留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图(11)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  309
  • HTML全文浏览量:  115
  • PDF下载量:  23
  • 被引次数: 0
Haibin Liu, Run Hou, Chenghao Wu, Ruishan Xie,  and Shujun Chen, Multi-layer multi-pass friction rolling additive manufacturing of Al alloy: Toward complex large-scale high-performance components, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2945-1
Cite this article as:
Haibin Liu, Run Hou, Chenghao Wu, Ruishan Xie,  and Shujun Chen, Multi-layer multi-pass friction rolling additive manufacturing of Al alloy: Toward complex large-scale high-performance components, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2945-1
引用本文 PDF XML SpringerLink
研究论文

铝合金多层多道摩擦辊压增材制造:面向大型复杂构件


  • 通讯作者:

    谢瑞山    E-mail: xiers@bjut.edu.cn

文章亮点

  • (1) 开发了铝合金多层多道固相摩擦辊压增材制造方法
  • (2) 实现了搭接重叠区致密的微观结构及优异的力学性能
  • (3) 阐明了多层多道搭接区材料流动机理与微观组织形成机理
  • 摩擦辊压增材制造(FRAM)是制备高性能铝合金构件的理想制造方法,但目前包含FRAM在内的大部分固相摩擦增材制造技术仅能制造简单的单壁墙构件。本文旨在开发FRAM多层多道沉积方法,以突破成形零件宽度的限制。本文采用6061和5052铝合金异种材料进行相互标记,研究了多层多道沉积时相邻层与相邻道之间材料流动行为,系统评价了多层多道搭接区的微观组织与力学性能。结果表明,搭接中间区域相邻层间及相邻道之间均形成机械互锁结构,边缘区内侧形成包裹结构,外侧形成峰状结构。工具头的二次摩擦辊压导致搭接区材料发生不同程度的横向流动和塑性变形,使搭接左右边缘区再结晶程度最高,搭接中间区次之,非搭接区最低。搭接区域沿不同方向的抗拉强度均能达到单壁墙构件强度的90%以上。本研究证明了FRAM多层多道次沉积时重叠区表面虽有凹凸不平的沟槽,但在下一层沉积时可被塑化材料的流动所填充,从而保证了搭接重叠区致密的微观结构和优异的力学性能。本文通过FRAM多层多道沉积克服了固相沉积样件宽度的限制,为未来制备航空航天大型、复杂、高性能构件奠定了基础。
  • Research Article

    Multi-layer multi-pass friction rolling additive manufacturing of Al alloy: Toward complex large-scale high-performance components

    + Author Affiliations
    • At present, the emerging solid-phase friction-based additive manufacturing technology, including friction rolling additive manufacturing (FRAM), can only manufacture simple single-pass components. In this study, multi-layer multi-pass FRAM-deposited aluminum alloy samples were successfully prepared using a non-shoulder tool head. The material flow behavior and microstructure of the overlapped zone between adjacent layers and passes during multi-layer multi-pass FRAM deposition were studied using the hybrid 6061 and 5052 aluminum alloys. The results showed that a mechanical interlocking structure was formed between the adjacent layers and the adjacent passes in the overlapped center area. Repeated friction and rolling of the tool head led to different degrees of lateral flow and plastic deformation of the materials in the overlapped zone, which made the recrystallization degree in the left and right edge zones of the overlapped zone the highest, followed by the overlapped center zone and the non-overlapped zone. The tensile strength of the overlapped zone exceeded 90% of that of the single-pass deposition sample. It is proved that although there are uneven grooves on the surface of the overlapping area during multi-layer and multi-pass deposition, they can be filled by the flow of materials during the deposition of the next layer, thus ensuring the dense microstructure and excellent mechanical properties of the overlapping area. The multi-layer multi-pass FRAM deposition overcomes the limitation of deposition width and lays the foundation for the future deposition of large-scale high-performance components.
    • loading
    • [1]
      T. Prater, Friction stir welding of metal matrix composites for use in aerospace structures, Acta Astronaut., 93(2014), p. 366. doi: 10.1016/j.actaastro.2013.07.023
      [2]
      Z.G. Luo, X. Zhang, Z.S. Liu, H.Y. Zhou, M.K. Wang, and G.M. Xie, Mechanical properties and interfacial characteristics of 6061 Al alloy plates fabricated by hot-roll bonding, Int. J. Miner. Metall. Mater., 31(2024), No. 8, p.1890 doi: 10.1007/s12613-023-2801-8
      [3]
      O. Engler and S. Miller-Jupp, Control of second-phase particles in the Al–Mg–Mn alloy AA 5083, J. Alloys Compd., 689(2016), p. 998. doi: 10.1016/j.jallcom.2016.08.070
      [4]
      D.H. Ding, Z.X. Pan, D. Cuiuri, and H.J. Li, Wire-feed additive manufacturing of metal components: Technologies, developments and future interests, Int. J. Adv. Manuf. Technol., 81(2015), No. 1, p. 465.
      [5]
      H.J. Zong, N. Kang, Z.H. Qin, and M.E. Mansori, A review on the multi-scaled structures and mechanical/thermal properties of tool steels fabricated by laser powder bed fusion additive manufacturing, Int. J. Miner. Metall. Mater., 31(2024), No. 5, p. 1048. doi: 10.1007/s12613-023-2731-5
      [6]
      D. Jafari, T.H.J. Vaneker, and I. Gibson, Wire and arc additive manufacturing: Opportunities and challenges to control the quality and accuracy of manufactured parts, Mater. Des., 202(2021), art. No. 109471. doi: 10.1016/j.matdes.2021.109471
      [7]
      L.Z. Wu, Zhang, D.F. Khan, et al., Unveiling the cellular microstructure–property relations in martensitic stainless steel via laser powder bed fusion, Int. J. Miner. Metall. Mater., 31(2024), No. 11, p. 2476. doi: 10.1007/s12613-024-2947-z
      [8]
      X.J. Cui, E.Y. Qi, Z.G. Sun, C.B. Jia, Y. Zeng, and S.K. Wu, Wire oscillating laser additive manufacturing of 2319 aluminum alloy: Optimization of process parameters, microstructure, and mechanical properties, Chin. J. Mech. Eng. Addit. Manuf. Front., 1(2022), No. 3, art. No. 100035.
      [9]
      H. Mirzadeh, Surface metal-matrix composites based on AZ91 magnesium alloy via friction stir processing: A review, Int. J. Miner. Metall. Mater., 30(2023), No. 7, p. 1278 doi: 10.1007/s12613-022-2589-y
      [10]
      Y.J. Shen, J.J. Wang, B.B. Wang, et al., Strengthening strategy for high-performance friction stir lap welded joints based on 5083 Al alloy, Int. J. Miner. Metall. Mater., 31(2024), No. 11, p. 2498 doi: 10.1007/s12613-024-2847-2
      [11]
      M. Elyasi, D. Khoram, H. Aghajani Derazkola, and M.J. Mirnia, Effects of process parameters on properties of friction stir additive manufactured copper, Int. J. Adv. Manuf. Technol., 127(2023), No. 11, p. 5651.
      [12]
      D. Garcia, W.D. Hartley, H.A. Rauch, et al. , In situ investigation into temperature evolution and heat generation during additive friction stir deposition: A comparative study of Cu and Al–Mg–Si, Addit. Manuf., 34(2020), art. No. 101386.
      [13]
      F.C. Liu, P.S. Dong, A.S. Khan, et al., 3D printing of fine-grained aluminum alloys through extrusion-based additive manufacturing: Microstructure and property characterization, J. Mater. Sci. Technol., 139(2023), p. 126. doi: 10.1016/j.jmst.2022.08.017
      [14]
      W.S. Tang, X.Q. Yang, C.B. Tian, and Y.S. Xu, Microstructural heterogeneity and bonding strength of planar interface formed in additive manufacturing of Al−Mg−Si alloy based on friction and extrusion, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1755. doi: 10.1007/s12613-022-2506-4
      [15]
      H. Wang, Y. Li, M. Zhang, W. Gong, R.L. Lai, and Y.P. Li, Preheating-assisted solid-state friction stir repair of Al–Mg–Si alloy plate at different rotational speeds, Int. J. Miner. Metall. Mater., 31(2024), No. 4, p. 725. doi: 10.1007/s12613-023-2772-9
      [16]
      H.Z. Chen, X.C. Meng, J.L. Chen, et al., Wire-based friction stir additive manufacturing, Addit. Manuf., 70(2023), art. No. 103557.
      [17]
      B. Chaudhary, N.K. Jain, J. Murugesan, and V. Patel, Friction stir powder additive manufacturing of Al6061 alloy: Enhancing microstructure and mechanical properties by reducing thermal gradient, J. Mater. Res. Technol., 26(2023), p. 1168. doi: 10.1016/j.jmrt.2023.07.270
      [18]
      H. Aghajani Derazkola, F. Khodabakhshi, and A.P. Gerlich, Friction-forging tubular additive manufacturing (FFTAM): A new route of solid-state layer-upon-layer metal deposition, J. Mater. Res. Technol., 9(2020), No. 6, p. 15273. doi: 10.1016/j.jmrt.2020.10.105
      [19]
      R.S. Xie, Y.C. Shi, H.B. Liu, and S.J. Chen, A novel friction and rolling based solid-state additive manufacturing method: Microstructure and mechanical properties evaluation, Mater. Today Commun., 29(2021), art. No. 103005. doi: 10.1016/j.mtcomm.2021.103005
      [20]
      N. Tsuji, Y. Saito, H. Utsunomiya, and S. Tanigawa, Ultra-fine grained bulk steel produced by accumulative roll-bonding (ARB) process, Scripta Mater., 40(1999), No. 7, p. 795. doi: 10.1016/S1359-6462(99)00015-9
      [21]
      R.S. Xie, T.S. Liang, Y.C. Shi, and H.B. Liu, Revealing the bonding mechanisms between deposit and substrate of the friction rolling additive manufactured hybrid aluminum alloys, Addit. Manuf., 56(2022), art. No. 102942.
      [22]
      R.S. Xie, Y.C. Shi, R. Hou, H.B. Liu, and S.J. Chen, Efficient depositing aluminum alloy using thick strips through severe deformation-based friction rolling additive manufacturing: Processing, microstructure, and mechanical properties, J. Mater. Res. Technol., 24(2023), p. 3788. doi: 10.1016/j.jmrt.2023.04.075
      [23]
      R.S. Xie, X.G. Chen, Y.C. Shi, C.Y. Yang, S.J. Chen, and H.B. Liu, Printing high-strength high-elongation aluminum alloy using commercial ER2319 welding wires through deformation-based additive manufacturing, Mater. Sci. Eng. A, 868(2023), art. No. 144773. doi: 10.1016/j.msea.2023.144773
      [24]
      H.B. Liu, Y.Y. Sun, R.S. Xie, Y.C. Shi, Q.Y. Shi, and S.J. Chen, Continuous repair of groove damages using solid-state friction rolling additive manufacturing method, Sci. Technol. Weld. Joining, 28(2023), No. 2, p. 89. doi: 10.1080/13621718.2022.2117533
      [25]
      B.J. Phillips, C.J.T. Mason, S.C. Beck, et al., Effect of parallel deposition path and interface material flow on resulting microstructure and tensile behavior of Al–Mg–Si alloy fabricated by additive friction stir deposition, J. Mater. Process. Technol., 295(2021), art. No. 117169. doi: 10.1016/j.jmatprotec.2021.117169
      [26]
      Z. Shen, M. Zhang, D. Li, et al., Microstructure evolution and mechanical properties of single-layer multipass overlapped Al–Mg–Mn–Sc–Zr alloy fabricated via additive friction stir deposition, JOM, 75(2023), No. 10, p. 4242. doi: 10.1007/s11837-023-06057-1
      [27]
      A. Das, T. Medhi, S. Kapil, and P. Biswas, Multi-track multi-layer friction stir additive manufacturing of AA6061-T6 alloy, Prog. Addit. Manuf., (2023), p. 1.
      [28]
      K.J. Al-Fadhalah, A.I. Almazrouee, and A.S. Aloraier, Microstructure and mechanical properties of multi-pass friction stir processed aluminum alloy 6063, Mater. Des., 53(2014), p. 550. doi: 10.1016/j.matdes.2013.07.062
      [29]
      M.M. El-Rayes and E.A. El-Danaf, The influence of multi-pass friction stir processing on the microstructural and mechanical properties of aluminum alloy 6082, J. Mater. Process. Technol., 212(2012), No. 5, p. 1157. doi: 10.1016/j.jmatprotec.2011.12.017
      [30]
      L.E. Murr, G. Liu, and J.C. McClure, Dynamic recrystallization in friction-stir welding of aluminium alloy 1100, J. Mater. Sci. Lett., 16(1997), No. 22, p. 1801. doi: 10.1023/A:1018556332357
      [31]
      Z.Y. Ma, S.R. Sharma, and R.S. Mishra, Effect of multiple-pass friction stir processing on microstructure and tensile properties of a cast aluminum–silicon alloy, Scripta Mater., 54(2006), No. 9, p. 1623. doi: 10.1016/j.scriptamat.2006.01.010
      [32]
      M. Cheepu, C.I. Lee, and S.M. Cho, Microstructural characteristics of wire arc additive manufacturing with inconel 625 by super-TIG welding, Trans. Indian Inst. Met., 73(2020), No. 6, p. 1475. doi: 10.1007/s12666-020-01915-x
      [33]
      R.S. Xie, T.S. Liang, S.J. Chen, and H.B. Liu, In-depth understanding of rotating toolhead-induced heat generation and material flow behavior in friction-rolling additive manufacturing, Addit. Manuf., 67(2023), art. No. 103496.

    Catalog


    • /

      返回文章
      返回