留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图(15)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  233
  • HTML全文浏览量:  96
  • PDF下载量:  28
  • 被引次数: 0
Feng Zhang, Chenyang Zhang, Linlin Wu, Wei Sun, Hongliang Zhang, Jianhua Chen, Yong Pei, and Songjiang Li, Depression mechanism of sulfite ions on sphalerite and Pb2+ activated sphalerite in the flotation separation of galena from sphalerite, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2936-2
Cite this article as:
Feng Zhang, Chenyang Zhang, Linlin Wu, Wei Sun, Hongliang Zhang, Jianhua Chen, Yong Pei, and Songjiang Li, Depression mechanism of sulfite ions on sphalerite and Pb2+ activated sphalerite in the flotation separation of galena from sphalerite, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2936-2
引用本文 PDF XML SpringerLink

在铅锌硫化矿浮选分离中亚硫酸根离子对闪锌矿及铅离子活化的闪锌矿抑制作用机理研究


  • 通讯作者:

    张晨阳    E-mail: zhangchenyang@csu.edu.cn

    吴淋琳    E-mail: minengine@163.com

    李宋江    E-mail: chemwll@csu.edu.cn

文章亮点

  • (1) 实验表征和DFT计算结果表明亚硫酸根离子难以吸附在闪锌矿表面。
  • (2) 实验表征和DFT计算相结合深入阐明亚硫酸铅螯合物更容易在闪锌矿吸附。
  • (3) 提出了在铅锌硫化矿浮选分离中亚硫酸根离子抑制闪锌矿的作用机理模型。
  • 在方铅矿与闪锌矿浮选分离中亚硫酸根离子对闪锌矿及铅离子活化的闪锌矿抑制作用机理仍缺乏深入的理解。因此,本文通过系统实验测试和密度泛函理论(DFT)计算,进一步系统研究了相关机理。X射线光电能谱(XPS)测试、DFT计算和前沿分子轨道分析表明,亚硫酸根离子难以吸附在闪锌矿上,亚硫酸根离子应该是通过非吸附的其他方式对闪锌矿产生了抑制作用:首先,亚硫酸根离子处理过的闪锌矿表面的氧含量增加,增强了闪锌矿的亲水性,进一步增加了闪锌矿和方铅矿之间的亲水性差异;其次,亚硫酸根离子与铅离子螯合,在溶液中形成 PbSO3,亲水性 PbSO3 更容易吸附在闪锌矿上,亚硫酸根离子与铅离子的作用实现了对铅离子活化的闪锌矿的抑制。另外,紫外光谱显示,加入亚硫酸根离子后,闪锌矿处理的黄药溶液中过黄药的峰明显强于方铅矿处理的黄药溶液,表明黄药在闪锌矿体系中更容易与亚硫酸根离子和氧分子作用生成过黄药。然而,亚硫酸根离子几乎不会抑制方铅矿的浮选,并且可以在一定程度上促进方铅矿的浮选。本研究加深了对亚硫酸根离子对闪锌矿抑制机理的理解。
  • Research Article

    Depression mechanism of sulfite ions on sphalerite and Pb2+ activated sphalerite in the flotation separation of galena from sphalerite

    + Author Affiliations
    • The depression mechanism of sulfite ions on sphalerite and Pb2+ activated sphalerite in the flotation separation of galena from sphalerite still lacked in-depth insight. Therefore, the depression mechanism of sulfite ions on sphalerite and Pb2+ activated sphalerite in the flotation separation of galena from sphalerite was further systematically investigated by experiments and density functional theory (DFT) calculations. The X-ray photoelectric spectroscopy (XPS) results, DFT calculation results, and frontier molecular orbital analysis indicated that sulfite ions were difficult to adsorb on sphalerite, suggesting that sulfite ions achieved depression effects on sphalerite through other ways. First, the oxygen content on the surface of sphalerite treated with sulfite ions increased, which enhanced the hydrophilicity of the sphalerite and further increased the difference in hydrophilicity between sphalerite and galena. Then, sulfite ions were chelated with lead ions to form PbSO3 in solution. The hydrophilic PbSO3 was more easily adsorbed on sphalerite than galena. The interaction between sulfite ions and lead ions can effectively inhibit the activation of sphalerite by lead ions. In addition, the UV spectrum showed that after adding sulfite ions, the peak of perxanthate in the sphalerite treated xanthate solution was significantly stronger than that in the galena treated xanthate solution, indicating that xanthate interacts more readily with sulfite ions and oxygen molecules within the sphalerite system, leading to the formation of perxanthate. However, sulfite ions hardly depressed the flotation of galena and could promote the flotation of galena to some extent. This study deepened the understanding of the depression mechanism of sulfite ions on sphalerite and Pb2+ activated sphalerite.
    • loading
    • [1]
      C. Xue and Z.C. Wei, Reaction mechanism and research progress of depressants in sphalerite flotation, Multipurp. Util. Miner. Resour., (2017), No. 3, p. 38.
      [2]
      T.S. Qiu, Q.M. Nie, Y.Q. He, and Q.Z. Yuan, Density functional theory study of cyanide adsorption on the sphalerite (1 1 0) surface, Appl. Surf. Sci., 465(2019), p. 678. doi: 10.1016/j.apsusc.2018.09.020
      [3]
      B. Guo, Y.J. Peng, and R. Espinosa-Gomez, Cyanide chemistry and its effect on mineral flotation, Miner. Eng., 66-68(2014), p. 25. doi: 10.1016/j.mineng.2014.06.010
      [4]
      Y.F. Mu, Y.J. Peng, and R.A. Lauten, The depression of pyrite in selective flotation by different reagent systems–A Literature review, Miner. Eng., 96-97(2016), p. 143. doi: 10.1016/j.mineng.2016.06.018
      [5]
      T.H. Pak, T.C. Sun, C.Y. Xu, and Y.H. Jo, Flotation and surface modification characteristics of galena, sphalerite and pyrite in collecting-depressing-reactivating system, J. Cent. South Univ., 19(2012), No. 6, p. 1702. doi: 10.1007/s11771-012-1196-x
      [6]
      P. Clarke, P. Arora, D. Fornasiero, J. Ralston, and R.S.C. Smart, Separation of chalcopyrite or galena from sphalerite: A flotation and X-ray photoelectron spectroscopic study, [in] S.P. Mehrotra, ed., Mineral Processing : Recent Advances and Future Trends, Allied Publishers Limited New Delhi, New Delhi, 1995, p. 369.
      [7]
      S.G. Malghan, Role of sodium sulfide in the flotation of oxidized copper, lead, and zinc ores, Min. Metall. Explor., 3(1986), No. 3, p. 158.
      [8]
      V.A. Bocharov, V.A. Ignatkina, and A.A. Kayumov, Rational separation of complex copper–zinc concentrates of sulfide ore, J. Min. Sci., 52(2016), No. 4, p. 793. doi: 10.1134/S1062739116041202
      [9]
      E. E. Öz, Evaluation of Kosovo-Artana Concentrator Tailings [Dissertation], Middle East Technical University, Ankara, 2011.
      [10]
      L.M. Zhang, J.D. Gao, S.A. Khoso, et al., A reagent scheme for galena/sphalerite flotation separation: Insights from first-principles calculations, Miner. Eng., 167(2021), art. No. 106885. doi: 10.1016/j.mineng.2021.106885
      [11]
      T.N. Khmeleva, J.K. Chapelet, W.M. Skinner, and D.A. Beattie, Depression mechanisms of sodium bisulphite in the xanthate-induced flotation of copper activated sphalerite, Int. J. Miner. Process., 79(2006), No. 1, p. 61. doi: 10.1016/j.minpro.2005.12.001
      [12]
      T.N. Khmeleva, W. Skinner, and D.A. Beattie, Depressing mechanisms of sodium bisulphite in the collectorless flotation of copper-activated sphalerite, Int. J. Miner. Process., 76(2005), No. 1, p. 43.
      [13]
      W.Z. Shen, D. Fornasiero, and J. Ralston, Flotation of sphalerite and pyrite in the presence of sodium sulfite, Int. J. Miner. Process., 63(2001), No. 1, p. 17. doi: 10.1016/S0301-7516(00)00067-3
      [14]
      T.N. Khmeleva, W. Skinner, D.A. Beattie, and T.V. Georgiev, The effect of sulphite on the xanthate-induced flotation of copper-activated pyrite, Physicochem. Probl. Miner. Process., 36(2002), p. 185.
      [15]
      S.R. Grano, C.A. Prestidge, and J. Ralston, Sulphite modification of galena surfaces and its effect on flotation and xanthate adsorption, Int. J. Miner. Process., 52(1997), No. 1, p. 1. doi: 10.1016/S0301-7516(97)00049-5
      [16]
      J. Gustafsson, Visual MINTEQ Rev. 3.1, 2007.
      [17]
      Z.C. Pan, Z.C. Liu, J.J. Xiong, et al., Application and depression mechanism of sodium sulfite on galena–pyrite mixed concentrate flotation separation: Huize lead–zinc mine, China, as an example, Miner. Eng., 185(2022), art. No. 107696. doi: 10.1016/j.mineng.2022.107696
      [18]
      M.D. Segall, P.J.D. Lindan, M.J. Probert, et al., First-principles simulation: Ideas, illustrations and the CASTEP code, J. Phys.: Condens. Matter, 14(2002), No. 11, p. 2717. doi: 10.1088/0953-8984/14/11/301
      [19]
      J.P. Perdew, K. Burke, and Y. Wang, Generalized gradient approximation for the exchange-correlation hole of a many-electron system, Phys. Rev. B: Condens. Matter, 54(1996), No. 23, p. 16533. doi: 10.1103/PhysRevB.54.16533
      [20]
      Y.J. Luo, L.M. Ou, J.H. Chen, et al., Hydration mechanisms of smithsonite from DFT-D calculations and MD simulations, Int. J. Min. Sci. Technol., 32(2022), No. 3, p. 605. doi: 10.1016/j.ijmst.2022.01.009
      [21]
      T. Bučko, S. Lebègue, J. Hafner, and J.G. Ángyán, Tkatchenko-Scheffler van der Waals correction method with and without self-consistent screening applied to solids, Phys. Rev. B, 87(2013), No. 6, art. No. 064110. doi: 10.1103/PhysRevB.87.064110
      [22]
      K. Wright, G.W. Watson, S.C. Parker, and D.J. Vaughan, Simulation of the structure and stability of sphalerite (ZnS) surfaces, Am. Mineral., 83(1998), No. 1-2, p. 141. doi: 10.2138/am-1998-1-214
      [23]
      J.H. Chen, Y. Chen, and Y.Q. Li, Effect of vacancy defects on electronic properties and activation of sphalerite (110) surface by first-principles, Trans. Nonferrous Met. Soc. China, 20(2010), No. 3, p. 502. doi: 10.1016/S1003-6326(09)60169-2
      [24]
      H.M. Steele, K. Wright, and I.H. Hillier, A quantum-mechanical study of the (110) surface of sphalerite (ZnS) and its interaction with Pb2+ species, Phys. Chem. Miner., 30(2003), No. 2, p. 69. doi: 10.1007/s00269-002-0296-9
      [25]
      J.H. Chen, X.H. Long, and Y. Chen, Comparison of multilayer water adsorption on the hydrophobic galena (PbS) and hydrophilic pyrite (FeS2) surfaces: A DFT study, J. Phys. Chem. C, 118(2014), No. 22, p. 11657. doi: 10.1021/jp5000478
      [26]
      J.A. Tossell and D.J. Vaughan, Electronic structure and the chemical reactivity of the surface of galena, Can. Mineral., 25(1987), No. 3, p. 381.
      [27]
      H.L. Zhang, W. Sun, C.Y. Zhang, J.Y. He, D.X. Chen, and Y.G. Zhu, Adsorption performance and mechanism of the commonly used collectors with oxygen-containing functional group on the ilmenite surface: A DFT study, J. Mol. Liq., 346(2022), art. No. 117829. doi: 10.1016/j.molliq.2021.117829
      [28]
      H.L. Zhang, W. Sun, Y.G. Zhu, J.Y. He, D.X. Chen, and C.Y. Zhang, Effects of the goethite surface hydration microstructure on the adsorption of the collectors dodecylamine and sodium oleate, Langmuir, 37(2021), No. 33, p. 10052. doi: 10.1021/acs.langmuir.1c01265
      [29]
      C.C. Sui, D. Lee, A. Casuge, and J.A. Finch, Comparison of the activation of sphalerite by copper and lead, Min. Metall. Explor., 16(1999), No. 3, p. 53. [30] A.R. Gerson, A.G. Lange, K.E. Prince, and R.S.C. Smart, The mechanism of copper activation of sphalerite, Appl. Surf. Sci., 137(1999), No. 1-4, p. 207.
      [30]
      G.S. Reddy and C.K. Reddy, The chemistry of activation of sphalerite–A review, Miner. Process. Extr. Metall. Rev., 4(1988), No. 1-2, p. 1. doi: 10.1080/08827508808952632
      [31]
      J. Liu, M. Ejtemaei, A.V. Nguyen, S.M. Wen, and Y. Zeng, Surface chemistry of Pb-activated sphalerite, Miner. Eng., 145(2020), art. No. 106058. doi: 10.1016/j.mineng.2019.106058
      [32]
      Z.Y. Zhang, S. Liu, F.Y. Liu, M. Mohamed Mohamed Ahmed, X.Y. Qu, and G.Y. Liu, The flotation separation of sphalerite from pyrite through a novel flotation reagent system of FeCl3–CuSO4-aminotriazolethione, J. Mol. Liq., 345(2022), art. No. 116997. doi: 10.1016/j.molliq.2021.116997
      [33]
      B. Jańczuk, W. Wójcik, A. Zdziennicka, and F. González-Caballero, Components of surface free energy of galena, J. Mater. Sci., 27(1992), No. 23, p. 6447. doi: 10.1007/BF00576297
      [34]
      R. Woods, C.I. Basilio, D.S. Kim, and R.H. Yoon, Chemisorption of ethyl xanthate on copper electrodes, Int. J. Miner. Process., 42(1994), No. 3-4, p. 215. doi: 10.1016/0301-7516(94)90014-0
      [35]
      Z. Wang, Y.L. Qian, L.H. Xu, B. Dai, J.H. Xiao, and K.B. Fu, Selective chalcopyrite flotation from pyrite with glycerine–xanthate as depressant, Miner. Eng., 74(2015), p. 86. doi: 10.1016/j.mineng.2015.01.008
      [36]
      T. Yamamoto, Mechanism of pyrite depression by sulfite in the presence of sphalerite, Complex Sulphide Ores, (1980).
      [37]
      S.R. Grano, C.A. Prestidge, and J. Ralston, Solution interaction of ethyl xanthate and sulphite and its effect on galena flotation and xanthate adsorption, Int. J. Miner. Process., 52(1997), No. 2-3, p. 161. doi: 10.1016/S0301-7516(97)00066-5
      [38]
      Y.H. Zhang, Z. Cao, Y.D. Cao, and C.Y. Sun, FTIR studies of xanthate adsorption on chalcopyrite, pentlandite and pyrite surfaces, J. Mol. Struct., 1048(2013), p. 434. doi: 10.1016/j.molstruc.2013.06.015
      [39]
      W.X. Huang, R.H. Liu, F. Jiang, H.H. Tang, L. Wang, and W. Sun, Adsorption mechanism of 3-mercaptopropionic acid as a chalcopyrite depressant in chalcopyrite and galena separation flotation, Colloids Surf. A, 641(2022), art. No. 128063. doi: 10.1016/j.colsurfa.2021.128063
      [40]
      Z.B. Deng, W.L. Cheng, Y. Tang, X. Tong, and Z.H. Liu, Adsorption mechanism of copper xanthate on pyrite surfaces, Physicochem. Probl. Miner. Process., 57(2021), No. 3, p. 46. doi: 10.37190/ppmp/135131
      [41]
      K.L. Zhao, W. Yan, X.H. Wang, B. Hui, G.H. Gu, and H. Wang, The flotation separation of pyrite from pyrophyllite using oxidized guar gum as depressant, Int. J. Miner. Process., 161(2017), p. 78. doi: 10.1016/j.minpro.2017.02.015
      [42]
      U. Becker and M.F. Hochella, The calculation of STM images, STS spectra, and XPS peak shifts for galena: New tools for understanding mineral surface chemistry, Geochim. Cosmochim. Acta, 60(1996), No. 13, p. 2413. doi: 10.1016/0016-7037(96)00094-4
      [43]
      H.Y. Xie, Y.H. Liu, B. Rao, et al., Selective passivation behavior of galena surface by sulfuric acid and a novel flotation separation method for copper–lead sulfide ore without collector and inhibitor, Sep. Purif. Technol., 267(2021), art. No. 118621. doi: 10.1016/j.seppur.2021.118621
      [44]
      S. Yagi, M. Nambu, C. Tsukada, et al., Spectral studies on sulfur poisoning of Pd/Mg6Ni by NEXAFS and XPS, Appl. Surf. Sci., 267(2013), p. 45. doi: 10.1016/j.apsusc.2012.05.098
      [45]
      F. Zhang, W. Sun, H.L. Zhang, et al., Selective adsorption mechanism of zinc ions on the surfaces of galena and sphalerite in the flotation separation of Pb–Zn, JOM, 75(2023), No. 11, p. 4808. doi: 10.1007/s11837-023-06098-6

    Catalog


    • /

      返回文章
      返回