留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图(5)

数据统计

分享

计量
  • 文章访问数:  234
  • HTML全文浏览量:  100
  • PDF下载量:  16
  • 被引次数: 0
Yuntong Wang, Shengchong Hui, Zhaoxiaohan Shi, Zijing Li, Geng Chen, Tao Zhang, Xinyue Xie, Limin Zhang, and Hongjing Wu, Hydrogen bond-induced conduction loss for enhanced electromagnetic attenuation in deep eutectic gel absorbers, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2938-0
Cite this article as:
Yuntong Wang, Shengchong Hui, Zhaoxiaohan Shi, Zijing Li, Geng Chen, Tao Zhang, Xinyue Xie, Limin Zhang, and Hongjing Wu, Hydrogen bond-induced conduction loss for enhanced electromagnetic attenuation in deep eutectic gel absorbers, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2938-0
引用本文 PDF XML SpringerLink
研究论文

氢键诱导传导损耗增强深共晶凝胶吸收剂的电磁衰减



  • 通讯作者:

    张利民    E-mail: liminzhang@nwpu.edu.cn

    吴宏景    E-mail: wuhongjing@nwpu.edu.cn

文章亮点

  • 1) 首次阐明氢键对电磁波吸收的影响。
  • 2) 采用方便高效的方法制备了无毒、便宜、环保的柔性凝胶吸波材料。
  • 3) 深共晶凝胶具备优异的电磁波吸收性能(EAB = 8.50 GHz)。
  • 包含氢键(HB)的凝胶和导电聚合物复合材料已在多种应用场景中展现出作为电磁波(EMW)吸收材料的巨大潜力。然而,EMW吸收材料中的传导损耗与HB中的电荷转移之间的关系仍有待充分理解。在这项研究中,我们设计了一系列深共晶凝胶,通过调节氢键受体氯化胆碱(ChCl)和氢键供体乙二醇(EG)的摩尔比来调控HB的数量。由于深共晶凝胶的独特性质,磁损耗和极化损耗对EMW衰减的影响可以忽略不计。结果表明,随着EG的引入,HB的量先增加,然后减少,HB引起的导电损耗也有相似的变化规律。在ChCl和EG摩尔比为2.4时,凝胶G22-CE2.4表现出最佳的EMW吸收性能,其有效吸收带宽在2.54 mm的厚度下达到了8.50 GHz。这种卓越的性能主要归因于最佳数量的HB产生的优异导电损耗和阻抗匹配的协同效应。这项工作首次阐明了HB在介电损耗中的作用,并为超分子聚合物吸收剂的优化设计提供了有价值的见解。
  • Research Article

    Hydrogen bond-induced conduction loss for enhanced electromagnetic attenuation in deep eutectic gel absorbers

    + Author Affiliations
    • Gels and conductive polymer composites, including hydrogen bonds (HBs), have emerged as promising materials for electromagnetic wave (EMW) absorption across various applications. However, the relationship between conduction loss in EMW-absorbing materials and charge transfer in HB remains to be fully understood. In this study, we developed a series of deep eutectic gels to fine-tune the quantity of HB by adjusting the molar ratio of choline chloride (ChCl) and ethylene glycol (EG). Owing to the unique properties of deep eutectic gels, the effects of magnetic loss and polarization loss on EMW attenuation can be disregarded. Our results indicate that the quantity of HB initially increases and then decreases with the introduction of EG, with HB-induced conductive loss following similar patterns. At a ChCl and EG molar ratio of 2.4, the gel labeled G22-CE2.4 exhibited the best EMW absorption performance, characterized by an effective absorption bandwidth of 8.50 GHz and a thickness of 2.54 mm. This superior performance is attributed to the synergistic effects of excellent conductive loss and impedance matching generated by the optimal number of HB. This work elucidates the role of HB in dielectric loss for the first time and provides valuable insights into the optimal design of supramolecular polymer absorbers.
    • loading
    • [1]
      Z.H. Zhao, Y.C. Qing, L. Kong, et al., Advancements in microwave absorption motivated by interdisciplinary research, Adv. Mater., 36(2024), No. 4, art. No. 2304182. doi: 10.1002/adma.202304182
      [2]
      G.Y. Yu, G.F. Shao, R.P. Xu, Y. Chen, X.H. Zhu, and X.G. Huang, Metal–organic framework-manipulated dielectric genes inside silicon carbonitride toward tunable electromagnetic wave absorption, Small, 19(2023), No. 46, art. No. 2304694. doi: 10.1002/smll.202304694
      [3]
      X. Yan, X.X. Huang, B. Zhong, et al., Balancing interface polarization strategy for enhancing electromagnetic wave absorption of carbon materials, Chem. Eng. J., 391(2020), art. No. 123538. doi: 10.1016/j.cej.2019.123538
      [4]
      X.F. Liu, X.Y. Nie, R.H. Yu, and H.B. Feng, Design of dual-frequency electromagnetic wave absorption by interface modulation strategy, Chem. Eng. J., 334(2018), p. 153. doi: 10.1016/j.cej.2017.10.012
      [5]
      Z.M. Tang, L. Xu, C. Xie, et al., Synthesis of CuCo2S4@expanded graphite with crystal/amorphous heterointerface and defects for electromagnetic wave absorption, Nat. Commun., 14(2023), art. No. 5951. doi: 10.1038/s41467-023-41697-6
      [6]
      M. Qin, L.M. Zhang, X.R. Zhao, and H.J. Wu, Defect induced polarization loss in multi-shelled spinel hollow spheres for electromagnetic wave absorption application, Adv. Sci., 8(2021), No. 8, art. No. 2004640. doi: 10.1002/advs.202004640
      [7]
      G. Chen, H.S. Liang, J.J. Yun, L.M. Zhang, H.J. Wu, and J.Y. Wang, Ultrasonic field induces better crystallinity and abundant defects at grain boundaries to develop CuS electromagnetic wave absorber, Adv. Mater., 35(2023), No. 49, art. No. 2305586. doi: 10.1002/adma.202305586
      [8]
      S.C. Hui, X. Zhou, L.M. Zhang, and H.J. Wu, Constructing multiphase-induced interfacial polarization to surpass defect-induced polarization in multielement sulfide absorbers, Adv. Sci., 11(2024), No. 6, art. No. 2307649. doi: 10.1002/advs.202307649
      [9]
      H.S. Liang, G. Chen, D. Liu, et al., Exploring the Ni 3d orbital unpaired electrons induced polarization loss based on Ni single-atoms model absorber, Adv. Funct. Mater., 33(2023), No. 7, art. No. 2212604. doi: 10.1002/adfm.202212604
      [10]
      T. Cheng, D.X. Shen, M. Meng, et al., Efficient electron transfer across hydrogen bond interfaces by proton-coupled and -uncoupled pathways, Nat. Commun., 10(2019), art. No. 1531. doi: 10.1038/s41467-019-09392-7
      [11]
      R.V. Meidanshahi, S. Mazinani, V. Mujica, and P. Tarakeshwar, Electronic transport across hydrogen bonds in organic electronics, Int. J. Nanotechnol., 12(2015), p. 297. doi: 10.1504/IJNT.2015.067214
      [12]
      L.A. Wilkinson, L. McNeill, A.J. Meijer, and N.J. Patmore, Mixed valency in hydrogen bonded ‘Dimers of Dimers’, J. Am. Chem. Soc., 135(2013), No. 5, p. 1723. doi: 10.1021/ja312176x
      [13]
      U.T. Chiu and L. Chao, Electron transfer through protein-bound water and its bioelectronic application, Biosens. Bioelectron., 136(2019), p. 16. doi: 10.1016/j.bios.2019.04.012
      [14]
      B. Dereka, Q. Yu, N.H.C. Lewis, W.B. Carpenter, J.M. Bowman, and A. Tokmakoff, Crossover from hydrogen to chemical bonding, Science, 371(2021), No. 6525, p. 160. doi: 10.1126/science.abe1951
      [15]
      T.J. Long, Y.X. Li, X. Fang, and J.Q. Sun, Salt-mediated polyampholyte hydrogels with high mechanical strength, excellent self-healing property, and satisfactory electrical conductivity, Adv. Funct. Mater., 28(2018), No. 44, art. No. 1804416. doi: 10.1002/adfm.201804416
      [16]
      S.G. Wu, C.Y. Cai, F.F. Li, Z.J. Tan, and S.Y. Dong, Deep eutectic supramolecular polymers: Bulk supramolecular materials, Angew. Chem. Int. Ed., 59(2020), No. 29, p. 11871. doi: 10.1002/anie.202004104
      [17]
      T.E. Achkar, H. Greige-Gerges, and S. Fourmentin, Basics and properties of deep eutectic solvents: A review, Environ. Chem. Lett., 19(2021), No. 4, p. 3397. doi: 10.1007/s10311-021-01225-8
      [18]
      A. Shishov, A. Pochivalov, L. Nugbienyo, V. Andruch, and A. Bulatov, Deep eutectic solvents are not only effective extractants, Trends Anal. Chem., 129(2020), art. No. 115956. doi: 10.1016/j.trac.2020.115956
      [19]
      Y.J. Liang, K.F. Wang, J.J. Li, et al., Low-molecular-weight supramolecular-polymer double-network eutectogels for self-adhesive and bidirectional sensors, Adv. Funct. Mater., 31(2021), No. 45, art. No. 2104963. doi: 10.1002/adfm.202104963
      [20]
      M.K. Yan, X.Y. Li, and H.L. Lian, A stretchable, compressible and anti-freezing ionic gel based on a natural deep eutectic solvent applied as a strain sensor, J. Appl. Polym. Sci., 139(2022), No. 28, art. No. 52607. doi: 10.1002/app.52607
      [21]
      J.X. Wu, Q.H. Liang, X.L. Yu, et al., Deep eutectic solvents for boosting electrochemical energy storage and conversion: A review and perspective, Adv. Funct. Mater., 31(2021), No. 22, art. No. 2011102. doi: 10.1002/adfm.202011102
      [22]
      C.N. Gu, Y. Peng, J.J. Li, et al., Supramolecular G4 eutectogels of guanosine with solvent-induced chiral inversion and excellent electrochromic activity, Angew. Chem. Int. Ed., 59(2020), No. 42, p. 18768. doi: 10.1002/anie.202009332
      [23]
      S. Wang, H.L. Cheng, B. Yao, et al., Self-adhesive, stretchable, biocompatible, and conductive nonvolatile eutectogels as wearable conformal strain and pressure sensors and biopotential electrodes for precise health monitoring, ACS Appl. Mater. Interfaces, 13(2021), No. 17, p. 20735. doi: 10.1021/acsami.1c04671
      [24]
      H. Zhang, N. Tang, X. Yu, M.H. Li, and J. Hu, Strong and tough physical eutectogels regulated by the spatiotemporal expression of non-covalent interactions, Adv. Funct. Mater., 32(2022), No. 41, art. No. 2206305. doi: 10.1002/adfm.202206305
      [25]
      Y.K. Shi, B.H. Wu, S.T. Sun, P.Y. Wu, Peeling–stiffening self-adhesive ionogel with superhigh interfacial toughness, Adv. Mater., 36(2024), No. 11, art. No. 2310576. doi: 10.1002/adma.202310576
      [26]
      K.Q. Fan, W.C. Wei, Z.Q. Zhang, et al., Highly stretchable, self-healing, and adhesive polymeric eutectogel enabled by hydrogen-bond networks for wearable strain sensor, Chem. Eng. J., 449(2022), art. No. 137878. doi: 10.1016/j.cej.2022.137878
      [27]
      P.Q. Yao, Q.W. Bao, Y. Yao, et al., Environmentally stable, robust, adhesive, and conductive supramolecular deep eutectic gels as ultrasensitive flexible temperature sensor, Adv. Mater., 35(2023), No. 21, art. No. 2300114. doi: 10.1002/adma.202300114
      [28]
      K.F. Wang, H. Wang, J.J. Li, et al., Super-stretchable and extreme temperature-tolerant supramolecular-polymer double-network eutectogels with ultrafast in situ adhesion and flexible electrochromic behaviour, Mater. Horiz., 8(2021), No. 9, p. 2520. doi: 10.1039/D1MH00725D
      [29]
      R.A. Li, K.L. Zhang, G.X. Chen, B. Su, and M.H. He, Stiff, self-healable, transparent polymers with synergetic hydrogen bonding interactions, Chem. Mater., 33(2021), No. 13, p. 5189. doi: 10.1021/acs.chemmater.1c01242
      [30]
      G. Li, Z.H. Deng, M.K. Cai, et al., A stretchable and adhesive ionic conductor based on polyacrylic acid and deep eutectic solvents, npj Flex. Electron., 5(2021), art. No. 23. doi: 10.1038/s41528-021-00118-8
      [31]
      Y. Zhang, Y.F. Wang, Y. Guan, and Y.J. Zhang, Peptide-enhanced tough, resilient and adhesive eutectogels for highly reliable strain/pressure sensing under extreme conditions, Nat. Commun., 13(2022), art. No. 6671. doi: 10.1038/s41467-022-34522-z
      [32]
      T. Zhou, Z. Qiao, M. Yang, et al., Hydrogen-bonding topological remodeling modulated ultra-fine bacterial cellulose nanofibril-reinforced hydrogels for sustainable bioelectronics, Biosens. Bioelectron., 231(2023), art. No. 115288. doi: 10.1016/j.bios.2023.115288
      [33]
      G. Ge, K. Mandal, R. Haghniaz, et al., Deep eutectic solvents‐based ionogels with ultrafast gelation and high adhesion in harsh environments, Adv. Funct. Mater., 33(2023), art. No. 2207388. doi: 10.1002/adfm.202207388
      [34]
      R.X. Wang, P.C. Chen, X.J. Zhou, et al., An eutectic gel based on polymerizable deep eutectic solvent with self‐adhesive, self‐adaptive cold and high temperature environments, Adv. Mater. Technol., 8(2023), art. No. 2201509. doi: 10.1002/admt.202201509
      [35]
      L.T. Fang, C. Zhang, W.J. Ge, et al., Facile spinning of tough and conductive eutectogel fibers via Li+-induced dense hydrogen-bond networks, Chem. Eng. J., 478(2023), art. No. 147405. doi: 10.1016/j.cej.2023.147405
      [36]
      R.C. Dougherty, Temperature and pressure dependence of hydrogen bond strength: A perturbation molecular orbital approach, J. Chem. Phys., 109(1998), No. 17, p. 7372. doi: 10.1063/1.477343
      [37]
      H. Cheng, L. Shen, and C. Wu, LLS and FTIR studies on the hysteresis in association and dissociation of poly(N-isopropylacrylamide) chains in water, Macromolecules, 39(2006), No. 6, p. 2325. doi: 10.1021/ma052561m
      [38]
      S. Roy and J.W. Rhim, Gelatin/cellulose nanofiber-based functional films added with mushroom-mediated sulfur nanoparticles for active packaging applications, J. Nanostruct. Chem., 12(2022), No. 5, p. 979. doi: 10.1007/s40097-022-00484-3
      [39]
      Z. He, J.C. Liu, X. Fan, B. Song, and H.B. Gu, Tara tannin-cross-linked, underwater-adhesive, super self-healing, and recyclable gelatin-based conductive hydrogel as a strain sensor, Ind. Eng. Chem. Res., 61(2022), No. 49, p. 17915. doi: 10.1021/acs.iecr.2c03253
      [40]
      J.K. Wang, B.X. Zhan, S.Z. Zhang, Y. Wang, and L.F. Yan, Freeze-resistant, conductive, and robust eutectogels of metal salt-based deep eutectic solvents with poly(vinyl alcohol), ACS Appl. Polym. Mater., 4(2022), No. 3, p. 2057. doi: 10.1021/acsapm.1c01899
      [41]
      Y. Zhang, C. Liu, S. Zhang, et al., Multiple dynamic interaction-enabled eutectogel with strong tissue adhesion, mechanical strength and temperature tolerance for transdermal drug delivery: Double monodentate coordination and π–π interaction, Chem. Eng. J., 476(2023), art. No. 146583. doi: 10.1016/j.cej.2023.146583
      [42]
      B. Yiming, Y. Han, Z.L. Han, et al., A mechanically robust and versatile liquid-free ionic conductive elastomer, Adv. Mater., 33(2021), No. 11, art. No. 2006111. doi: 10.1002/adma.202006111
      [43]
      Z.L. Han, P. Wang, Y.C. Lu, Z. Jia, S.X. Qu, and W. Yang, A versatile hydrogel network-repairing strategy achieved by the covalent-like hydrogen bond interaction, Sci. Adv., 8(2022), No. 8, art. No. 5066. doi: 10.1126/sciadv.abl5066
      [44]
      C.B. Godiya, S. Kumar, and Y.H. Xiao, Amine functionalized egg albumin hydrogel with enhanced adsorption potential for diclofenac sodium in water, J. Hazard. Mater., 393(2020), art. No. 122417. doi: 10.1016/j.jhazmat.2020.122417
      [45]
      J.Y. Cai, H. Zhao, H. Liu, et al., Magnetic field vertically aligned Co-MOF-74 derivatives/polyacrylamide hydrogels with bifunction of excellent electromagnetic wave absorption and efficient thermal conduction performances, Composites Part A, 176(2024), art. No. 107832. doi: 10.1016/j.compositesa.2023.107832
      [46]
      H. Zhang, A.J. Xie, C.P. Wang, H.S. Wang, Y.H. Shen, and X.Y. Tian, Novel rGO/α-Fe2O3 composite hydrogel: Synthesis, characterization and high performance of electromagnetic wave absorption, J. Mater. Chem. A, 1(2013), No. 30, art. No. 8547. doi: 10.1039/c3ta11278k
      [47]
      H. Zhang, A.J. Xie, C.P. Wang, H.S. Wang, Y.H. Shen, and X.Y. Tian, Room temperature fabrication of an RGO–Fe3O4 composite hydrogel and its excellent wave absorption properties, RSC Adv., 4(2014), No. 28, p. 14441. doi: 10.1039/c3ra44745f
      [48]
      Y.C. Long, Z. Zhang, K. Sun, et al., Enhanced electromagnetic wave absorption performance of hematite@carbon nanotubes/polyacrylamide hydrogel composites with good flexibility and biocompatibility, Adv. Compos. Hybrid Mater., 6(2023), No. 5, art. No. 173. doi: 10.1007/s42114-023-00749-7
      [49]
      Z.H. Zhao, L.M. Zhang, and H.J. Wu, Hydro/organo/ionogels: “Controllable” electromagnetic wave absorbers, Adv. Mater., 34(2022), No. 43, art. No. 2205376. doi: 10.1002/adma.202205376

    Catalog


    • /

      返回文章
      返回