留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图(11)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  285
  • HTML全文浏览量:  139
  • PDF下载量:  16
  • 被引次数: 0
Yishuang Yu, Jingxiao Zhao, Xuelin Wang, Hui Guo, Zhenjia Xie, and Chengjia Shang, Unraveling the significance of cobalt on transformation kinetics, crystallography and impact toughness in high-strength steels, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2935-3
Cite this article as:
Yishuang Yu, Jingxiao Zhao, Xuelin Wang, Hui Guo, Zhenjia Xie, and Chengjia Shang, Unraveling the significance of cobalt on transformation kinetics, crystallography and impact toughness in high-strength steels, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2935-3
引用本文 PDF XML SpringerLink
研究论文

揭示Co元素对高强钢相变动力学、晶体学及冲击韧性的作用


  • 通讯作者:

    谢振家    E-mail: zjxie@ustb.edu.cn

    尚成嘉    E-mail: cjshang@ustb.edu.cn

文章亮点

  • (1) 研究了Co元素对高强钢相变动力学的影响规律。
  • (2) 明确了Co元素对高强钢变体配对及热力学的影响规律。
  • (3) 揭示了Co元素对调控晶体学特征与改善冲击韧性的作用。
  • 钴(Co)元素广泛应用于马氏体时效钢、耐热钢、不锈钢等高合金钢。而在低合金钢中,Co元素对相变产物及力学性能的影响尚不明晰,探明Co元素在高强度低合金钢中的作用将有助于指导高强钢的设计开发。本文旨在揭示Co元素对高强钢相变动力学、晶体学及冲击韧性的作用。本文制备了含Co和不含Co的两种低合金钢,采用显微组织观察、力学性能测试和热膨胀试验研究了两种钢的相变动力学、显微组织特征以及强韧性能,揭示了Co元素对调控晶体学特征及改善冲击韧性的作用。研究结果表明,相比不含Co钢,含Co钢的Block更细,韧脆转变温度(DBTT)更低,且在贝氏体转变中间阶段(贝氏体体积分数在0.1–0.6范围)具有更高的转变速率。含Co钢冲击韧性提升与V1/V2变体对主导的高密度Block界面有关。此外,添加Co会降低贝氏体相变温度(BS),增加相变驱动力,从而有助细化Block和形成更多V1/V2变体对。
  • Research Article

    Unraveling the significance of cobalt on transformation kinetics, crystallography and impact toughness in high-strength steels

    + Author Affiliations
    • This work reveals the significant effects of cobalt (Co) on the microstructure and impact toughness of as-quenched high-strength steels by experimental characterizations and thermo-kinetic analyses. The results show that the Co-bearing steel exhibits finer blocks and a lower ductile–brittle transition temperature than the steel without Co. Moreover, the Co-bearing steel reveals higher transformation rates at the intermediate stage with bainite volume fraction ranging from around 0.1 to 0.6. The improved impact toughness of the Co-bearing steel results from the higher dense block boundaries dominated by the V1/V2 variant pair. Furthermore, the addition of Co induces a larger transformation driving force and a lower bainite start temperature (BS), thereby contributing to the refinement of blocks and the increase of the V1/V2 variant pair. These findings would be instructive for the composition, microstructure design, and property optimization of high-strength steels.
    • loading
    • [1]
      C.I. Garcia, High strength low alloyed (HSLA) steels, [in] R. Rana and S.B. Singh, eds., Automotive Steels : Design , Metallurgy , Processing and Applications, Woodhead Publishing, Duxford, 2017, p. 145.
      [2]
      G. Krauss, Tempering of lath martensite in low and medium carbon steels: Assessment and challenges, Steel Res. Int., 88(2017), No. 10, art. No. 1700038.
      [3]
      P. Han, Z.P. Liu, Z.J. Xie, et al., Influence of band microstructure on carbide precipitation behavior and toughness of 1 GPa-grade ultra-heavy gauge low-alloy steel, Int. J. Miner. Metall. Mater., 30(2023), No. 7, p. 1329. doi: 10.1007/s12613-023-2597-6
      [4]
      G. Krauss, Steels : Processing , Structure , and Performance, 2nd ed., ASM International, Materials Park, Ohio, 2015.
      [5]
      G. Huang, X.L. Wan, K.M. Wu, H.Z. Zhao, and R.D.K. Misra, Effects of small Ni addition on the microstructure and toughness of coarse-grained heat-affected zone of high-strength low-alloy steel, Metals, 8(2018), No. 9, art. No. 718. doi: 10.3390/met8090718
      [6]
      Z.Q. Wang, X.L. Wang, Y.R. Nan, et al., Effect of Ni content on the microstructure and mechanical properties of weld metal with both-side submerged arc welding technique, Mater. Charact., 138(2018), p. 67. doi: 10.1016/j.matchar.2018.01.039
      [7]
      X.L. Wang, X.P. Ma, Z.Q. Wang, et al., Carbon microalloying effect of base material on variant selection in coarse grained heat affected zone of X80 pipeline steel, Mater. Charact., 149(2019), p. 26. doi: 10.1016/j.matchar.2019.01.005
      [8]
      M.Y. Sun, Z.Q. Wang, X.M. Wang, and R.D.K. Misra, The significance of variant pairing in governing toughness of coarse-grained heat affected zone (CGHAZ) in Nb-bearing high strength structural steels, Mater. Lett., 260(2020), art. No. 126974. doi: 10.1016/j.matlet.2019.126974
      [9]
      X.Q. Liu, S.S. Zhou, Z.L. Liu, Z.G. Hou, and Q.C. Tian, Effect of 0.1 wt.% Co on the hot deformation and toughness of fine-grained low-carbon steel at sub-zero temperatures, J. Mater. Eng. Perform., 27(2018), No. 1, p. 155. doi: 10.1007/s11665-017-3011-1
      [10]
      J.R. Davis, Metals Handbook Desk Edition, 2nd ed., ASM International, Materials Park, Ohio, 1998.
      [11]
      Y.S. Yu, Z.Q. Wang, B.B. Wu, et al., Tailoring variant pairing to enhance impact toughness in high-strength low-alloy steels via trace carbon addition, Acta Metall. Sin. Engl. Lett., 34(2021), No. 6, p. 755. doi: 10.1007/s40195-020-01186-x
      [12]
      X.L. Wang, Z.J. Xie, W.J. Su, and C.J. Shang, Role of carbon content on microstructure evolution and impact toughness in coarse-grained heat-affected zone of high-strength steel, Metals, 13(2023), No. 1, art. No. 106. doi: 10.3390/met13010106
      [13]
      S. Huang, Y.S. Yu, Z.Q. Wang, et al., Crystallographic insights into the role of nickel on hardenability of wear-resistant steels, Mater. Lett., 306(2022), art. No. 130961.
      [14]
      Z.P. Liu, Y.S. Yu, J. Yang, Z.Q. Wang, H. Guo, and C.J. Shang, Morphology and crystallography analyses of HSLA steels with hardenability enhanced by tailored C–Ni collocation, Metals, 12(2022), No. 1, art. No. 32.
      [15]
      J. Hu, X.Y. Li, Q.W. Meng, L.Y. Wang, Y.Z. Li, and W. Xu, Tailoring retained austenite and mechanical property improvement in Al–Si–V containing medium Mn steel via direct intercritical rolling, Mater. Sci. Eng. A, 855(2022), art. No. 143904. doi: 10.1016/j.msea.2022.143904
      [16]
      S.Z. Wang, Z.J. Gao, G.L. Wu, and X.P. Mao, Titanium microalloying of steel: A review of its effects on processing, microstructure and mechanical properties, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 645. doi: 10.1007/s12613-021-2399-7
      [17]
      C. Garcia-Mateo, F.G. Caballero, and H.K.D.H. Bhadeshia, Acceleration of low-temperature bainite, ISIJ Int., 43(2003), No. 11, p. 1821. doi: 10.2355/isijinternational.43.1821
      [18]
      S. Samanta, S. Das, D. Chakrabarti, I. Samajdar, S.B. Singh, and A. Haldar, Development of multiphase microstructure with bainite, martensite, and retained austenite in a Co-containing steel through quenching and partitioning (Q&P) treatment, Metall. Mater. Trans. A, 44(2013), No. 13, p. 5653.
      [19]
      L.L. Feng, F. Hu, W. Zhou, et al., Influences of alloying elements on continuous cooling phase transformation and microstructures of extremely fine pearlite, Metals, 9(2019), No. 1, art. No. 70. doi: 10.3390/met9010070
      [20]
      General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China and Standardization Administration of the People’s Republic of China, GB/T 228.1–2021: Metallic Materials – Tensile Testing – Part I : Method of Test at Room Temperature, Beijing, 2021.
      [21]
      General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China and Standardization Administration of the People’s Republic of China, GB/T 229–2020: Metallic Materials – Charpy Pendulum Impact Test Method, Beijing, 2020.
      [22]
      General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China and Standardization Administration of the People’s Republic of China, GB/T 6394–2017: Determination of Estimating the Average Grain Size of Metal, Beijing, 2017.
      [23]
      W. Rasband, ImageJ. https://imagej.net/.
      [24]
      X.C. Li, J.X. Zhao, J.H. Cong, et al., Machine learning guided automatic recognition of crystal boundaries in bainitic/martensitic alloy and relationship between boundary types and ductile-to-brittle transition behavior, J. Mater. Sci. Technol., 84(2021), p. 49. doi: 10.1016/j.jmst.2020.12.024
      [25]
      C. Celada-Casero, J. Sietsma, and M.J. Santofimia, The role of the austenite grain size in the martensitic transformation in low carbon steels, Mater. Des., 167(2019), art. No. 107625. doi: 10.1016/j.matdes.2019.107625
      [26]
      S. Morito, H. Saito, T. Ogawa, T. Furuhara, and T. Maki, Effect of austenite grain size on the morphology and crystallography of lath martensite in low carbon steels, ISIJ Int., 45(2005), No. 1, p. 91.
      [27]
      S.J. Lee, J.S. Park, and Y.K. Lee, Effect of austenite grain size on the transformation kinetics of upper and lower bainite in a low-alloy steel, Scripta Mater., 59(2008), No. 1, p. 87. doi: 10.1016/j.scriptamat.2008.02.036
      [28]
      S. Morito, H. Tanaka, R. Konishi, T. Furuhara, and T. Maki, The morphology and crystallography of lath martensite in Fe–C alloys, Acta Mater., 51(2003), No. 6, p. 1789. doi: 10.1016/S1359-6454(02)00577-3
      [29]
      S. Morito, X. Huang, T. Furuhara, T. Maki, and N. Hansen, The morphology and crystallography of lath martensite in alloy steels, Acta Mater., 54(2006), No. 19, p. 5323. doi: 10.1016/j.actamat.2006.07.009
      [30]
      A. Chatterjee, D. Chakrabarti, A. Moitra, R. Mitra, and A.K. Bhaduri, Effect of deformation temperature on the ductile–brittle transition behavior of a modified 9Cr–1Mo steel, Mater. Sci. Eng. A, 630(2015), p. 58.
      [31]
      X.L. Wang, Z.Q. Wang, L.L. Dong, C.J. Shang, X.P. Ma, and S.V. Subramanian, New insights into the mechanism of cooling rate on the impact toughness of coarse grained heat affected zone from the aspect of variant selection, Mater. Sci. Eng. A, 704(2017), p. 448. doi: 10.1016/j.msea.2017.07.095
      [32]
      H.W. Luo, X.H. Wang, Z.B. Liu, and Z.Y. Yang, Influence of refined hierarchical martensitic microstructures on yield strength and impact toughness of ultra-high strength stainless steel, J. Mater. Sci. Technol., 51(2020), p. 130. doi: 10.1016/j.jmst.2020.04.001
      [33]
      S.M.C. van Bohemen, Bainite and martensite start temperature calculated with exponential carbon dependence, Mater. Sci. Technol., 28(2012), No. 4, p. 487. doi: 10.1179/1743284711Y.0000000097
      [34]
      C. Garcia-Mateo, G. Paul, M.C. Somani, et al., Transferring nanoscale bainite concept to lower C contents: A perspective, Metals, 7(2017), No. 5, art. No. 159.
      [35]
      Y.F. Zheng, R.M. Wu, X.C. Li, and X.C. Wu, Continuous cooling transformation behaviour and bainite formation kinetics of new bainitic steel, Mater. Sci. Technol., 33(2017), No. 4, p. 454. doi: 10.1080/02670836.2016.1224608
      [36]
      H. Bhadeshia and R. Honeycombe, Steels : Microstructure and Properties, 4th ed., Butterworth-Heinemann, Oxford, 2017.
      [37]
      H.I. Aaronson, M. Enomoto, and J.K. Lee, Mechanisms of Diffusional Phase Transformations in Metals and Alloys, CRC Press, Boca Raton, 2010.
      [38]
      A. Stormvinter, G. Miyamoto, T. Furuhara, P. Hedström, and A. Borgenstam, Effect of carbon content on variant pairing of martensite in Fe–C alloys, Acta Mater., 60(2012), No. 20, p. 7265. doi: 10.1016/j.actamat.2012.09.046
      [39]
      N. Takayama, G. Miyamoto, and T. Furuhara, Effects of transformation temperature on variant pairing of bainitic ferrite in low carbon steel, Acta Mater., 60(2012), No. 5, p. 2387. doi: 10.1016/j.actamat.2011.12.018
      [40]
      H. Yu, Y.S. Yu, Z.Q. Wang, F. Li, B. Hu, and S.L. Liu, On the variant pairing in transformation product of high strength low alloy steel depending on cooling rate, Mater. Lett., 326(2022), art. No. 132953.
      [41]
      A. Ståhlkrantz, P. Hedström, N. Sarius, and A. Borgenstam, Effect of carbon content on variant pairing in bainitic low alloy steel, Metall. Mater. Trans. A, 53(2022), No. 9, p. 3418. doi: 10.1007/s11661-022-06757-4
      [42]
      T.W. Yin, Y.F. Shen, N. Jia, Y.J. Li, and W.Y. Xue, Controllable selection of martensitic variant enables concurrent enhancement of strength and ductility in a low-carbon steel, Int. J. Plast., 168(2023), art. No. 103704. doi: 10.1016/j.ijplas.2023.103704
      [43]
      Z. Gao, X.M. Dong, J.R. Yu, et al., Unraveling the mechanism of toughness fluctuation in ultra-high-strength casing from the perspective of crystallography, Metals, 14(2024), No. 2, art. No. 208. doi: 10.3390/met14020208
      [44]
      H. Kawata, K. Sakamoto, T. Moritani, S. Morito, T. Furuhara, and T. Maki, Crystallography of ausformed upper bainite structure in Fe–9Ni–C alloys, Mater. Sci. Eng. A, 438-440(2006), p. 140.
      [45]
      X.L. Wang, Z.J. Xie, Z.Q. Wang, Y.S. Yu, L.Q. Wu, and C.J. Shang, Crystallographic study on microstructure and impact toughness of coarse grained heat affected zone of ultra-high strength steel, Mater. Lett., 323(2022), art. No. 132552. doi: 10.1016/j.matlet.2022.132552
      [46]
      Q.Y. Chen, W.N. Zhang, P.J. Wang, Q.J. Mao, and Z.Y. Liu, Crystallography of transformation products with different cooling rates in low-carbon alloy steel and its effect on low-temperature toughness uniformity of heavy plates, J. Mater. Res. Technol., 28(2024), p. 2077. doi: 10.1016/j.jmrt.2023.12.142
      [47]
      T. Furuhara, H. Kawata, S. Morito, and T. Maki, Crystallography of upper bainite in Fe–Ni–C alloys, Mater. Sci. Eng. A, 431(2006), No. 1-2, p. 228. doi: 10.1016/j.msea.2006.06.032
      [48]
      S.A. Filippov and N.Y. Zolotorevsky, Orientation relationship and variant pairing in bainite of low carbon steels depending on thermomechanical treatment, Mater. Lett., 214(2018), p. 130.
      [49]
      A. Lambert-Perlade, A.F. Gourgues, and A. Pineau, Austenite to bainite phase transformation in the heat-affected zone of a high strength low alloy steel, Acta Mater., 52(2004), No. 8, p. 2337. doi: 10.1016/j.actamat.2004.01.025
      [50]
      S. Huang, B.B. Wu, Z.Q. Wang, et al., EBSD study on the significance of carbon content on hardenability, Mater. Lett., 254(2019), p. 412. doi: 10.1016/j.matlet.2019.07.106
      [51]
      B.B. Wu, Z.Q. Wang, Y.S. Yu, X.L. Wang, C.J. Shang, and R.D.K. Misra, Thermodynamic basis of twin-related variant pair in high strength low alloy steel, Scripta Mater., 170(2019), p. 43. doi: 10.1016/j.scriptamat.2019.05.016
      [52]
      Y.S. Yu, Z.Q. Wang, B.B. Wu, et al., New insight into the hardenability of high strength low alloy steel from the perspective of crystallography, Mater. Lett., 292(2021), art. No. 129624.
      [53]
      A.F. Gourgues, Electron backscatter diffraction and cracking, Mater. Sci. Technol., 18(2002), No. 2, p. 119. doi: 10.1179/026708301125000320
      [54]
      Y. Zhao, X. Tong, X.H. Wei, et al., Effects of microstructure on crack resistance and low-temperature toughness of ultra-low carbon high strength steel, Int. J. Plast., 116(2019), p. 203. doi: 10.1016/j.ijplas.2019.01.004
      [55]
      E.D. Fan, Y. Li, Y. You, and X.W. Lü, Effect of crystallographic orientation on crack growth behaviour of HSLA steel, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1532. doi: 10.1007/s12613-022-2415-6
      [56]
      J.W. Morris, C.S. Lee, and Z. Guo, The nature and consequences of coherent transformations in steel, ISIJ Int., 43(2003), No. 3, p. 410.

    Catalog


    • /

      返回文章
      返回