留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图(11)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  431
  • HTML全文浏览量:  199
  • PDF下载量:  14
  • 被引次数: 0
Yongxuan Shang, Mingyu Fan, Shuyong Jiang,  and Zhongwu Zhang, Effects of carbon content on the microstructure and tensile properties of a low-density steel, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2937-1
Cite this article as:
Yongxuan Shang, Mingyu Fan, Shuyong Jiang,  and Zhongwu Zhang, Effects of carbon content on the microstructure and tensile properties of a low-density steel, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2937-1
引用本文 PDF XML SpringerLink
研究论文

碳含量对低密度钢的显微结构和拉伸性能的影响


  • 通讯作者:

    张中武    E-mail: zwzhang@hrbeu.edu.cn

文章亮点

  • (1) 提出了一种制备包含α铁素体和奥氏体双相低密度钢的制备方法
  • (2) 系统地研究了碳含量对低密度钢的显微结构的影响规律
  • (3) 利用Crussard–Jaoul 方法分析了单相和双相低密度钢的加工硬化行为的区别
  • 碳元素可以改变低密度钢的相组成,以影响其力学性能。本文提出了一种通过在固溶处理过程中脱碳处理控制碳含量,形成包含α-铁素体和奥氏体的双相低密度钢,以避免传统双相低密度钢在熔炼过程中,δ-铁素体从液相析出的新方法。系统地研究了碳含量改变引起的显微结构和力学性能的变化,并采用Crassard–Jaoul (C–J)方法分析了单相和双相低密度钢在拉伸过程中的加工硬化行为。在固溶处理过程中,奥氏体中的碳含量降低,Mn和Al含量基本不变;这使得基体相由奥氏体转变为奥氏体和铁素体双相。(Ti,V)C碳化物存在于基体相中且摩尔分数基本不变。此外,它抑制了其它碳化物的形成。由于碳含量降低,固溶强化效果减弱,导致双相低密度钢的屈服强度降低。对于单相奥氏体钢,奥氏体的变形方式为位错的平面滑移,最终形成微带。对于双相低密度钢,变形首先由奥氏体中的位错平面滑移发生,随着应变的增大,铁素体内发生波系滑移,在铁素体中形成了位错胞。在变形后期,奥氏体的硬化速度较快,而铁素体的硬化速度减慢。
  • Research Article

    Effects of carbon content on the microstructure and tensile properties of a low-density steel

    + Author Affiliations
    • Carbon can change the phase components of low-density steels and influence the mechanical properties. In this study, a new method to control the carbon content and avoid the formation of δ-ferrite by decarburization treatment was proposed. The microstructural changes and mechanical characteristics with carbon content induced by decarburization were systematically examined. Crussard–Jaoul (C–J) analysis was employed to examine the work hardening characteristics during the tensile test. During decarburization by heat treatments, the carbon content within the austenite phase decreased, while Mn and Al were almost unchanged; this made the steel with full austenite transform into the austenite and ferrite dual phase. Meanwhile, (Ti,V)C carbides existed in both matrix phase and the mole fraction almost the same. In addition, the formation of other carbides restrained. Carbon loss induced a decrease in strength due to the weakening of the carbon solid solution. For the steel with the single austinite, the deformation mode of austenite was the dislocation planar glide, resulting in the formation of microbands. For the dual-phase steel, the deformation occurred by the dislocation planar glide of austenite first, with the increase in strain, the cross slip of ferrite took place, forming dislocation cells in ferrite. At the late stage of deformation, the work hardening of austinite increased rapidly, while that of ferrite increased slightly.
    • loading
    • [1]
      S.P. Chen, R. Rana, A. Haldar, and R.K. Ray, Current state of Fe–Mn–Al–C low density steels, Prog. Mater. Sci., 89(2017), p. 345. doi: 10.1016/j.pmatsci.2017.05.002
      [2]
      I. Gutierrez-Urrutia and D. Raabe, Influence of Al content and precipitation state on the mechanical behavior of austenitic high-Mn low-density steels, Scripta Mater., 68(2013), No. 6, p. 343. doi: 10.1016/j.scriptamat.2012.08.038
      [3]
      R. Kuziak, R. Kawalla, and S. Waengler, Advanced high strength steels for automotive industry, Arch. Civ. Mech. Eng., 8(2008), No. 2, p. 103. doi: 10.1016/S1644-9665(12)60197-6
      [4]
      Y.L. Gao, M. Zhang, R. Wang, X.X. Zhang, Z.L. Tan, and X.Y. Chong, Effect of temperature and time on the precipitation of κ-carbides in Fe–28Mn–10Al–0.8C low-density steels: Aging mechanism and its impact on material properties, Int. J. Miner. Metall. Mater., 31(2024), No. 10, p. 2189. doi: 10.1007/s12613-024-2857-0
      [5]
      B. Hu, H. Sui, Q.H. Wen, Z. Wang, A. Gramlich, and H.W. Luo, Review on the plastic instability of medium-Mn steels for identifying the formation mechanisms of Lüders and Portevin–Le Chatelier bands, Int. J. Miner. Metall. Mater., 31(2024), No. 6, p. 1285 doi: 10.1007/s12613-023-2751-1
      [6]
      S.S. Li and H.W. Luo, Medium-Mn steels for hot forming application in the automotive industry, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 741. doi: 10.1007/s12613-020-2179-9
      [7]
      Y.J. Wang, S. Zhao, R.B. Song, and B. Hu, Hot ductility behavior of a Fe–0.3C–9Mn–2Al medium Mn steel, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 422. doi: 10.1007/s12613-020-2206-x
      [8]
      Z.Q. Wu, H. Ding, H.Y. Li, M.L. Huang, and F.R. Cao, Microstructural evolution and strain hardening behavior during plastic deformation of Fe–12Mn–8Al–0.8C steel, Mater. Sci. Eng. A, 584(2013), p. 150. doi: 10.1016/j.msea.2013.07.023
      [9]
      S.W. Hwang, J.H. Ji, E.G. Lee, and K.T. Park, Tensile deformation of a duplex Fe–20Mn–9Al–0.6C steel having the reduced specific weight, Mater. Sci. Eng. A, 528(2011), No. 15, p. 5196. doi: 10.1016/j.msea.2011.03.045
      [10]
      C. Zhao, R.B. Song, L.F. Zhang, F.Q. Yang, and T. Kang, Effect of annealing temperature on the microstructure and tensile properties of Fe–10Mn–10Al–0.7C low-density steel, Mater. Des., 91(2016), p. 348. doi: 10.1016/j.matdes.2015.11.115
      [11]
      J.D. Yoo, S.W. Hwang, and K.T. Park, Origin of extended tensile ductility of a Fe–28Mn–10Al–1C steel, Metall. Mater. Trans. A, 40(2009), No. 7, p. 1520. doi: 10.1007/s11661-009-9862-9
      [12]
      L.F. Zhang, R.B. Song, C. Zhao, F.Q. Yang, Y. Xu, and S.G. Peng, Evolution of the microstructure and mechanical properties of an austenite–ferrite Fe–Mn–Al–C steel, Mater. Sci. Eng. A, 643(2015), p. 183. doi: 10.1016/j.msea.2015.07.043
      [13]
      C.L. Lin, C.G. Chao, J.Y. Juang, J.M. Yang, and T.F. Liu, Deformation mechanisms in ultrahigh-strength and high-ductility nanostructured FeMnAlC alloy, J. Alloys Compd., 586(2014), p. 616. doi: 10.1016/j.jallcom.2013.10.153
      [14]
      A. Etienne, V. Massardier-Jourdan, S. Cazottes, et al., Ferrite effects in Fe–Mn–Al–C triplex steels, Metall. Mater. Trans. A, 45(2014), No. 1, p. 324. doi: 10.1007/s11661-013-1990-6
      [15]
      K. Choi, C.H. Seo, H. Lee, et al., Effect of aging on the microstructure and deformation behavior of austenite base lightweight Fe–28Mn–9Al–0.8C steel, Scripta Mater., 63(2010), No. 10, p. 1028. doi: 10.1016/j.scriptamat.2010.07.036
      [16]
      G. Frommeyer and U. Brüx, Microstructures and mechanical properties of high-strength Fe–Mn–Al–C light-weight TRIPLEX steels, Steel Res. Int., 77(2006), No. 9-10, p. 627. doi: 10.1002/srin.200606440
      [17]
      J.D. Yoo and K.T. Park, Microband-induced plasticity in a high Mn–Al–C light steel, Mater. Sci. Eng. A, 496(2008), No. 1-2, p. 417. doi: 10.1016/j.msea.2008.05.042
      [18]
      E. Welsch, D. Ponge, S.M. Hafez Haghighat, et al., Strain hardening by dynamic slip band refinement in a high-Mn lightweight steel, Acta Mater., 116(2016), p. 188. doi: 10.1016/j.actamat.2016.06.037
      [19]
      H. Ding, D. Han, J. Zhang, Z.H. Cai, Z.Q. Wu, and M.H. Cai, Tensile deformation behavior analysis of low density Fe–18Mn–10Al–xC steels, Mater. Sci. Eng. A, 652(2016), p. 69. doi: 10.1016/j.msea.2015.11.071
      [20]
      L.F. Zhang, R.B. Song, C. Zhao, and F.Q. Yang, Work hardening behavior involving the substructural evolution of an austenite–ferrite Fe–Mn–Al–C steel, Mater. Sci. Eng. A, 640(2015), p. 225. doi: 10.1016/j.msea.2015.05.108
      [21]
      D. Han, H. Ding, D.G. Liu, B. Rolfe, and H. Beladi, Influence of C content and annealing temperature on the microstructures and tensile properties of Fe–13Mn–8Al–(0.7, 1.2)C steels, Mater. Sci. Eng. A, 785(2020), art. No. 139286. doi: 10.1016/j.msea.2020.139286
      [22]
      O.A. Zambrano, A general perspective of Fe–Mn–Al–C steels, J. Mater. Sci., 53(2018), No. 20, p. 14003. doi: 10.1007/s10853-018-2551-6
      [23]
      K. Kadoi, S. Ueno, and H. Inoue, Effects of ferrite content and concentrations of carbon and silicon on weld solidification cracking susceptibility of stainless steels, J. Mater. Res. Technol., 25(2023), p. 1314.
      [24]
      H.L. Yi, Review on δ-transformation-induced plasticity (TRIP) steels with low density: The concept and current progress, JOM, 66(2014), No. 9, p. 1759. doi: 10.1007/s11837-014-1089-6
      [25]
      T.H. Man, W.J. Wang, Y.H. Zhou, et al., Effect of cooling rate on the precipitation behavior of κ-carbide in Fe–32Mn–11Al–0.9C low density steel, Mater. Lett., 314(2022), art. No. 131778. doi: 10.1016/j.matlet.2022.131778
      [26]
      L.B. Liu, C.M. Li, Y. Yang, Z.P. Luo, C.J. Song, and Q.J. Zhai, A simple method to produce austenite-based low-density Fe–20Mn–9Al–0.75C steel by a near-rapid solidification process, Mater. Sci. Eng. A, 679(2017), p. 282. doi: 10.1016/j.msea.2016.10.044
      [27]
      D.W. Kim, J. Yoo, S.S. Sohn, and S. Lee, Austenite reversion through subzero transformation and tempering of a boron-doped strong and ductile medium-Mn lightweight steel, Mater. Sci. Eng. A, 802(2021), art. No. 140619. doi: 10.1016/j.msea.2020.140619
      [28]
      J.L. Zhang, C.H. Hu, Y.H. Zhang, J.H. Li, C.J. Song, and Q.J. Zhai, Microstructures, mechanical properties and deformation of near-rapidly solidified low-density Fe–20Mn–9Al–1.2C–xCr steels, Mater. Des., 186(2020), art. No. 108307. doi: 10.1016/j.matdes.2019.108307
      [29]
      A. Rosenauer, D. Brandl, G. Ressel, et al., Influence of delta ferrite on the impact toughness of a PH 13-8 Mo maraging steel, Mater. Sci. Eng. A, 856(2022), art. No. 144024. doi: 10.1016/j.msea.2022.144024
      [30]
      J.H. Hwang, T.T.T. Trang, O. Lee, G. Park, A. Zargaran, and N.J. Kim, Improvement of strength–ductility balance of B2-strengthened lightweight steel, Acta Mater., 191(2020), p. 1. doi: 10.1016/j.actamat.2020.03.022
      [31]
      K. Ishida, H. Ohtani, N. Satoh, R. Kainuma, and T. Nishizawa, Phase equilibria in Fe–Mn–Al–C alloys, ISIJ Int., 30(1990), No. 8, p. 680. doi: 10.2355/isijinternational.30.680
      [32]
      Y. Xiong, Z.W. Luan, X.Q. Zha, et al., Achieving superior strength and ductility combination in Fe–28Mn–8Al–1C low density steel by orthogonal rolling, J. Mater. Res. Technol., 25(2023), p. 6123. doi: 10.1016/j.jmrt.2023.07.059
      [33]
      Z. Li, Y.C. Wang, X.W. Cheng, Z.Y. Li, J.K. Du, and S.K. Li, The effect of Ti–Mo–Nb on the microstructures and tensile properties of a Fe–Mn–Al–C austenitic steel, Mater. Sci. Eng. A, 780(2020), art. No. 139220. doi: 10.1016/j.msea.2020.139220
      [34]
      H. Kim, D.W. Suh, and N.J. Kim, Fe–Al–Mn–C lightweight structural alloys: A review on the microstructures and mechanical properties, Sci. Technol. Adv. Mater., 14(2013), No. 1, art. No. 014205. doi: 10.1088/1468-6996/14/1/014205
      [35]
      S.S. Babu, E.D. Specht, S.A. David, et al. , In-situ observations of lattice parameter fluctuations in austenite and transformation to bainite, Metall. Mater. Trans. A, 36(2005), No. 12, p. 3281. doi: 10.1007/s11661-005-0002-x
      [36]
      Y.R. Wen, L.N. Liang, F.K. Chiang, et al., Influences of manganese content and heat treatment on mechanical properties of precipitation-strengthened steels, Mater. Sci. Eng. A, 837(2022), art. No. 142724. doi: 10.1016/j.msea.2022.142724
      [37]
      W.S. Choi, S. Sandlöbes, N.V. Malyar, et al., Dislocation interaction and twinning-induced plasticity in face-centered cubic Fe–Mn–C micro-pillars, Acta Mater., 132(2017), p. 162. doi: 10.1016/j.actamat.2017.04.043
      [38]
      G. Park, C.H. Nam, A. Zargaran, and N.J. Kim, Effect of B2 morphology on the mechanical properties of B2-strengthened lightweight steels, Scripta Mater., 165(2019), p. 68. doi: 10.1016/j.scriptamat.2019.02.013
      [39]
      S.S. Sohn, H. Song, B.C. Suh, et al., Novel ultra-high-strength (ferrite+austenite) duplex lightweight steels achieved by fine dislocation substructures (Taylor lattices), grain refinement, and partial recrystallization, Acta Mater., 96(2015), p. 301. doi: 10.1016/j.actamat.2015.06.024
      [40]
      Z. Li, Y.C. Wang, X.W. Cheng, J.X. Liang, and S.K. Li, Compressive behavior of a Fe–Mn–Al–C lightweight steel at different strain rates, Mater. Sci. Eng. A, 772(2020), art. No. 138700. doi: 10.1016/j.msea.2019.138700
      [41]
      A. Dumay, J.P. Chateau, S. Allain, S. Migot, and O. Bouaziz, Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe–Mn–C steel, Mater. Sci. Eng. A, 483(2008), p. 184.
      [42]
      U.F. Kocks and H. Mecking, Physics and phenomenology of strain hardening: The FCC case, Prog. Mater. Sci., 48(2003), No. 3, p. 171. doi: 10.1016/S0079-6425(02)00003-8
      [43]
      L.L. Wei, G.H. Gao, J. Kim, R.D.K. Misra, C.G. Yang, and X.J. Jin, Ultrahigh strength-high ductility 1 GPa low density austenitic steel with ordered precipitation strengthening phase and dynamic slip band refinement, Mater. Sci. Eng. A, 838(2022), art. No. 142829. doi: 10.1016/j.msea.2022.142829
      [44]
      B. Mishra, R. Sarkar, V. Singh, et al., Microstructure and deformation behaviour of austenitic low-density steels: The defining role of B2 intermetallic phase, Materialia, 20(2021), art. No. 101198. doi: 10.1016/j.mtla.2021.101198

    Catalog


    • /

      返回文章
      返回