Cite this article as: |
Yuntong Wang, Shengchong Hui, Zhaoxiaohan Shi, Zijing Li, Geng Chen, Tao Zhang, Xinyue Xie, Limin Zhang, and Hongjing Wu, Hydrogen bond-induced conduction loss for enhanced electromagnetic attenuation in deep eutectic gel absorbers, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2938-0 |
张利民 E-mail: liminzhang@nwpu.edu.cn
吴宏景 E-mail: wuhongjing@nwpu.edu.cn
[1] |
Z.H. Zhao, Y.C. Qing, L. Kong, et al., Advancements in microwave absorption motivated by interdisciplinary research, Adv. Mater., 36(2024), No. 4, art. No. 2304182. doi: 10.1002/adma.202304182
|
[2] |
G.Y. Yu, G.F. Shao, R.P. Xu, Y. Chen, X.H. Zhu, and X.G. Huang, Metal–organic framework-manipulated dielectric genes inside silicon carbonitride toward tunable electromagnetic wave absorption, Small, 19(2023), No. 46, art. No. 2304694. doi: 10.1002/smll.202304694
|
[3] |
X. Yan, X.X. Huang, B. Zhong, et al., Balancing interface polarization strategy for enhancing electromagnetic wave absorption of carbon materials, Chem. Eng. J., 391(2020), art. No. 123538. doi: 10.1016/j.cej.2019.123538
|
[4] |
X.F. Liu, X.Y. Nie, R.H. Yu, and H.B. Feng, Design of dual-frequency electromagnetic wave absorption by interface modulation strategy, Chem. Eng. J., 334(2018), p. 153. doi: 10.1016/j.cej.2017.10.012
|
[5] |
Z.M. Tang, L. Xu, C. Xie, et al., Synthesis of CuCo2S4@expanded graphite with crystal/amorphous heterointerface and defects for electromagnetic wave absorption, Nat. Commun., 14(2023), art. No. 5951. doi: 10.1038/s41467-023-41697-6
|
[6] |
M. Qin, L.M. Zhang, X.R. Zhao, and H.J. Wu, Defect induced polarization loss in multi-shelled spinel hollow spheres for electromagnetic wave absorption application, Adv. Sci., 8(2021), No. 8, art. No. 2004640. doi: 10.1002/advs.202004640
|
[7] |
G. Chen, H.S. Liang, J.J. Yun, L.M. Zhang, H.J. Wu, and J.Y. Wang, Ultrasonic field induces better crystallinity and abundant defects at grain boundaries to develop CuS electromagnetic wave absorber, Adv. Mater., 35(2023), No. 49, art. No. 2305586. doi: 10.1002/adma.202305586
|
[8] |
S.C. Hui, X. Zhou, L.M. Zhang, and H.J. Wu, Constructing multiphase-induced interfacial polarization to surpass defect-induced polarization in multielement sulfide absorbers, Adv. Sci., 11(2024), No. 6, art. No. 2307649. doi: 10.1002/advs.202307649
|
[9] |
H.S. Liang, G. Chen, D. Liu, et al., Exploring the Ni 3d orbital unpaired electrons induced polarization loss based on Ni single-atoms model absorber, Adv. Funct. Mater., 33(2023), No. 7, art. No. 2212604. doi: 10.1002/adfm.202212604
|
[10] |
T. Cheng, D.X. Shen, M. Meng, et al., Efficient electron transfer across hydrogen bond interfaces by proton-coupled and -uncoupled pathways, Nat. Commun., 10(2019), art. No. 1531. doi: 10.1038/s41467-019-09392-7
|
[11] |
R.V. Meidanshahi, S. Mazinani, V. Mujica, and P. Tarakeshwar, Electronic transport across hydrogen bonds in organic electronics, Int. J. Nanotechnol., 12(2015), p. 297. doi: 10.1504/IJNT.2015.067214
|
[12] |
L.A. Wilkinson, L. McNeill, A.J. Meijer, and N.J. Patmore, Mixed valency in hydrogen bonded ‘Dimers of Dimers’, J. Am. Chem. Soc., 135(2013), No. 5, p. 1723. doi: 10.1021/ja312176x
|
[13] |
U.T. Chiu and L. Chao, Electron transfer through protein-bound water and its bioelectronic application, Biosens. Bioelectron., 136(2019), p. 16. doi: 10.1016/j.bios.2019.04.012
|
[14] |
B. Dereka, Q. Yu, N.H.C. Lewis, W.B. Carpenter, J.M. Bowman, and A. Tokmakoff, Crossover from hydrogen to chemical bonding, Science, 371(2021), No. 6525, p. 160. doi: 10.1126/science.abe1951
|
[15] |
T.J. Long, Y.X. Li, X. Fang, and J.Q. Sun, Salt-mediated polyampholyte hydrogels with high mechanical strength, excellent self-healing property, and satisfactory electrical conductivity, Adv. Funct. Mater., 28(2018), No. 44, art. No. 1804416. doi: 10.1002/adfm.201804416
|
[16] |
S.G. Wu, C.Y. Cai, F.F. Li, Z.J. Tan, and S.Y. Dong, Deep eutectic supramolecular polymers: Bulk supramolecular materials, Angew. Chem. Int. Ed., 59(2020), No. 29, p. 11871. doi: 10.1002/anie.202004104
|
[17] |
T.E. Achkar, H. Greige-Gerges, and S. Fourmentin, Basics and properties of deep eutectic solvents: A review, Environ. Chem. Lett., 19(2021), No. 4, p. 3397. doi: 10.1007/s10311-021-01225-8
|
[18] |
A. Shishov, A. Pochivalov, L. Nugbienyo, V. Andruch, and A. Bulatov, Deep eutectic solvents are not only effective extractants, Trends Anal. Chem., 129(2020), art. No. 115956. doi: 10.1016/j.trac.2020.115956
|
[19] |
Y.J. Liang, K.F. Wang, J.J. Li, et al., Low-molecular-weight supramolecular-polymer double-network eutectogels for self-adhesive and bidirectional sensors, Adv. Funct. Mater., 31(2021), No. 45, art. No. 2104963. doi: 10.1002/adfm.202104963
|
[20] |
M.K. Yan, X.Y. Li, and H.L. Lian, A stretchable, compressible and anti-freezing ionic gel based on a natural deep eutectic solvent applied as a strain sensor, J. Appl. Polym. Sci., 139(2022), No. 28, art. No. 52607. doi: 10.1002/app.52607
|
[21] |
J.X. Wu, Q.H. Liang, X.L. Yu, et al., Deep eutectic solvents for boosting electrochemical energy storage and conversion: A review and perspective, Adv. Funct. Mater., 31(2021), No. 22, art. No. 2011102. doi: 10.1002/adfm.202011102
|
[22] |
C.N. Gu, Y. Peng, J.J. Li, et al., Supramolecular G4 eutectogels of guanosine with solvent-induced chiral inversion and excellent electrochromic activity, Angew. Chem. Int. Ed., 59(2020), No. 42, p. 18768. doi: 10.1002/anie.202009332
|
[23] |
S. Wang, H.L. Cheng, B. Yao, et al., Self-adhesive, stretchable, biocompatible, and conductive nonvolatile eutectogels as wearable conformal strain and pressure sensors and biopotential electrodes for precise health monitoring, ACS Appl. Mater. Interfaces, 13(2021), No. 17, p. 20735. doi: 10.1021/acsami.1c04671
|
[24] |
H. Zhang, N. Tang, X. Yu, M.H. Li, and J. Hu, Strong and tough physical eutectogels regulated by the spatiotemporal expression of non-covalent interactions, Adv. Funct. Mater., 32(2022), No. 41, art. No. 2206305. doi: 10.1002/adfm.202206305
|
[25] |
Y.K. Shi, B.H. Wu, S.T. Sun, P.Y. Wu, Peeling–stiffening self-adhesive ionogel with superhigh interfacial toughness, Adv. Mater., 36(2024), No. 11, art. No. 2310576. doi: 10.1002/adma.202310576
|
[26] |
K.Q. Fan, W.C. Wei, Z.Q. Zhang, et al., Highly stretchable, self-healing, and adhesive polymeric eutectogel enabled by hydrogen-bond networks for wearable strain sensor, Chem. Eng. J., 449(2022), art. No. 137878. doi: 10.1016/j.cej.2022.137878
|
[27] |
P.Q. Yao, Q.W. Bao, Y. Yao, et al., Environmentally stable, robust, adhesive, and conductive supramolecular deep eutectic gels as ultrasensitive flexible temperature sensor, Adv. Mater., 35(2023), No. 21, art. No. 2300114. doi: 10.1002/adma.202300114
|
[28] |
K.F. Wang, H. Wang, J.J. Li, et al., Super-stretchable and extreme temperature-tolerant supramolecular-polymer double-network eutectogels with ultrafast in situ adhesion and flexible electrochromic behaviour, Mater. Horiz., 8(2021), No. 9, p. 2520. doi: 10.1039/D1MH00725D
|
[29] |
R.A. Li, K.L. Zhang, G.X. Chen, B. Su, and M.H. He, Stiff, self-healable, transparent polymers with synergetic hydrogen bonding interactions, Chem. Mater., 33(2021), No. 13, p. 5189. doi: 10.1021/acs.chemmater.1c01242
|
[30] |
G. Li, Z.H. Deng, M.K. Cai, et al., A stretchable and adhesive ionic conductor based on polyacrylic acid and deep eutectic solvents, npj Flex. Electron., 5(2021), art. No. 23. doi: 10.1038/s41528-021-00118-8
|
[31] |
Y. Zhang, Y.F. Wang, Y. Guan, and Y.J. Zhang, Peptide-enhanced tough, resilient and adhesive eutectogels for highly reliable strain/pressure sensing under extreme conditions, Nat. Commun., 13(2022), art. No. 6671. doi: 10.1038/s41467-022-34522-z
|
[32] |
T. Zhou, Z. Qiao, M. Yang, et al., Hydrogen-bonding topological remodeling modulated ultra-fine bacterial cellulose nanofibril-reinforced hydrogels for sustainable bioelectronics, Biosens. Bioelectron., 231(2023), art. No. 115288. doi: 10.1016/j.bios.2023.115288
|
[33] |
G. Ge, K. Mandal, R. Haghniaz, et al., Deep eutectic solvents‐based ionogels with ultrafast gelation and high adhesion in harsh environments, Adv. Funct. Mater., 33(2023), art. No. 2207388. doi: 10.1002/adfm.202207388
|
[34] |
R.X. Wang, P.C. Chen, X.J. Zhou, et al., An eutectic gel based on polymerizable deep eutectic solvent with self‐adhesive, self‐adaptive cold and high temperature environments, Adv. Mater. Technol., 8(2023), art. No. 2201509. doi: 10.1002/admt.202201509
|
[35] |
L.T. Fang, C. Zhang, W.J. Ge, et al., Facile spinning of tough and conductive eutectogel fibers via Li+-induced dense hydrogen-bond networks, Chem. Eng. J., 478(2023), art. No. 147405. doi: 10.1016/j.cej.2023.147405
|
[36] |
R.C. Dougherty, Temperature and pressure dependence of hydrogen bond strength: A perturbation molecular orbital approach, J. Chem. Phys., 109(1998), No. 17, p. 7372. doi: 10.1063/1.477343
|
[37] |
H. Cheng, L. Shen, and C. Wu, LLS and FTIR studies on the hysteresis in association and dissociation of poly(N-isopropylacrylamide) chains in water, Macromolecules, 39(2006), No. 6, p. 2325. doi: 10.1021/ma052561m
|
[38] |
S. Roy and J.W. Rhim, Gelatin/cellulose nanofiber-based functional films added with mushroom-mediated sulfur nanoparticles for active packaging applications, J. Nanostruct. Chem., 12(2022), No. 5, p. 979. doi: 10.1007/s40097-022-00484-3
|
[39] |
Z. He, J.C. Liu, X. Fan, B. Song, and H.B. Gu, Tara tannin-cross-linked, underwater-adhesive, super self-healing, and recyclable gelatin-based conductive hydrogel as a strain sensor, Ind. Eng. Chem. Res., 61(2022), No. 49, p. 17915. doi: 10.1021/acs.iecr.2c03253
|
[40] |
J.K. Wang, B.X. Zhan, S.Z. Zhang, Y. Wang, and L.F. Yan, Freeze-resistant, conductive, and robust eutectogels of metal salt-based deep eutectic solvents with poly(vinyl alcohol), ACS Appl. Polym. Mater., 4(2022), No. 3, p. 2057. doi: 10.1021/acsapm.1c01899
|
[41] |
Y. Zhang, C. Liu, S. Zhang, et al., Multiple dynamic interaction-enabled eutectogel with strong tissue adhesion, mechanical strength and temperature tolerance for transdermal drug delivery: Double monodentate coordination and π–π interaction, Chem. Eng. J., 476(2023), art. No. 146583. doi: 10.1016/j.cej.2023.146583
|
[42] |
B. Yiming, Y. Han, Z.L. Han, et al., A mechanically robust and versatile liquid-free ionic conductive elastomer, Adv. Mater., 33(2021), No. 11, art. No. 2006111. doi: 10.1002/adma.202006111
|
[43] |
Z.L. Han, P. Wang, Y.C. Lu, Z. Jia, S.X. Qu, and W. Yang, A versatile hydrogel network-repairing strategy achieved by the covalent-like hydrogen bond interaction, Sci. Adv., 8(2022), No. 8, art. No. 5066. doi: 10.1126/sciadv.abl5066
|
[44] |
C.B. Godiya, S. Kumar, and Y.H. Xiao, Amine functionalized egg albumin hydrogel with enhanced adsorption potential for diclofenac sodium in water, J. Hazard. Mater., 393(2020), art. No. 122417. doi: 10.1016/j.jhazmat.2020.122417
|
[45] |
J.Y. Cai, H. Zhao, H. Liu, et al., Magnetic field vertically aligned Co-MOF-74 derivatives/polyacrylamide hydrogels with bifunction of excellent electromagnetic wave absorption and efficient thermal conduction performances, Composites Part A, 176(2024), art. No. 107832. doi: 10.1016/j.compositesa.2023.107832
|
[46] |
H. Zhang, A.J. Xie, C.P. Wang, H.S. Wang, Y.H. Shen, and X.Y. Tian, Novel rGO/α-Fe2O3 composite hydrogel: Synthesis, characterization and high performance of electromagnetic wave absorption, J. Mater. Chem. A, 1(2013), No. 30, art. No. 8547. doi: 10.1039/c3ta11278k
|
[47] |
H. Zhang, A.J. Xie, C.P. Wang, H.S. Wang, Y.H. Shen, and X.Y. Tian, Room temperature fabrication of an RGO–Fe3O4 composite hydrogel and its excellent wave absorption properties, RSC Adv., 4(2014), No. 28, p. 14441. doi: 10.1039/c3ra44745f
|
[48] |
Y.C. Long, Z. Zhang, K. Sun, et al., Enhanced electromagnetic wave absorption performance of hematite@carbon nanotubes/polyacrylamide hydrogel composites with good flexibility and biocompatibility, Adv. Compos. Hybrid Mater., 6(2023), No. 5, art. No. 173. doi: 10.1007/s42114-023-00749-7
|
[49] |
Z.H. Zhao, L.M. Zhang, and H.J. Wu, Hydro/organo/ionogels: “Controllable” electromagnetic wave absorbers, Adv. Mater., 34(2022), No. 43, art. No. 2205376. doi: 10.1002/adma.202205376
|