留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图(6)

数据统计

分享

计量
  • 文章访问数:  166
  • HTML全文浏览量:  64
  • PDF下载量:  7
  • 被引次数: 0
Peng Li, Meifeng Cai, Shengjun Miao, Yuan Li,  and Yu Wang, Correlation between the rock mass properties and maximum horizontal stress: A case study of overcoring stress measurements, Int. J. Miner. Metall. Mater.,(2025). https://doi.org/10.1007/s12613-024-2944-2
Cite this article as:
Peng Li, Meifeng Cai, Shengjun Miao, Yuan Li,  and Yu Wang, Correlation between the rock mass properties and maximum horizontal stress: A case study of overcoring stress measurements, Int. J. Miner. Metall. Mater.,(2025). https://doi.org/10.1007/s12613-024-2944-2
引用本文 PDF XML SpringerLink
研究论文

岩体性质与最大水平应力的关系:以应力解除法测量数据为例



  • 通讯作者:

    李鹏    E-mail: pengli@ustb.edu.cn

    苗胜军    E-mail: miaoshengjun@ustb.edu.cn

文章亮点

  • (1) 提出了一个新定义的特征参数CERP作为评估岩体结构性质的指标
  • (2) 使用信息分布方法建立了一个模糊关系矩阵
  • (3) 证明了最大水平应力σHCERP之间相对详细的局部关系
  • 了解岩性的力学性质对于准确确定水平应力大小至关重要。为了研究岩体性质与最大水平应力之间的相关性,采用了在中国9个矿山使用改进的应力解除法地应力测量技术确定的89个测点的三维地应力张量,提出了一个新定义的特征参数CERP作为评估岩体结构性质的指标,并使用信息分布方法建立了一个模糊关系矩阵。结果表明,垂直应力和水平应力均与深度呈良好的线性增长关系。弹性模量、泊松比与深度之间没有显著的相关性,数据点的分布比较分散和混乱。而且,岩石质量指标(RQD)与深度之间也没有明显的数学关系。最大水平应力σH是岩体性质的函数,在同一深度上,与CERP呈一定的线性关系。此外,通过建立的模糊识别方法确定的σH的整体变化趋势是随着CERP的增加而增加。模糊识别方法还证明了σHCERP之间相对详细的局部关系,预测曲线以波动的方式增加,这与实测应力数据非常一致。
  • Research Article

    Correlation between the rock mass properties and maximum horizontal stress: A case study of overcoring stress measurements

    + Author Affiliations
    • Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude. To investigate the correlation between the rock mass properties and maximum horizontal stress, the three-dimensional (3D) stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted, a newly defined characteristic parameter CERP was proposed as an indicator for evaluating the structural properties of rock masses, and a fuzzy relation matrix was established using the information distribution method. The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth. There is no remarkable correlation between the elastic modulus, Poisson’s ratio and depth, and the distribution of data points is scattered and messy. Moreover, there is no obvious relationship between the rock quality designation (RQD) and depth. The maximum horizontal stress σH is a function of rock properties, showing a certain linear relationship with the CERP at the same depth. In addition, the overall change trend of σH determined by the established fuzzy identification method is to increase with the increase of CERP. The fuzzy identification method also demonstrates a relatively detailed local relationship between σH and CERP, and the predicted curve rises in a fluctuating way, which is in accord well with the measured stress data.
    • loading
    • Supplementary Information-s12613-024-2944-2.docx
    • [1]
      M.L. Zoback, First- and second-order patterns of stress in the lithosphere: The World Stress Map Project, J. Geophys. Res., 97(1992), No. B8, p. 11703. doi: 10.1029/92JB00132
      [2]
      A. Zang and O. Stephansson, Stress Field of the Earth ’s Crust, Springer Dordrecht, 2010.
      [3]
      P. Li, M.F. Cai, S.J. Miao, and Q.F. Guo, New insights into the current stress field around the yishu fault zone, Eastern China, Rock Mech. Rock Eng., 52(2019), No. 10, p. 4133. doi: 10.1007/s00603-019-01792-x
      [4]
      P. Li and M.F. Cai, Insights into seismicity from the perspective of the crustal stress field: A comment, Nat. Hazards, 111(2022), No. 2, p. 1153. doi: 10.1007/s11069-021-05124-7
      [5]
      P. Li, M.F. Cai, M. Gorjian, F.H. Ren, X. Xi, and P.T. Wang, Interaction between in situ stress states and tectonic faults: A comment, Int. J. Miner. Metall. Mater., 30(2023), No. 7, p. 1227. doi: 10.1007/s12613-023-2607-8
      [6]
      P. Li and M.F. Cai, Assessing the role of absolute stress measurement and relative stress real-time monitoring for earthquake research, Arab. J. Geosci., 15(2022), No. 9, art. No. 831. doi: 10.1007/s12517-022-10135-0
      [7]
      M.D. Zoback, R. Apel, J. Baumgärtner, et al., Upper-crustal strength inferred from stress measurements to 6 km depth in the KTB borehole, Nature, 365(1993), p. 633. doi: 10.1038/365633a0
      [8]
      M.L. Zoback, M.D. Zoback, J. Adams, et al., Global patterns of tectonic stress, Nature, 341(1989), No. 6240, p. 291. doi: 10.1038/341291a0
      [9]
      P. Li, M.F. Cai, Q.F. Guo, and S.J. Miao, In situ stress state of the northwest region of the Jiaodong peninsula, China from overcoring stress measurements in three gold mines, Rock Mech. Rock Eng., 52(2019), No. 11, p. 4497. doi: 10.1007/s00603-019-01827-3
      [10]
      Q.Q. Zhu, D.Y. Li, Z.Y. Han, P. Xiao, and B. Li, Failure characteristics of brittle rock containing two rectangular holes under uniaxial compression and coupled static-dynamic loads, Acta Geotech., 17(2022), No. 1, p. 131. doi: 10.1007/s11440-021-01196-8
      [11]
      M. Rajabi, M. Tingay, and O. Heidbach, The present-day state of tectonic stress in the Darling Basin, Australia: Implications for exploration and production, Mar. Pet. Geol., 77(2016), p. 776. doi: 10.1016/j.marpetgeo.2016.07.021
      [12]
      S.F. Wang, X.B. Li, J.R. Yao, et al., Experimental investigation of rock breakage by a conical pick and its application to non-explosive mechanized mining in deep hard rock, Int. J. Rock Mech. Min. Sci., 122(2019), art. No. 104063. doi: 10.1016/j.ijrmms.2019.104063
      [13]
      S.F. Wang, L.Q. Huang, and X.B. Li, Analysis of rockburst triggered by hard rock fragmentation using a conical pick under high uniaxial stress, Tunnelling Underground Space Technol., 96(2020), art. No. 103195. doi: 10.1016/j.tust.2019.103195
      [14]
      T. Wang, W.W. Ye, Y.M. Tong, N.S. Jiang, and L.Y. Liu, Residual stress measurement and analysis of siliceous slate-containing quartz veins, Int. J. Miner. Metall. Mater., 30(2023), No. 12, p. 2310. doi: 10.1007/s12613-023-2667-9
      [15]
      T. Wang, W.W. Ye, L.Y. Liu, K. Liu, N.S. Jiang, and X.H. Feng, Disturbance failure mechanism of highly stressed rock in deep excavation: Current status and prospects, Int. J. Miner. Metall. Mater., 31(2024), No. 4, p. 611. doi: 10.1007/s12613-024-2864-1
      [16]
      P. Li, Q.F. Guo, M.F. Cai, and S.J. Miao, Present-day state of tectonic stress and tectonization in coastal gold mine area near Laizhou Gulf, North China, Trans. Nonferrous Met. Soc. China, 33(2023), No. 3, p. 865. doi: 10.1016/S1003-6326(23)66152-7
      [17]
      B. Amadei and O. Stephansson, Rock Stress and Its Measurement, Springer Dordrecht, 1997.
      [18]
      M. Rajabi, M. Tingay, O. Heidbach, R. Hillis, and S. Reynolds, The present-day stress field of Australia, Earth Sci. Rev., 168(2017), p. 165. doi: 10.1016/j.earscirev.2017.04.003
      [19]
      M.D. Zoback, Reservoir Geomechanics, Cambridge University Press, Cambridge, 2007.
      [20]
      P.R. Sheorey, G. Murali Mohan, and A. Sinha, Influence of elastic constants on the horizontal in situ stress, Int. J. Rock Mech. Min. Sci., 38(2001), No. 8, p. 1211. doi: 10.1016/S1365-1609(01)00069-7
      [21]
      P. Li and M.F. Cai, Distribution law of in situ stress field and regional stress field assessments in the Jiaodong Peninsula, China, J. Asian Earth Sci., 166(2018), p. 66. doi: 10.1016/j.jseaes.2018.07.021
      [22]
      J. Sjöberg, R. Christiansson, and J.A. Hudson, ISRM suggested methods for rock stress estimation: Part 2: Overcoring methods, Int. J. Rock Mech. Min. Sci., 40(2003), No. 7-8, p. 999. doi: 10.1016/j.ijrmms.2003.07.012
      [23]
      P. Li, J.L. Sun, M.F. Cai, et al., Current tectonic stress state in an iron mine district, North China, based on overcoring, hydraulic fracturing, and acoustic emission stress measurements, Lithosphere, 2022(2022), No. 1, art. No. 3251234. doi: 10.2113/2022/3251234
      [24]
      M.F. Cai, Principles and Techniques of In-Situ Stress Measurements, Science Press, Beijing, 1995.
      [25]
      M.F. Cai, L. Qiao, C.H. Li, B. Yu, and G.P. Chen, Application of an improved hollow inclusion technique for in situ stress measurement in Xincheng gold mine, China, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 32(1995), No. 7, p. 735. doi: 10.1016/0148-9062(95)00020-H
      [26]
      M.F. Cai and S.H. Wang, Results and their analysis of in-site earth stress measurement in lianglong gold mine, China Min. Mag., 9(2000), No. 5, , p. 46.
      [27]
      Q.F. Guo and D. Ji, Study on measuring and test technology of ground stress field in No.10 mine of Pingdingshan coal mining group, Coal Sci. Technol., 40(2012), No. 2, p. 12.
      [28]
      S.J. Miao, J.J. Shi, Y. Li, and H.B. Liu, In-situ stress measurement and result analysis in the 8th mine of Pingmei Group, China, [in] 2011 International Conference on Remote Sensing , Environment and Transportation Engineering, Nanjing, 2011, p. 425.
      [29]
      Y.Y. Hu, Study on In-Situ Stress Measurement and Stope Ground Pressure Activity Law in Lilou Iron Mine [Dissertation], University of Science and Technology Beijing, Beijing, 2018.
      [30]
      M.F. Cai, B. Yu, L. Qiao, G.P. Chen, and C.H. Li, Experience of in situ stress measurement with hydrofracturing and overcoring techniques in Ekou mine, China, Int. J. Rock Mech. Min. Sci., 34(1997), No. 2, p. 299. doi: 10.1016/S0148-9062(96)00059-9
      [31]
      M.F. Cai, L. Qiao, B. Yu, and H.F. He, Results and analysis of in-situ stress measurement in Meishan iron mine, Chin. J. Rock Mech. Eng., 16(1997), No. 16, p. 233.
      [32]
      Y.C. Li, M.F. Cai, J.A. Wang, and S.J. Miao, In-situ measurement and analysis by stress relaxation method in deep slope rockmass, Met. Mine, 337(2004), No. 7, p. 16.
      [33]
      Y. Li, S.S. Fu, L. Qiao, Z.B. Liu, and Y.H. Zhang, Development of twin temperature compensation and high-level biaxial pressurization calibration techniques for CSIRO in-situ stress measurement in depth, Rock Mech. Rock Eng., 52(2019), No. 4, p. 1115. doi: 10.1007/s00603-018-1618-7
      [34]
      P. Li, M.F. Cai, Q.F. Guo, F.H. Ren, and S.J. Miao, Current stress field and its relationship to tectonism in a coal mining district, central China, for underground coal energy exploration, Energy Rep., 8(2022), p. 5313. doi: 10.1016/j.egyr.2022.04.008
      [35]
      M.F. Cai, W.D. Liu, and Y. Li, In-situ stress measurement at deep position of linglong gold mine and distribution law of in situ stress field in mine area, Chin. J. Rock Mech. Eng., 29(2010), No. 2, p. 227.
      [36]
      P. Li, Q.F. Guo, and M.F. Cai, Contemporary stress field in and around a gold mine area adjacent to the Bohai Sea, China, and its seismological implications, Bull. Eng. Geol. Environ., 81(2022), No. 3, art. No. 86. doi: 10.1007/s10064-022-02593-3
      [37]
      O. Heidbach, M. Tingay, A. Barth, J. Reinecker, D. Kurfeß, and B. Müller, Global crustal stress pattern based on the World Stress Map database release 2008, Tectonophysics, 482(2010), No. 1-4, p. 3. doi: 10.1016/j.tecto.2009.07.023
      [38]
      E.T. Brown and E. Hoek, Trends in relationships between measured in situ stresses and depth, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 15(1978), No. 4, p. 211. doi: 10.1016/0148-9062(78)91227-5
      [39]
      R. Liu, J.Z. Liu, W.L. Zhu, et al. , In situ stress analysis in the Yinggehai Basin, northwestern South China Sea: Implication for the pore pressure–stress coupling process, Mar. Pet. Geol., 77(2016), p. 341. doi: 10.1016/j.marpetgeo.2016.06.008
      [40]
      P. Li, F.H. Ren, M.F. Cai, Q.F. Guo, and S.J. Miao, Present-day stress state and fault stability analysis in the capital area of China constrained by in situ stress measurements and focal mechanism solutions, J. Asian Earth Sci., 185(2019), art. No. 104007. doi: 10.1016/j.jseaes.2019.104007
      [41]
      P. Li, M.F. Cai, Q.F. Guo, and S.J. Miao, Characteristics and implications of stress state in a gold mine in Ludong area, China, Int. J. Miner. Metall. Mater., 25(2018), No. 12, p. 1363. doi: 10.1007/s12613-018-1690-8
      [42]
      B. Singh and R.K. Goel, Chapter 4 – Rock quality designation, [in] B. Singh and R.K. Goel, eds. Engineering Rock Mass Classification, Elsvier, Butterworth-Heinemann; 2011, p. 21.
      [43]
      Z.T. Bieniawski, Engineering Rock Mass Classifications : A Complete Manual for Engineers and Geologists in Mining , Civil , and Petroleum Engineering, John Wiley & Sons, New York, 1989.
      [44]
      S.D. Priest and J.A. Hudson, Discontinuity spacings in rock, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 13(1976), No. 5, p. 135. doi: 10.1016/0148-9062(76)90818-4
      [45]
      A. Palmstrom, Measurements of and correlations between block size and rock quality designation (RQD), Tunn. Undergr. Space Technol., 20(2005), No. 4, p. 362. doi: 10.1016/j.tust.2005.01.005
      [46]
      X.W. Xu and C.F. Huang, Fuzzy identification between dynamic response of structure and structural earthquake damage, Earthquake Eng. Eng. Vibr., 9(1989), No. 2, p. 57.
      [47]
      C.F. Huang and J.D. Wang, Fuzzy Information Optimization Processing Technology and Its Application, Beijing University of Aeronautics and Astronautics Press, Beijing, 1995.
      [48]
      M. Mizumoto and H.J. Zimmermann, Comparison of fuzzy reasoning methods, Fuzzy Sets Syst., 8(1982), No. 3, p. 253. doi: 10.1016/S0165-0114(82)80004-3
      [49]
      L.A. Zadeh, Fuzzy sets and information granularity, [in] G.J. Klir and B. Yuan, eds., Fuzzy Sets , Fuzzy Logic , and Fuzzy Systems, North-Holland Publishing Co., 1979, p. 433.

    Catalog


    • /

      返回文章
      返回