Cite this article as: |
Yongxuan Shang, Mingyu Fan, Shuyong Jiang, and Zhongwu Zhang, Effects of carbon content on the microstructure and tensile properties of a low-density steel, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2937-1 |
张中武 E-mail: zwzhang@hrbeu.edu.cn
[1] |
S.P. Chen, R. Rana, A. Haldar, and R.K. Ray, Current state of Fe–Mn–Al–C low density steels, Prog. Mater. Sci., 89(2017), p. 345. doi: 10.1016/j.pmatsci.2017.05.002
|
[2] |
I. Gutierrez-Urrutia and D. Raabe, Influence of Al content and precipitation state on the mechanical behavior of austenitic high-Mn low-density steels, Scripta Mater., 68(2013), No. 6, p. 343. doi: 10.1016/j.scriptamat.2012.08.038
|
[3] |
R. Kuziak, R. Kawalla, and S. Waengler, Advanced high strength steels for automotive industry, Arch. Civ. Mech. Eng., 8(2008), No. 2, p. 103. doi: 10.1016/S1644-9665(12)60197-6
|
[4] |
Y.L. Gao, M. Zhang, R. Wang, X.X. Zhang, Z.L. Tan, and X.Y. Chong, Effect of temperature and time on the precipitation of κ-carbides in Fe–28Mn–10Al–0.8C low-density steels: Aging mechanism and its impact on material properties, Int. J. Miner. Metall. Mater., 31(2024), No. 10, p. 2189. doi: 10.1007/s12613-024-2857-0
|
[5] |
B. Hu, H. Sui, Q.H. Wen, Z. Wang, A. Gramlich, and H.W. Luo, Review on the plastic instability of medium-Mn steels for identifying the formation mechanisms of Lüders and Portevin–Le Chatelier bands, Int. J. Miner. Metall. Mater., 31(2024), No. 6, p. 1285 doi: 10.1007/s12613-023-2751-1
|
[6] |
S.S. Li and H.W. Luo, Medium-Mn steels for hot forming application in the automotive industry, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 741. doi: 10.1007/s12613-020-2179-9
|
[7] |
Y.J. Wang, S. Zhao, R.B. Song, and B. Hu, Hot ductility behavior of a Fe–0.3C–9Mn–2Al medium Mn steel, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 422. doi: 10.1007/s12613-020-2206-x
|
[8] |
Z.Q. Wu, H. Ding, H.Y. Li, M.L. Huang, and F.R. Cao, Microstructural evolution and strain hardening behavior during plastic deformation of Fe–12Mn–8Al–0.8C steel, Mater. Sci. Eng. A, 584(2013), p. 150. doi: 10.1016/j.msea.2013.07.023
|
[9] |
S.W. Hwang, J.H. Ji, E.G. Lee, and K.T. Park, Tensile deformation of a duplex Fe–20Mn–9Al–0.6C steel having the reduced specific weight, Mater. Sci. Eng. A, 528(2011), No. 15, p. 5196. doi: 10.1016/j.msea.2011.03.045
|
[10] |
C. Zhao, R.B. Song, L.F. Zhang, F.Q. Yang, and T. Kang, Effect of annealing temperature on the microstructure and tensile properties of Fe–10Mn–10Al–0.7C low-density steel, Mater. Des., 91(2016), p. 348. doi: 10.1016/j.matdes.2015.11.115
|
[11] |
J.D. Yoo, S.W. Hwang, and K.T. Park, Origin of extended tensile ductility of a Fe–28Mn–10Al–1C steel, Metall. Mater. Trans. A, 40(2009), No. 7, p. 1520. doi: 10.1007/s11661-009-9862-9
|
[12] |
L.F. Zhang, R.B. Song, C. Zhao, F.Q. Yang, Y. Xu, and S.G. Peng, Evolution of the microstructure and mechanical properties of an austenite–ferrite Fe–Mn–Al–C steel, Mater. Sci. Eng. A, 643(2015), p. 183. doi: 10.1016/j.msea.2015.07.043
|
[13] |
C.L. Lin, C.G. Chao, J.Y. Juang, J.M. Yang, and T.F. Liu, Deformation mechanisms in ultrahigh-strength and high-ductility nanostructured FeMnAlC alloy, J. Alloys Compd., 586(2014), p. 616. doi: 10.1016/j.jallcom.2013.10.153
|
[14] |
A. Etienne, V. Massardier-Jourdan, S. Cazottes, et al., Ferrite effects in Fe–Mn–Al–C triplex steels, Metall. Mater. Trans. A, 45(2014), No. 1, p. 324. doi: 10.1007/s11661-013-1990-6
|
[15] |
K. Choi, C.H. Seo, H. Lee, et al., Effect of aging on the microstructure and deformation behavior of austenite base lightweight Fe–28Mn–9Al–0.8C steel, Scripta Mater., 63(2010), No. 10, p. 1028. doi: 10.1016/j.scriptamat.2010.07.036
|
[16] |
G. Frommeyer and U. Brüx, Microstructures and mechanical properties of high-strength Fe–Mn–Al–C light-weight TRIPLEX steels, Steel Res. Int., 77(2006), No. 9-10, p. 627. doi: 10.1002/srin.200606440
|
[17] |
J.D. Yoo and K.T. Park, Microband-induced plasticity in a high Mn–Al–C light steel, Mater. Sci. Eng. A, 496(2008), No. 1-2, p. 417. doi: 10.1016/j.msea.2008.05.042
|
[18] |
E. Welsch, D. Ponge, S.M. Hafez Haghighat, et al., Strain hardening by dynamic slip band refinement in a high-Mn lightweight steel, Acta Mater., 116(2016), p. 188. doi: 10.1016/j.actamat.2016.06.037
|
[19] |
H. Ding, D. Han, J. Zhang, Z.H. Cai, Z.Q. Wu, and M.H. Cai, Tensile deformation behavior analysis of low density Fe–18Mn–10Al–xC steels, Mater. Sci. Eng. A, 652(2016), p. 69. doi: 10.1016/j.msea.2015.11.071
|
[20] |
L.F. Zhang, R.B. Song, C. Zhao, and F.Q. Yang, Work hardening behavior involving the substructural evolution of an austenite–ferrite Fe–Mn–Al–C steel, Mater. Sci. Eng. A, 640(2015), p. 225. doi: 10.1016/j.msea.2015.05.108
|
[21] |
D. Han, H. Ding, D.G. Liu, B. Rolfe, and H. Beladi, Influence of C content and annealing temperature on the microstructures and tensile properties of Fe–13Mn–8Al–(0.7, 1.2)C steels, Mater. Sci. Eng. A, 785(2020), art. No. 139286. doi: 10.1016/j.msea.2020.139286
|
[22] |
O.A. Zambrano, A general perspective of Fe–Mn–Al–C steels, J. Mater. Sci., 53(2018), No. 20, p. 14003. doi: 10.1007/s10853-018-2551-6
|
[23] |
K. Kadoi, S. Ueno, and H. Inoue, Effects of ferrite content and concentrations of carbon and silicon on weld solidification cracking susceptibility of stainless steels, J. Mater. Res. Technol., 25(2023), p. 1314.
|
[24] |
H.L. Yi, Review on δ-transformation-induced plasticity (TRIP) steels with low density: The concept and current progress, JOM, 66(2014), No. 9, p. 1759. doi: 10.1007/s11837-014-1089-6
|
[25] |
T.H. Man, W.J. Wang, Y.H. Zhou, et al., Effect of cooling rate on the precipitation behavior of κ-carbide in Fe–32Mn–11Al–0.9C low density steel, Mater. Lett., 314(2022), art. No. 131778. doi: 10.1016/j.matlet.2022.131778
|
[26] |
L.B. Liu, C.M. Li, Y. Yang, Z.P. Luo, C.J. Song, and Q.J. Zhai, A simple method to produce austenite-based low-density Fe–20Mn–9Al–0.75C steel by a near-rapid solidification process, Mater. Sci. Eng. A, 679(2017), p. 282. doi: 10.1016/j.msea.2016.10.044
|
[27] |
D.W. Kim, J. Yoo, S.S. Sohn, and S. Lee, Austenite reversion through subzero transformation and tempering of a boron-doped strong and ductile medium-Mn lightweight steel, Mater. Sci. Eng. A, 802(2021), art. No. 140619. doi: 10.1016/j.msea.2020.140619
|
[28] |
J.L. Zhang, C.H. Hu, Y.H. Zhang, J.H. Li, C.J. Song, and Q.J. Zhai, Microstructures, mechanical properties and deformation of near-rapidly solidified low-density Fe–20Mn–9Al–1.2C–xCr steels, Mater. Des., 186(2020), art. No. 108307. doi: 10.1016/j.matdes.2019.108307
|
[29] |
A. Rosenauer, D. Brandl, G. Ressel, et al., Influence of delta ferrite on the impact toughness of a PH 13-8 Mo maraging steel, Mater. Sci. Eng. A, 856(2022), art. No. 144024. doi: 10.1016/j.msea.2022.144024
|
[30] |
J.H. Hwang, T.T.T. Trang, O. Lee, G. Park, A. Zargaran, and N.J. Kim, Improvement of strength–ductility balance of B2-strengthened lightweight steel, Acta Mater., 191(2020), p. 1. doi: 10.1016/j.actamat.2020.03.022
|
[31] |
K. Ishida, H. Ohtani, N. Satoh, R. Kainuma, and T. Nishizawa, Phase equilibria in Fe–Mn–Al–C alloys, ISIJ Int., 30(1990), No. 8, p. 680. doi: 10.2355/isijinternational.30.680
|
[32] |
Y. Xiong, Z.W. Luan, X.Q. Zha, et al., Achieving superior strength and ductility combination in Fe–28Mn–8Al–1C low density steel by orthogonal rolling, J. Mater. Res. Technol., 25(2023), p. 6123. doi: 10.1016/j.jmrt.2023.07.059
|
[33] |
Z. Li, Y.C. Wang, X.W. Cheng, Z.Y. Li, J.K. Du, and S.K. Li, The effect of Ti–Mo–Nb on the microstructures and tensile properties of a Fe–Mn–Al–C austenitic steel, Mater. Sci. Eng. A, 780(2020), art. No. 139220. doi: 10.1016/j.msea.2020.139220
|
[34] |
H. Kim, D.W. Suh, and N.J. Kim, Fe–Al–Mn–C lightweight structural alloys: A review on the microstructures and mechanical properties, Sci. Technol. Adv. Mater., 14(2013), No. 1, art. No. 014205. doi: 10.1088/1468-6996/14/1/014205
|
[35] |
S.S. Babu, E.D. Specht, S.A. David, et al. , In-situ observations of lattice parameter fluctuations in austenite and transformation to bainite, Metall. Mater. Trans. A, 36(2005), No. 12, p. 3281. doi: 10.1007/s11661-005-0002-x
|
[36] |
Y.R. Wen, L.N. Liang, F.K. Chiang, et al., Influences of manganese content and heat treatment on mechanical properties of precipitation-strengthened steels, Mater. Sci. Eng. A, 837(2022), art. No. 142724. doi: 10.1016/j.msea.2022.142724
|
[37] |
W.S. Choi, S. Sandlöbes, N.V. Malyar, et al., Dislocation interaction and twinning-induced plasticity in face-centered cubic Fe–Mn–C micro-pillars, Acta Mater., 132(2017), p. 162. doi: 10.1016/j.actamat.2017.04.043
|
[38] |
G. Park, C.H. Nam, A. Zargaran, and N.J. Kim, Effect of B2 morphology on the mechanical properties of B2-strengthened lightweight steels, Scripta Mater., 165(2019), p. 68. doi: 10.1016/j.scriptamat.2019.02.013
|
[39] |
S.S. Sohn, H. Song, B.C. Suh, et al., Novel ultra-high-strength (ferrite+austenite) duplex lightweight steels achieved by fine dislocation substructures (Taylor lattices), grain refinement, and partial recrystallization, Acta Mater., 96(2015), p. 301. doi: 10.1016/j.actamat.2015.06.024
|
[40] |
Z. Li, Y.C. Wang, X.W. Cheng, J.X. Liang, and S.K. Li, Compressive behavior of a Fe–Mn–Al–C lightweight steel at different strain rates, Mater. Sci. Eng. A, 772(2020), art. No. 138700. doi: 10.1016/j.msea.2019.138700
|
[41] |
A. Dumay, J.P. Chateau, S. Allain, S. Migot, and O. Bouaziz, Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe–Mn–C steel, Mater. Sci. Eng. A, 483(2008), p. 184.
|
[42] |
U.F. Kocks and H. Mecking, Physics and phenomenology of strain hardening: The FCC case, Prog. Mater. Sci., 48(2003), No. 3, p. 171. doi: 10.1016/S0079-6425(02)00003-8
|
[43] |
L.L. Wei, G.H. Gao, J. Kim, R.D.K. Misra, C.G. Yang, and X.J. Jin, Ultrahigh strength-high ductility 1 GPa low density austenitic steel with ordered precipitation strengthening phase and dynamic slip band refinement, Mater. Sci. Eng. A, 838(2022), art. No. 142829. doi: 10.1016/j.msea.2022.142829
|
[44] |
B. Mishra, R. Sarkar, V. Singh, et al., Microstructure and deformation behaviour of austenitic low-density steels: The defining role of B2 intermetallic phase, Materialia, 20(2021), art. No. 101198. doi: 10.1016/j.mtla.2021.101198
|