留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图(12)  / 表(6)

数据统计

分享

计量
  • 文章访问数:  199
  • HTML全文浏览量:  77
  • PDF下载量:  15
  • 被引次数: 0
Tongyue Li, Ziliang Xie, Wenjiao Zhou, Huan Tong, Dawen Yang, Anjia Zhang, Yuan Wu,  and Xiping Song, Study on the hydrogen absorption properties of a YGdTbDyHo rare-earth high-entropy alloy, Int. J. Miner. Metall. Mater.,(2025). https://doi.org/10.1007/s12613-024-2933-5
Cite this article as:
Tongyue Li, Ziliang Xie, Wenjiao Zhou, Huan Tong, Dawen Yang, Anjia Zhang, Yuan Wu,  and Xiping Song, Study on the hydrogen absorption properties of a YGdTbDyHo rare-earth high-entropy alloy, Int. J. Miner. Metall. Mater.,(2025). https://doi.org/10.1007/s12613-024-2933-5
引用本文 PDF XML SpringerLink
研究论文

YGdTbDyHo稀土高熵合金吸氢性能研究


  • 通讯作者:

    吴渊    E-mail: wuyuan@ustb.edu.cn

    宋西平    E-mail: xpsong@skl.ustb.edu.cn

文章亮点

  • (1) 首次研究了YGdTbDyHo稀土高熵合金的储氢性能。
  • (2) 发现了YGdTbDyHo稀土高熵合金的在723 K温度下,储氢量达到2.33 H/M。
  • (3) 高的原子储氢量与其稀土高熵合金较大的点阵常数以及稀土氢化物含氢量较高有关。
  • 高熵合金作为有前途的储氢材料而受到广泛关注,本研究研究了稀土高熵合金YGdTbDyHo的微观结构和吸氢性能。结果表明,YGdTbDyHo合金具有等轴晶组织,合金元素分布均匀。在吸收氢气后,高熵合金的相结构从具有六方密堆积(HCP)结构的固溶体变为具有面心立方(FCC)结构的高熵氢化物,没有任何二次相析出。该合金在723 K下的最大储氢容量为2.33 H/M(氢原子/金属原子),焓变(ΔH)为−141.09 kJ·mol−1,熵变(ΔS)为−119.14 J·mol−1·K−1。氢吸收的动力学机制是氢化物成核和生长,表观活化能(Ea)为20.90 kJ·mol−1。在没有任何活化的情况下,YGdTbDyHo合金可以快速吸收氢气(在923 K下为180秒),几乎没有观察到潜伏期。得到2.33 H/M值的原因是氢原子占据了四面体和八面体间隙。这些结果表明,HEA作为具有大H/M比的高容量储氢材料具有潜在的应用前景,可用于氘储存领域。
  • Research Article

    Study on the hydrogen absorption properties of a YGdTbDyHo rare-earth high-entropy alloy

    + Author Affiliations
    • This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy (HEA), YGdTbDyHo. Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains, with the alloy elements distributed homogeneously. Upon hydrogen absorption, the phase structure of the HEA changed from a solid solution with an hexagonal-close-packed (HCP) structure to a high-entropy hydride with an faced-centered-cubic (FCC) structure without any secondary phase precipitated. The alloy demonstrated a maximum hydrogen storage capacity of 2.33 H/M (hydrogen atom/metal atom) at 723 K, with an enthalpy change (ΔH) of −141.09 kJ·mol−1 and an entropy change (ΔS) of −119.14 J·mol−1·K−1. The kinetic mechanism of hydrogen absorption was hydride nucleation and growth, with an apparent activation energy (Ea) of 20.90 kJ·mol−1. Without any activation, the YGdTbDyHo alloy could absorb hydrogen quickly (180 s at 923 K) with nearly no incubation period observed. The reason for the obtained value of 2.33 H/M was that the hydrogen atoms occupied both tetrahedral and octahedral interstices. These results demonstrate the potential application of HEAs as a high-capacity hydrogen storage material with a large H/M ratio, which can be used in the deuterium storage field.
    • loading
    • [1]
      J.W. Yeh, S.K. Chen, S.J. Lin, et al., Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater., 6(2004), No. 5, p. 299. doi: 10.1002/adem.200300567
      [2]
      Y. Zhang and Y.J. Zhou, Solid solution formation criteria for high entropy alloys, Mater. Sci. Forum, 561-565(2007), p. 1337. doi: 10.4028/www.scientific.net/MSF.561-565.1337
      [3]
      C.W. Tsai, M.H. Tsai, J.W. Yeh, and C.C. Yang, Effect of temperature on mechanical properties of Al0.5CoCrCuFeNi wrought alloy, J. Alloys Compd., 490(2010), No. 1-2, p. 160. doi: 10.1016/j.jallcom.2009.10.088
      [4]
      S.G. Ma and Y. Zhang, Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy, Mater. Sci. Eng. A, 532(2012), p. 480. doi: 10.1016/j.msea.2011.10.110
      [5]
      Y.Y. Chen, U.T. Hong, H.C. Shih, J.W. Yeh, and T. Duval, Electrochemical kinetics of the high entropy alloys in aqueous environments—A comparison with type 304 stainless steel, Corros. Sci., 47(2005), No. 11, p. 2679. doi: 10.1016/j.corsci.2004.09.026
      [6]
      T. Zhong, H.Y. Zhang, M.C. Song, et al., FeCoNiCrMo high entropy alloy nanosheets catalyzed magnesium hydride for solid-state hydrogen storage, Int. J. Miner. Metall. Mater., 30(2023), No. 11, p. 2270. doi: 10.1007/s12613-023-2669-7
      [7]
      L. Wang, L.T. Zhang, X. Lu, et al., Surprising cocktail effect in high entropy alloys on catalyzing magnesium hydride for solid-state hydrogen storage, Chem. Eng. J., 465(2023), art. No. 142766. doi: 10.1016/j.cej.2023.142766
      [8]
      S. Li, F.Y. Wu, Y. Zhang, et al., Enhanced hydrogen storage performance of magnesium hydride catalyzed by medium-entropy alloy CrCoNi nanosheets, Int. J. Hydrogen Energy, 50(2024), p. 1015. doi: 10.1016/j.ijhydene.2023.08.308
      [9]
      F. Marques, M. Balcerzak, F. Winkelmann, G. Zepon, and M. Felderhoff, Review and outlook on high-entropy alloys for hydrogen storage, Energy Environ. Sci., 14(2021), No. 10, p. 5191. doi: 10.1039/D1EE01543E
      [10]
      M. Sahlberg, D. Karlsson, C. Zlotea, and U. Jansson, Superior hydrogen storage in high entropy alloys, Sci. Rep., 6(2016), art. No. 36770. doi: 10.1038/srep36770
      [11]
      C. Zlotea, M.A. Sow, G. Ek, et al., Hydrogen sorption in TiZrNbHfTa high entropy alloy, J. Alloys Compd., 775(2019), p. 667. doi: 10.1016/j.jallcom.2018.10.108
      [12]
      C. Zhang, A.N. Song, Y. Yuan, et al., Study on the hydrogen storage properties of a TiZrNbTa high entropy alloy, Int. J. Hydrogen Energy, 45(2020), No. 8, p. 5367. doi: 10.1016/j.ijhydene.2019.05.214
      [13]
      M.D.B. Ferraz, W.J. Botta, and G. Zepon, Synthesis, characterization and first hydrogen absorption/desorption of the Mg35Al15Ti25V10Zn15 high entropy alloy, Int. J. Hydrogen Energy, 47(2022), No. 54, p. 22881. doi: 10.1016/j.ijhydene.2022.05.098
      [14]
      R. Soler, A. Evirgen, M. Yao, et al., Microstructural and mechanical characterization of an equiatomic YGdTbDyHo high entropy alloy with hexagonal close-packed structure, Acta Mater., 156(2018), p. 86. doi: 10.1016/j.actamat.2018.06.010
      [15]
      S. Vrtnik, J. Lužnik, P. Koželj, et al., Disordered ferromagnetic state in the Ce–Gd–Tb–Dy–Ho hexagonal high-entropy alloy, J. Alloys Compd., 742(2018), p. 877. doi: 10.1016/j.jallcom.2018.01.331
      [16]
      Y. Yuan, Y. Wu, X. Tong, et al., Rare-earth high-entropy alloys with giant magnetocaloric effect, Acta Mater., 125(2017), p. 481. doi: 10.1016/j.actamat.2016.12.021
      [17]
      A. Khawam and D.R. Flanagan, Solid-state kinetic models: Basics and mathematical fundamentals, J. Phys. Chem. B, 110(2006), No. 35, p. 17315. doi: 10.1021/jp062746a
      [18]
      A. Jelen, J.H. Jang, J. Oh, et al., Nanostructure and local polymorphism in “ideal-like” rare-earths-based high-entropy alloys, Mater. Charact., 172(2021), art. No. 110837. doi: 10.1016/j.matchar.2020.110837
      [19]
      K. Fu, G.L. Li, J.G. Li, Y. Liu, W.H. Tian, and X.G. Li, Experimental study and thermodynamic assessment of the dysprosium-hydrogen binary system, J. Alloys Compd., 696(2017), p. 60. doi: 10.1016/j.jallcom.2016.11.182
      [20]
      S.F. Lu, L. Ma, G.H. Rao, et al., Magnetocaloric effect of high-entropy rare-earth alloy GdTbHoErY, J. Mater. Sci. Mater. Electron., 32(2021), No. 8, p. 10919. doi: 10.1007/s10854-021-05749-1
      [21]
      S.F. Lu, L. Ma, J. Wang, et al., Effect of configuration entropy on magnetocaloric effect of rare earth high-entropy alloy, J. Alloys Compd., 874(2021), art. No. 159918. doi: 10.1016/j.jallcom.2021.159918
      [22]
      M. Krnel, S. Vrtnik, A. Jelen, et al., Speromagnetism and asperomagnetism as the ground states of the Tb–Dy–Ho–Er–Tm “ideal” high-entropy alloy, Intermetallics, 117(2020), art. No. 106680. doi: 10.1016/j.intermet.2019.106680
      [23]
      V.V. Burnasheva, E.E. Fokina, V.N. Fokin, S.L. Troitskaya, and K.N. Semenenko, Formation of scandium and yttrium hydrides in the presence of intermetallic ScFe1.74 and YFe2 compounds, Russ. J. Inorg. Chem., 29(1984), No. 6, p. 1379.
      [24]
      M. Ellner, H. Reule, and E.J. Mittemeijer, Unit cell parameters and densities of the gadolinium dihydride GdH2+ x, J. Alloys Compd., 279(1998), No. 2, p. 179. doi: 10.1016/S0925-8388(98)00681-1
      [25]
      A. Pebler and W.E. Wallace, Crystal structures of some lanthanide hydrides1, J. Phys. Chem., 66(1962), No. 1, p. 148. doi: 10.1021/j100807a033
      [26]
      J.E. Bonnet and J.N. Daou, Rare‐earth dihydride compounds: Lattice thermal expansion and investigation of the thermal dissociation, J. Appl. Phys., 48(1977), No. 3, p. 964. doi: 10.1063/1.323717
      [27]
      N. Zapp, D. Sheptyakov, A. Franz, and H. Kohlmann, HoHO: A paramagnetic air-resistant ionic hydride with ordered anions, Inorg. Chem., 60(2021), No. 6, p. 3972. doi: 10.1021/acs.inorgchem.0c03822
      [28]
      D.G. Westlake, Hydrides of intermetallic compounds: A review of stabilities, stoichiometries and preferred hydrogen sites, J. Less Common Met., 91(1983), No. 1, p. 1. doi: 10.1016/0022-5088(83)90091-7
      [29]
      Z.J. Wang, C.T. Liu, and P. Dou, Thermodynamics of vacancies and clusters in high-entropy alloys, Phys. Rev. Mater., 1(2017), No. 4, art. No. 043601. doi: 10.1103/PhysRevMaterials.1.043601
      [30]
      R. Floriano, G. Zepon, K. Edalati, et al., Hydrogen storage in TiZrNbFeNi high entropy alloys, designed by thermodynamic calculations, Int. J. Hydrogen Energy, 45(2020), No. 58, p. 33759. doi: 10.1016/j.ijhydene.2020.09.047
      [31]
      R. Floriano, G. Zepon, K. Edalati, et al., Hydrogen storage properties of new A3B2-type TiZrNbCrFe high-entropy alloy, Int. J. Hydrogen Energy, 46(2021), No. 46, p. 23757. doi: 10.1016/j.ijhydene.2021.04.181
      [32]
      K.R. Cardoso, V. Roche, A.M. Jorge Jr, F.J. Antiqueira, G. Zepon, and Y. Champion, Hydrogen storage in MgAlTiFeNi high entropy alloy, J. Alloys Compd., 858(2021), art. No. 158357. doi: 10.1016/j.jallcom.2020.158357

    Catalog


    • /

      返回文章
      返回