A critical review on mechanisms of action, Mater. Today Bio, 17(2022), art. No. 100447. doi: 10.1016/j.mtbio.2022.100447
      [37]
      S. Kumar, D.N. Roy, and V. Dey, A comprehensive review on techniques to create the anti-microbial surface of biomaterials to intervene in biofouling, Colloid Interface Sci. Commun., 43(2021), art. No. 100464. doi: 10.1016/j.colcom.2021.100464
      [38]
      B.R. Zheng, D. Wang, M.H. Yang, et al., Enhancement of microbiologically influenced corrosion resistance of copper-containing nickel-free high nitrogen stainless steel against marine corrosive Pseudomonas aeruginosa, Colloid Interface Sci. Commun, 53(2023), art. No. 100706. doi: 10.1016/j.colcom.2023.100706
      [39]
      J. Ju, R. Zan, Z. Shen, et al., Remarkable bioactivity, bio-tribological, antibacterial, and anti-corrosion properties in a Ti–6Al–4V–xCu alloy by laser powder bed fusion for superior biomedical implant applications, Chem. Eng. J., 471(2023), art. No. 144656. doi: 10.1016/j.cej.2023.144656
      [40]
      J.Q. Li, D.Y. Zhang, X.B. Chen, et al., Laser directed energy deposited, ultrafine-grained functional titanium–copper alloys tailored for marine environments: Antibacterial and anti-microbial corrosion studies, J. Mater. Sci. Technol., 166(2023), p. 21. doi: 10.1016/j.jmst.2023.05.020
      [41]
      M.S. Khan, C.G. Yang, H.B. Pan, K. Yang, and Y. Zhao, The effect of high temperature aging on the corrosion resistance, mechanical property and antibacterial activity of Cu-2205 DSS, Colloids Surf. B, 211(2022), art. No. 112309. doi: 10.1016/j.colsurfb.2021.112309
      [42]
      S.Y. Zhang, H.B. Zheng, W.W. Chang, Y.T. Lou, and H.C. Qian, Microbiological deterioration of epoxy coating on carbon steel by Pseudomonas aeruginosa, Coatings, 13(2023), No. 3, art. No. 606. doi: 10.3390/coatings13030606
      [43]
      D. Liu, H.Y. Yang, J.H. Li, et al., Electron transfer mediator PCN secreted by aerobic marine Pseudomonas aeruginosa accelerates microbiologically influenced corrosion of TC4 titanium alloy, J. Mater. Sci. Technol., 79(2021), p. 101. doi: 10.1016/j.jmst.2020.11.042
      [44]
      H.W. Liu and Y.F. Cheng, Corrosion of X52 pipeline steel in a simulated soil solution with coexistence of Desulfovibrio desulfuricans and Pseudomonas aeruginosa bacteria, Corros. Sci., 173(2020), art. No. 108753. doi: 10.1016/j.corsci.2020.108753
      [45]
      R. Jia, D.Q. Yang, D.K. Xu, and T.Y. Gu, Anaerobic corrosion of 304 stainless steel caused by the Pseudomonas aeruginosa biofilm, Front. Microbiol., 8(2017), art. No. 2335. doi: 10.3389/fmicb.2017.02335
      [46]
      L.Y. Huang, W.W. Chang, D.W. Zhang, et al., Acceleration of corrosion of 304 stainless steel by outward extracellular electron transfer of Pseudomonas aeruginosa biofilm, Corros. Sci., 199(2022), art. No. 110159. doi: 10.1016/j.corsci.2022.110159
      [47]
      D. Guo, J. Chen, X. Chen, et al., Pitting corrosion behavior of friction-surfaced 17-4PH stainless steel coatings with and without subsequent heat treatment, Corros. Sci., 193(2021), art. No. 109887. doi: 10.1016/j.corsci.2021.109887
      [48]
      Y.T. Lou, L. Lin, D.K. Xu, et al., Antibacterial ability of a novel Cu-bearing 2205 duplex stainless steel against Pseudomonas aeruginosa biofilm in artificial seawater, Int. Biodeterior. Biodegrad., 110(2016), p. 199. doi: 10.1016/j.ibiod.2016.03.026
      [49]
      B. Cantor, Multicomponent high-entropy Cantor alloys, Prog. Mater. Sci., 120(2021), art. No. 100754. doi: 10.1016/j.pmatsci.2020.100754
      [50]
      C.C. Du, L. Hu, Q.H. Pan, K.M. Chen, P.J. Zhou, and G.J. Wang, Effect of Cu on the strengthening and embrittling of an FeCoNiCr–xCu HEA, Mater. Sci. Eng. A, 832(2022), art. No. 142413. doi: 10.1016/j.msea.2021.142413
      [51]
      X.P. Hao, Y. Bai, C.H. Ren, et al., Self-healing effect of damaged coatings via biomineralization by Shewanella putrefaciens, Corros. Sci., 196(2022), art. No. 110067. doi: 10.1016/j.corsci.2021.110067
      [52]
      S.P. Sah, Evolution of corrosion resistance of 310S stainless steel in carbonates melt at 650°C, Corros. Sci., 226(2024), art. No. 111663. doi: 10.1016/j.corsci.2023.111663
      [53]
      L. Karygianni, Z. Ren, H. Koo, and T. Thurnheer, Biofilm matrixome: Extracellular components in structured microbial communities, Trends Microbiol., 28(2020), No. 8, p. 668. doi: 10.1016/j.tim.2020.03.016
      [54]
      B.B. Yang, C.Y. Shi, J.W. Teng, et al., Corrosion behaviours of low Mo Ni–(Co)–Cr–Mo alloys with various contents of Co in HF acid solution, J. Alloys Compd., 791(2019), p. 215. doi: 10.1016/j.jallcom.2019.03.325
      [55]
      E.Z. Zhou, D.X. Qiao, Y. Yang, et al., A novel Cu-bearing high-entropy alloy with significant antibacterial behavior against corrosive marine biofilms, J. Mater. Sci. Technol., 46(2020), p. 201. doi: 10.1016/j.jmst.2020.01.039

    Catalog


    • /

      返回文章
      返回