留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 12
Dec.  2024

图(13)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  433
  • HTML全文浏览量:  191
  • PDF下载量:  37
  • 被引次数: 0
Yanxin Qiao, Tianyu Wang, Zhilin Chen, Jun Wang, Chengtao Li, and Jian Chen, Corrosion techniques and strategies for used fuel containers with copper corrosion barriers under deep geological disposal conditions: A review, Int. J. Miner. Metall. Mater., 31(2024), No. 12, pp. 2582-2606. https://doi.org/10.1007/s12613-024-2949-x
Cite this article as:
Yanxin Qiao, Tianyu Wang, Zhilin Chen, Jun Wang, Chengtao Li, and Jian Chen, Corrosion techniques and strategies for used fuel containers with copper corrosion barriers under deep geological disposal conditions: A review, Int. J. Miner. Metall. Mater., 31(2024), No. 12, pp. 2582-2606. https://doi.org/10.1007/s12613-024-2949-x
引用本文 PDF XML SpringerLink
综述

深地质处置条件下乏燃料处置容器用纯铜的腐蚀技术和策略:综述


  • 通讯作者:

    乔岩欣    E-mail: yxqiao@just.edu.cn

    陈健    E-mail: jchen496@uwo.ca

文章亮点

  • (1) 系统介绍了深层地质处置条件下核废料处置容器用纯铜的腐蚀问题;
  • (2) 对目前核废料处置容易用材料的腐蚀检测技术与方法进行了归纳和总结;
  • (3) 对目前国际上核废料处置领域的研究成果进行了调研,并对该领域的发展前景进行了展望。
  • 核能利用产生的高放射性核废料的安全处置是一个十分常见且具有一定挑战性的问题。目前永久处置高放废物的可行方法包括将其装入耐腐蚀容器,然后将其深埋在地质储存库中。在此过程中,研究的重点在于保证容器的耐久性和完整性。本文介绍了在深部地质处置环境下使用铜(Cu)作为腐蚀屏障来控制核废料容器腐蚀的各种技术和策略。总体来说,这些防腐蚀技术和方法已经被应用在实际生产中,并成功地解决了一些铜处置容器在深地质储存库永久处置过程中遇到的腐蚀问题。例如铜的腐蚀机制表现为表面粗糙化;铜涂层缺陷处的腐蚀损伤累计可能导致涂层分层失效;硫化物膜的形态、结构和性质因地下水化学而异等。这篇综述的主要目的是对核废料容器(UFC)在受到深层地质储存库条件影响时所遇到的腐蚀环境变化进行广泛的研究并侧重于解决潜在的腐蚀问题和预测UFC的服役寿命。
  • Review

    Corrosion techniques and strategies for used fuel containers with copper corrosion barriers under deep geological disposal conditions: A review

    + Author Affiliations
    • Safe emplacement of high-level nuclear waste (HLNW) arising from the utilization of nuclear power is a frequently encountered and considerably challenging issue. The widely accepted and feasible approach for the permanent disposal of HLNW involves housing it in a corrosion-resistant container and subsequently burying it deep in a geologic repository. The focus lies on ensuring the durability and integrity of the container in this process. This review introduces various techniques and strategies employed in controlling the corrosion of used fuel containers (UFCs) using copper (Cu) as corrosion barrier in the context of deep geological disposal. Overall, these corrosion prevention techniques and methods have been effectively implemented and employed to successfully mitigate the corrosion challenges encountered during the permanent disposal of Cu containers (e.g., corrosion mechanisms and corrosion parameters) in deep geologic repositories. The primary objective of this review is to provide an extensive examination of the alteration in the corrosion environment encountered by the UFCs when subjected to deep geologic repository conditions and focusing on addressing the potential corrosion scenarios.
    • loading
    • [1]
      J. Buongiorno, M. Corradini, J. Parsons, and D. Petti, Nuclear energy in a carbon-constrained world: Big challenges and big opportunities, IEEE Power Energy Mag., 17(2019), No. 2, p. 69. doi: 10.1109/MPE.2018.2885250
      [2]
      M.D. Magwood, The role of nuclear energy in mitigating climate change, (2021–12–31) [2024–02–20]. https://www.oecd-nea.org/jcms/pl_62806/the-role-of-nuclear-energy-in-mitigating-climate-change.
      [3]
      D.S. Hall, M. Behazin, W.J. Binns, and P.G. Keech, An evaluation of corrosion processes affecting copper-coated nuclear waste containers in a deep geological repository, Prog. Mater. Sci., 118(2021), art. No. 100766. doi: 10.1016/j.pmatsci.2020.100766
      [4]
      G.S. Frankel, J.D. Vienna, J. Lian, et al., Recent advances in corrosion science applicable to disposal of high-level nuclear waste, Chem. Rev., 121(2021), No. 20, p. 12327. doi: 10.1021/acs.chemrev.0c00990
      [5]
      Y.H. Lee, J.S. Yoo, Y.W. Kim, and J.G. Kim, Corrosion behavior of alloy 22 according to hydrogen sulfide, chloride, and pH in an anaerobic environment, Met. Mater. Int., 30(2024), No. 7, p. 1878. doi: 10.1007/s12540-023-01624-2
      [6]
      Y.X. Pei, Q.T. Jiang, X.J. Liu, N.Z. Liu, S.P. Kuang, and B.R. Hou, Corrosion behaviour of Ti alloy TA8-1, Cu alloy B19 and Cu as candidate materials for nuclear waste containers under early deep geological conditions, Corros. Eng. Sci. Technol., 57(2022), No. 4, p. 331. doi: 10.1080/1478422X.2022.2060789
      [7]
      F. Zhang, C. Örnek, M. Liu, et al., Corrosion-induced microstructure degradation of copper in sulfide-containing simulated anoxic groundwater studied by synchrotron high-energy X-ray diffraction and ab-initio density functional theory calculation, Corros. Sci., 184(2021), art. No. 109390. doi: 10.1016/j.corsci.2021.109390
      [8]
      E.S. Alaei, M.N. Guo, J. Chen, et al., The transition from used fuel container corrosion under oxic conditions to corrosion in an anoxic environment, Mater. Corros., 74(2023), No. 11-12, p. 1690. doi: 10.1002/maco.202313757
      [9]
      F. King, M. Kolàř, S. Briggs, M. Behazin, P. Keech, and N. Diomidis, Review of the modelling of corrosion processes and lifetime prediction for HLW/SF containers: Part 1: Process models, Corros. Mater. Degrad., 5(2024), No. 2, p. 124. doi: 10.3390/cmd5020007
      [10]
      B.W.A. Sherar, P.G. Keech, Z. Qin, F. King, and D.W. Shoesmith, Nominally anaerobic corrosion of carbon steel in near-neutral pH saline environments, Corrosion, 66(2010), No. 4, p. 045001. doi: 10.5006/1.3381566
      [11]
      B.W.A. Sherar, I.M. Power, P.G. Keech, S. Mitlin, G. Southam, and D.W. Shoesmith, Characterizing the effect of carbon steel exposure in sulfide containing solutions to microbially induced corrosion, Corros. Sci., 53(2011), No. 3, p. 955. doi: 10.1016/j.corsci.2010.11.027
      [12]
      B.W.A. Sherar, P.G. Keech, and D.W. Shoesmith, Carbon steel corrosion under anaerobic–aerobic cycling conditions in near-neutral pH saline solutions–Part 1: Long term corrosion behaviour, Corros. Sci., 53(2011), No. 11, p. 3636. doi: 10.1016/j.corsci.2011.07.015
      [13]
      B.W.A. Sherar, P.G. Keech, J.J. Noël, R.G. Worthingham, and D.W. Shoesmith, Effect of sulfide on carbon steel corrosion in anaerobic near-neutral pH saline solutions, Corrosion, 69(2013), No. 1, p. 67. doi: 10.5006/0687
      [14]
      M. Goldman, C. Tully, J.J. Noël, and D.W. Shoesmith, The influence of sulphide, bicarbonate and carbonate on the electrochemistry of carbon steel in slightly alkaline solutions, Corros. Sci., 169(2020), art. No. 108607. doi: 10.1016/j.corsci.2020.108607
      [15]
      N.A. Senior, T. Martino, J. Binns, and P. Keech, The anoxic corrosion behaviour of copper in the presence of chloride and sulphide, Mater. Corros., 72(2021), No. 1-2, p. 282. doi: 10.1002/maco.202011783
      [16]
      N. Marcos, Native copper as a natural analogue for copper canisters, [in] Materials Research Society Symposium–Proceedings, Vantaa, 1989.
      [17]
      T. Standish, J. Chen, R. Jacklin, et al., Corrosion of copper-coated steel high level nuclear waste containers under permanent disposal conditions, Electrochim. Acta, 211(2016), p. 331. doi: 10.1016/j.electacta.2016.05.135
      [18]
      F. King, C. Lilja, S. Kärnbränslehantering, and K. Pedersen, An update of the state-of-the-art report on the corrosion of copper under expected conditions in a deep geologic repository, Swedish Nuclear Fuel and Waste Management Company, 2012.
      [19]
      D. Arcos, F. Grandia, and C. Domenech, Geochemical evolution of the near field of a KBS-3 repository, Swedish Nuclear Fuel and Waste Management Company, 2006.
      [20]
      A. Hedin, Long-term safety for KBS-3 repositories at Forsmark and Laxemar–A first evaluation: Main Report of the SR-Can project, SKB Technical Report, 2006.
      [21]
      Long-term safety for the final repository for spent nuclear fuel at Forsmark: Main report of the SR-site project, Swedish Nuclear Fuel and Waste Management Company, 2006.
      [22]
      P.G. Keech, P. Vo, S. Ramamurthy, J. Chen, R. Jacklin, and D.W. Shoesmith, Design and development of copper coatings for long term storage of used nuclear fuel, Corros. Eng. Sci. Technol., 49(2014), No. 6, p. 425. doi: 10.1179/1743278214Y.0000000206
      [23]
      B.X. Nie, Y.P. Xue, and B.L. Luan, Effect of overlap rate on the microstructure and corrosion behavior of pure copper laser cladding, J. Mater. Sci., 59(2024), No. 15, p. 6564. doi: 10.1007/s10853-024-09544-1
      [24]
      Y.T. Zhou, F.X. Mao, J.K. Yu, and E. Assellin, Temperature effects on the passivity breakdown of copper in chloride‐containing borate buffer solution, Mater. Corros., 75(2024), No. 4, p. 505. doi: 10.1002/maco.202314054
      [25]
      D. Landolt, A. Davenport, J. Payer, and D. Shoesmith, ChemInform abstract: A review of materials and corrosion issues regarding canisters for disposal of spent fuel and high-level waste in opalinus clay, ChemInform, 42(2011), No. 47.
      [26]
      F. King, D.S. Hall, and P.G. Keech, Nature of the near-field environment in a deep geological repository and the implications for the corrosion behaviour of the container, Corros. Eng. Sci. Technol., 52(2017), No. S1, p. 25.
      [27]
      P. Wersin, K. Spahiu, and J. Bruno, Time evolution of dissolved oxygen and redox conditions in a HLW repository, Swedish Nuclear Fuel and Waste Management Company, 1994.
      [28]
      M. Kolář and F. King, Modelling the consumption of oxygen by container corrosion and reaction with Fe(II), MRS Online Proc. Libr., 412(1995), No. 1, p. 547.
      [29]
      P. Wersin, L.H. Johanson, B. Schwyn, U. Berner, and E. Curti, Redox conditions in the near field of a repository for SF/HLW and ILW in Opalinus clay, Paul Scherrer Institute PSI, 2003.
      [30]
      F. King and M. Kolar, Simulation of the consumption of oxygen in the long-term in-situ experiments and in the third case study repository using the copper corrosion model CCM-UC.1.1, Ontario Power Generation, 2006.
      [31]
      S. Lydmark, Aespoe hard rock laboratory prototype repository analyses of microorganisms, gases, and water chemistry in buffer and backfill, Swedish Nuclear Fuel and Waste Management Company, 2010.
      [32]
      N. Giroud, FTBEX-Assessment of redox conditions in Stage 2 before dismantling, Nagra Working Report, 2014, NAB-14-55.
      [33]
      A. Vinsot, F. Leveau, A. Bouchet, and A. Arnould, Oxidation front and oxygen transfer in the fractured zone surrounding the Meuse/Haute–Marne URL drifts in the Callovian-Oxfordian argillaceous rock, Geol. Soc. Lond. Spec. Publ., 400(2014), No. 1, p. 207. doi: 10.1144/SP400.37
      [34]
      M. Fabian, O. Czompoly, I. Tolnai, and L. De Windt, Interactions between C-steel and blended cement in concrete under radwaste repository conditions at 80°C, Sci. Rep., 13(2023), No. 1, art. No. 15372. doi: 10.1038/s41598-023-42645-6
      [35]
      R. Senger, Scoping calculations in support of the design of the full-scale emplacement experiment at the Mont Terri URL: Evaluation of the effects and gas transport phenomena, Nagra Working Report, 2015.
      [36]
      A. Vinsot, M. Lundy, and Y. Linard, O2 consumption and CO2 production at callovian-Oxfordian rock surfaces, Procedia Earth Planet. Sci., 17(2017), p. 562. doi: 10.1016/j.proeps.2016.12.142
      [37]
      H.R. Müller, B. Garitte, T. Vogt, et al., Implementation of the full-scale emplacement (FE) experiment at the Mont Terri rock laboratory, Swiss J. Geosci., 110(2017), No. 1, p. 287. doi: 10.1007/s00015-016-0251-2
      [38]
      N. Giroud, Y. Tomonaga, P. Wersin, et al., On the fate of oxygen in a spent fuel emplacement drift in Opalinus clay, Appl. Geochem., 97(2018), p. 270. doi: 10.1016/j.apgeochem.2018.08.011
      [39]
      Y. Tomonaga, N. Giroud, M.S. Brennwald, et al., On-line monitoring of the gas composition in the full-scale emplacement experiment at Mont Terri (Switzerland), Appl. Geochem., 100(2019), p. 234. doi: 10.1016/j.apgeochem.2018.11.015
      [40]
      J. McMurry, B.M. Ikeda, S. Stroes Gascoyne, and D.A. Dixon, Evolution of a Canadian deep geologic repository, Ontario Power Generation Report, 2004.
      [41]
      K. Pedersen, Microbial processes in radioactive waste disposal, Swedish Nuclear Fuel and Waste Management Company, 2000.
      [42]
      F. King, A review of the properties of pyrite and the implications for corrosion of the copper canister, Swedish Nuclear Fuel and Waste Management Company, 2013.
      [43]
      G.M. Kwong, Status of corrosion studies for copper used fuel containers under low salinity conditions, Nuclear Waste Management Organization Report, 2011.
      [44]
      J. Turnbull, R. Szukalo, M. Behazin, et al., The effects of cathodic reagent concentration and small solution volumes on the corrosion of copper in dilute nitric acid solutions, Corrosion, 74(2018), No. 3, p. 326. doi: 10.5006/2655
      [45]
      R.P. Morco, J.M. Joseph, D.S. Hall, C. Medri, D.W. Shoesmith, and J.C. Wren, Modelling of radiolytic production of HNO3 relevant to corrosion of a used fuel container in deep geologic repository environments, Corros. Eng. Sci. Technol., 52(2017), No. sup1, p. 141. doi: 10.1080/1478422X.2017.1340227
      [46]
      J.P. Turnbull, The Influence of Radiolytically Produced Nitric Acid on the Corrosion Resistance of Copper-coated Used Nuclear Fuel Containers [Dissertation], The University of Western Ontario, Ontario, 2020.
      [47]
      J. Turnbull, R. Szukalo, D. Zagidulin, M. Biesinger, and D. Shoesmith, The kinetics of copper corrosion in nitric acid, Mater. Corros., 72(2021), No. 1-2, p. 348. doi: 10.1002/maco.202011707
      [48]
      J. Turnbull, R. Szukalo, D. Zagidulin, and D. Shoesmith, Nitrite effects on copper corrosion in nitric acid solutions, Corros. Sci., 179(2021), art. No. 109147. doi: 10.1016/j.corsci.2020.109147
      [49]
      A. Dobkowska, M.D.H. Castillo, J.P. Turnbull, et al., A comparison of the corrosion behaviour of copper materials in dilute nitric acid, Corros. Sci., 192(2021), art. No. 109778. doi: 10.1016/j.corsci.2021.109778
      [50]
      J. Turnbull, M. Behazin, J. Smith, and P.G. Keech, The impact of 40 years of radiation on the integrity of copper, J. Nucl. Mater., 559(2022), art. No. 153411. doi: 10.1016/j.jnucmat.2021.153411
      [51]
      R.J. Daljeet, Analysis and Differentiation of Uniform and Localized Corrosion of Cu [Dissertation], The University of Western Ontario, Ontario, 2021.
      [52]
      C.C. Hung, Y.C. Wu, and F. King, Corrosion assessment of canister for the disposal of spent nuclear fuel in crystalline rock in Taiwan, Corros. Eng. Sci. Technol., 52(2017), No. sup1, p. 194. doi: 10.1080/1478422X.2017.1285855
      [53]
      F. King, C. Lilja, and M. Vähänen, Progress in the understanding of the long-term corrosion behaviour of copper canisters, J. Nucl. Mater., 438(2013), No. 1-3, p. 228
      [54]
      Z. Qin, R. Daljeet, M. Ai, et al., The active/passive conditions for copper corrosion under nuclear waste repository environment, Corros. Eng. Sci. Technol., 52(2017), No. S1, p. 45.
      [55]
      M. Hampel, M. Schenderlein, C. Schary, M. Dimper, and O. Ozcan, Efficient detection of localized corrosion processes on stainless steel by means of scanning electrochemical microscopy (SECM) using a multi-electrode approach, Electrochem. Commun., 101(2019), p. 52. doi: 10.1016/j.elecom.2019.02.019
      [56]
      F. King, Container materials for the storage and disposal of nuclear waste, Corrosion, 69(2013), No. 10, p. 986.
      [57]
      T.E. Standish, D. Zagidulin, S. Ramamurthy, P.G. Keech, D.W. Shoesmith, and J.J. Noël, Synchrotron-based micro-CT investigation of oxic corrosion of copper-coated carbon steel for potential use in a deep geological repository for used nuclear fuel, Geosciences, 8(2018), No. 10, art. No. 360. doi: 10.3390/geosciences8100360
      [58]
      D.S. Hall, T.E. Standish, M. Behazin, and P.G. Keech, Corrosion of copper-coated used nuclear fuel containers due to oxygen trapped in a Canadian deep geological repository, Corros. Eng. Sci. Technol., 53(2018), No. 4, p. 309. doi: 10.1080/1478422X.2018.1463009
      [59]
      T.E. Standish, L.J. Braithwaite, D.W. Shoesmith, and J.J. Noël, Influence of area ratio and chloride concentration on the galvanic coupling of copper and carbon steel, J. Electrochem. Soc., 166(2019), No. 11, p. C3448. doi: 10.1149/2.0521911jes
      [60]
      T.E. Standish, Galvanic Corrosion of Copper-coated Carbon Steel for Used Nuclear Fuel Containers [Dissertation], The University of Western Ontario, Ontario, 2019.
      [61]
      P. Vo, D. Poirier, J.G. Legoux, E. Irissou, and P.G. Keech, Application of copper coatings onto used-fuel canisters for the Canadian nuclear industry, ASM International, (2016), p. 253.
      [62]
      T.E. Standish, D. Zagidulin, S. Ramamurthy, et al., Galvanic corrosion of copper-coated carbon steel for used nuclear fuel containers, Corros. Eng. Sci.Technol., 52(2017), No. S1, p. 65.
      [63]
      L.D. Wu, D. Guo, M. Li, et al., Inverse crevice corrosion of carbon steel: Effect of solution volume to surface area, J. Electrochem. Soc., 164(2017), No. 9, p. C539. doi: 10.1149/2.0511709jes
      [64]
      D. Guo, M. Li, J.M. Joseph, and J.C. Wren, A new method for corrosion current measurement: The dual-electrochemical cell (DEC), J. Electrochem. Soc., 167(2020), No. 11, art. No. 111505. doi: 10.1149/1945-7111/aba6c8
      [65]
      D.D. Wagman, W.H. Evans, V.B. Parker, et al., The NBS tables of chemical thermodynamic properties, J. Phys. Chem. Ref. Data, 11(1989), No. 4, p. 1807.
      [66]
      E. Protopopoff and P. Marcus, Potential–pH diagrams for sulfur and hydroxyl adsorbed on copper surfaces in water containing sulfides, sulfites or thiosulfates, Corros. Sci., 45(2003), No. 6, p. 1191. doi: 10.1016/S0010-938X(02)00210-X
      [67]
      H.M. Hollmark, P.G. Keech, J.R. Vegelius, L. Werme, and L.C. Duda, X-ray absorption spectroscopy of electrochemically oxidized Cu exposed to Na2S, Corros. Sci., 54(2012), p. 85. doi: 10.1016/j.corsci.2011.09.001
      [68]
      J. Chen, X.R. Pan, T. Martino, et al., The effects of chloride and sulphate on the growth of sulphide films on copper in anoxic sulphide solutions, Mater. Corros., 74(2023), No. 11-12, p. 1665. doi: 10.1002/maco.202313766
      [69]
      J.M. Smith, Z. Qin, J.C. Wren, and D.W. Shoesmith, The influence of preoxidation on the corrosion of copper nuclear waste canisters in aqueous anoxic sulphide solutions, MRS Online Proc. Libr., 985(2007), No. 1, art. No. 811.
      [70]
      J. Chen, Z. Qin, and D.W. Shoesmith, Kinetics of corrosion film growth on copper in neutral chloride solutions containing small concentrations of sulfide, J. Electrochem. Soc., 157(2010), No. 10, art. No. C338. doi: 10.1149/1.3478570
      [71]
      J. Smith, Z. Qin, D.W. Shoesmitha, F. King, and L. Werme, Corrosion of copper nuclear waste containers in aqueous sulphide solutions, MRS Proc., 824(2004), art. No. CC1.12. doi: 10.1557/PROC-824-CC1.12
      [72]
      J. Smith, Z. Qin, F. King, L. Werme, and D.W. Shoesmith, The electrochemistry of copper in aqueous sulphide solutions, MRS Online Proc. Libr., 932(2006), No. 1, art. No. 251.
      [73]
      J. Smith, Z. Qin, F. King, L. Werme, and D.W. Shoesmith, Sulfide film formation on copper under electrochemical and natural corrosion conditions, Corrosion, 63(2007), No. 2, p. 135. doi: 10.5006/1.3278338
      [74]
      J.M. Smith, J.C. Wren, M. Odziemkowski, and D.W. Shoesmith, The electrochemical response of preoxidized copper in aqueous sulfide solutions, J. Electrochem. Soc., 154(2007), No. 8, art. No. C431. doi: 10.1149/1.2745647
      [75]
      J.M. Smith, Z. Qin, and D.W. Shoesmith, Electrochemical impedance studies of the growth of sulfide films on copper, [in] Proceedings of the 17th International Corrosion Congress, Las Vegas, 2008, p. 6.
      [76]
      J.M. Smith, The Corrosion and Electrochemistry of Copper in Aqueous , Anoxic Sulphide Solutions [Dissertation], The University of Western Ontario, London, 2007.
      [77]
      J. Chen, Z. Qin, and D.W. Shoesmith, Long-term corrosion of copper in a dilute anaerobic sulfide solution, Electrochim. Acta, 56(2011), No. 23, p. 7854. doi: 10.1016/j.electacta.2011.04.086
      [78]
      J. Chen, Z. Qin, T. Martino, and D.W. Shoesmith, Effect of chloride on Cu corrosion in anaerobic sulphide solutions, Corros. Eng. Sci. Technol., 52(2017), No. S1, p. 40.
      [79]
      J. Chen, Z. Qin, and D.W. Shoesmith, Rate controlling reactions for copper corrosion in anaerobic aqueous sulphide solutions, Corros. Eng. Sci. Technol., 46(2011), No. 2, p. 138. doi: 10.1179/1743278210Y.0000000007
      [80]
      T. Martino, J. Chen, Z. Qin, and D.W. Shoesmith, The kinetics of film growth and their influence on the susceptibility to pitting of copper in aqueous sulphide solutions, Corros. Eng. Sci. Technol., 52(2017), No. l, p. 61.
      [81]
      J. Chen, Z. Qin, L. Wu, J.J. Noël, and D.W. Shoesmith, The influence of sulphide transport on the growth and properties of copper sulphide films on copper, Corros. Sci., 87(2014), p. 233. doi: 10.1016/j.corsci.2014.06.027
      [82]
      J. Chen, Z. Qin, T. Martino, and D.W. Shoesmith, Non-uniform film growth and micro/macro-galvanic corrosion of copper in aqueous sulphide solutions containing chloride, Corros. Sci., 114(2017), p. 72. doi: 10.1016/j.corsci.2016.10.024
      [83]
      E. Huttunen-Saarivirta, P. Rajala, and L. Carpén, Corrosion behaviour of copper under biotic and abiotic conditions in anoxic ground water: Electrochemical study, Electrochim. Acta, 203(2016), p. 350. doi: 10.1016/j.electacta.2016.01.098
      [84]
      E. Huttunen-Saarivirta, P. Rajala, M. Bomberg, and L. Carpén, Corrosion of copper in oxygen-deficient groundwater with and without deep bedrock micro-organisms: Characterisation of microbial communities and surface processes, Appl. Surf. Sci., 396(2017), p. 1044. doi: 10.1016/j.apsusc.2016.11.086
      [85]
      E. Huttunen-Saarivirta, E. Ghanbari, F. Mao, P. Rajala, L. Carpén, and D.D. MacDonald, Kinetic properties of the passive film on copper in the presence of sulfate-reducing bacteria, J. Electrochem. Soc., 165(2018), No. 9, p. C450. doi: 10.1149/2.007189jes
      [86]
      V. Ratia-Hanby, E. Isotahdon, X. Yue, et al., Characterization of surface films that develop on pre-oxidized copper in anoxic simulated groundwater with sulphide, Colloids Surf. A, 676(2023), art. No. 132214. doi: 10.1016/j.colsurfa.2023.132214
      [87]
      X.Q. Yue, P. Malmberg, E. Isotahdon, et al., Penetration of corrosive species into copper exposed to simulated O2- free groundwater by time-of-flight secondary ion mass spectrometry (ToF-SIMS), Corros. Sci., 210(2023), art. No. 110833. doi: 10.1016/j.corsci.2022.110833
      [88]
      E. Isotahdon, V. Ratia-Hanby, E. Huttunen-Saarivirta, X. Yue, and J. Pan, Corrosion of copper in sulphide containing environment: The role and properties of sulphide films, Annual report 2021, 2022.
      [89]
      S. Ramamurthy, J. Chen, D. Zagidulin, et al., The influences of traces of oxygen and sulfide on the corrosion of copper in concentrated chloride solutions, Corros. Sci., 233(2024), art. No. 112047. doi: 10.1016/j.corsci.2024.112047
      [90]
      D.C. Kong, C.F. Dong, A.N. Xu, C. Man, C. He, and X.G. Li, Effect of sulfide concentration on copper corrosion in anoxic chloride-containing solutions, J. Mater. Eng. Perform., 26(2017), No. 4, p. 1741. doi: 10.1007/s11665-017-2578-x
      [91]
      M.M. Cortese-Krott, Red blood cells as a “central hub” for sulfide bioactivity: Scavenging, metabolism, transport, and cross-talk with nitric oxide, Antioxid. Redox Signal., 33(2020), No. 18, p. 1332. doi: 10.1089/ars.2020.8171
      [92]
      A. Kamyshny, A. Goifman, J. Gun, D. Rizkov, and O. Lev, Equilibrium distribution of polysulfide ions in aqueous solutions at 25°C: A new approach for the study of polysulfides' equilibria, Environ. Sci. Technol., 38(2004), No. 24, p. 6633. doi: 10.1021/es049514e
      [93]
      B. Meyer, K. Ward, K. Koshlap, and L. Peter, Second dissociation constant of hydrogen sulfide, Inorg. Chem., 22(1983), No. 16, p. 2345. doi: 10.1021/ic00158a027
      [94]
      S. Licht and J. Manassen, The second dissociation constant of H2S, J. Electrochem. Soc., 134(1987), No. 4, p. 918. doi: 10.1149/1.2100595
      [95]
      D.R. Lide, CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, 2004.
      [96]
      J. Chen, Z. Qin, and D.W. Shoesmith, Key parameters determining structure and properties of sulphide films formed on copper corroding in anoxic sulphide solutions, Corros. Eng. Sci. Technol., 49(2014), No. 6, p. 415. doi: 10.1179/1743278214Y.0000000188
      [97]
      F. King, J. Chen, Z. Qin, D. Shoesmith, and C. Lilja, Sulphide-transport control of the corrosion of copper canisters, Corros. Eng. Sci. Technol., 52(2017), No. S1, p. 210.
      [98]
      J.R. Scully and T.W. Hicks, Initial review phase for SKB’s safety assessment SR-Site: corrosion of copper, Swedish Radiation Safety Authority, 2012.
      [99]
      J.R. Scully and M. Edwards, Review of the NWMO copper corrosion allowance, Nuclear Waste Management Organization, 2013.
      [100]
      J. Chen, Z. Qin, T. Martino, M. Guo, and D.W. Shoesmith, Copper transport and sulphide sequestration during copper corrosion in anaerobic aqueous sulphide solutions, Corros. Sci., 131(2018), p. 245. doi: 10.1016/j.corsci.2017.11.025
      [101]
      Z.G. Xiao, J. Brose, S. Schimo, S.M. Ackland, S. La Fontaine, and A.G. Wedd, Unification of the copper(i) binding affinities of the Metallo-chaperones Atx1, Atox1, and related proteins detection probes and affinity standards, J. Biol. Chem., 286(2011), No. 13, p. 11047. doi: 10.1074/jbc.M110.213074
      [102]
      J. Crousier, L. Pardessus, and J.P. Crousier, Voltammetry study of copper in chloride solution, Electrochim. Acta, 33(1988), No. 8, p. 1039. doi: 10.1016/0013-4686(88)80192-0
      [103]
      B.W. Mountain and T.M. Seward, The hydrosulphide/sulphide complexes of copper(I): Experimental determination of stoichiometry and stability at 22°C and reassessment of high temperature data, Geochim. Cosmochim. Acta, 63(1999), No. 1, p. 11. doi: 10.1016/S0016-7037(98)00288-9
      [104]
      D.A. Crerar and H.L. Barnes, Ore solution chemistry; V, solubilities of chalcopyrite and chalcocite assemblages in hydrothermal solution at 200 degrees to 350 degrees C, Econ. Geol., 71(1976), No. 4, p. 772. doi: 10.2113/gsecongeo.71.4.772
      [105]
      T.F. Rozan, M.E. Lassman, D.P. Ridge, and G.W. Luther III, Evidence for multinuclear Fe, Cu and Zn molecular sulfide clusters in oxic river waters, Nature, 406(2000), p. 879. doi: 10.1038/35022561
      [106]
      T. Martino, R. Partovi-Nia, J. Chen, Z.Q. Qin, and D.W. Shoesmith, Mechanisms of film growth on copper in aqueous solutions containing sulphide and chloride under voltammetric conditions, Electrochim. Acta, 127(2014), p. 439. doi: 10.1016/j.electacta.2014.02.050
      [107]
      T. Martino, J. Smith, J. Chen, Z. Qin, J.J. Noël, and D.W. Shoesmith, The properties of electrochemically-grown copper sulfide films, J. Electrochem. Soc., 166(2019), No. 2, p. C9. doi: 10.1149/2.0321902jes
      [108]
      M. Guo, J. Chen, T. Martino, M. Biesinger, J.J. Noël, and D.W. Shoesmith, The susceptibility of copper to pitting corrosion in borate-buffered aqueous solutions containing chloride and sulfide, J. Electrochem. Soc., 166(2019), No. 15, p. C550. doi: 10.1149/2.0611915jes
      [109]
      M. Guo, J. Chen, C. Lilja, et al., The anodic formation of sulfide and oxide films on copper in borate-buffered aqueous chloride solutions containing sulfide, Electrochim. Acta, 362(2020), art. No. 137087. doi: 10.1016/j.electacta.2020.137087
      [110]
      M. Bojinov, T. Ikäläinen, Z.Q. Que, and T. Saario, Effect of sulfide on de-passivation and re-passivation of copper in borate buffer solution, Corros. Sci., 218(2023), art. No. 111201. doi: 10.1016/j.corsci.2023.111201
      [111]
      F.X. Mao, C.F. Dong, S. Sharifi-Asl, P. Lu, and D.D. MacDonald, Passivity breakdown on copper: Influence of chloride ion, Electrochim. Acta, 144(2014), p. 391. doi: 10.1016/j.electacta.2014.07.160
      [112]
      C.F. Dong, F.X. Mao, S.J. Gao, S. Sharifi-Asl, P. Lu, and D.D. MacDonald, Passivity breakdown on copper: Influence of temperature, J. Electrochem. Soc., 163(2016), No. 13, p. C707. doi: 10.1149/2.0401613jes
      [113]
      Y.T. Zhou, A.N. Xu, F.X. Mao, et al., Passivity breakdown on copper: Influence of borate anion, Electrochim. Acta, 320(2019), art. No. 134545. doi: 10.1016/j.electacta.2019.07.056
      [114]
      X.J. Liu, N.Z. Liu, J.J. Noël, D.W. Shoesmith, J. Chen, and B.R. Hou, The influence of hydrogen permeation on the protection performance of the Cu coating of nuclear waste containers, Corrosion, 221(2023), art. No. 111314. doi: 10.1016/j.corsci.2023.111314
      [115]
      Å. Martinsson and R. Sandström, Hydrogen depth profile in phosphorus-doped, oxygen-free copper after cathodic charging, J. Mater. Sci., 47(2012), No. 19, p. 6768. doi: 10.1007/s10853-012-6592-y
      [116]
      Y. Yagodzinskyy, E. Malitckii, T. Saukkonen, and H. Hänninen, Hydrogen-enhanced creep and cracking of oxygen-free phosphorus-doped copper, Scripta Mater., 67(2012), No. 12, p. 931. doi: 10.1016/j.scriptamat.2012.08.018
      [117]
      C.M. Lousada, I.L. Soroka, Y. Yagodzinskyy, et al., Gamma radiation induces hydrogen absorption by copper in water, Sci. Rep., 6(2016), art. No. 24234. doi: 10.1038/srep24234
      [118]
      H. Magnusson and K. Frisk, Diffusion, permeation and solubility of hydrogen in copper, J. Phase Equilib. Diffus., 38(2017), No. 1, p. 65. doi: 10.1007/s11669-017-0518-y
      [119]
      S. Nakahara and Y. Okinaka, The hydrogen effect in copper, Mater. Sci. Eng. A, 101(1988), p. 227. doi: 10.1016/0921-5093(88)90069-X
      [120]
      A. Situm, B. Bahadormanesh, L.J. Bannenberg, et al., Hydrogen absorption into copper-coated titanium measured by in situ neutron reflectometry and electrochemical impedance spectroscopy, J. Electrochem. Soc., 170(2023), No. 4, art. No. 041503. doi: 10.1149/1945-7111/acc763
      [121]
      A. Forsström, R. Becker, H. Hänninen, Y. Yagodzinskyy, and M.Heikkilä, Sulphide-induced stress corrosion cracking and hydrogen absorption of copper in deoxygenated water at 90°C, Mater. Corros., 72(2021), No. 1-2, p. 317. doi: 10.1002/maco.202011695
      [122]
      F. King and M. Kolář, Copper Sulfide Model (CSM)-model improvements, sensitivity analyses, and results from the Integrated Sulfide Project inter-model comparison exercise, SKB Technical Report, 2019.
      [123]
      J.J. Noël, Canadian research combining neutron reflectometry and electrochemistry, Physics Canada, 74 (2018), No. 1-2, p. 49.
      [124]
      M. Vezvaie, J.J. Noël, Z. Tun, and D.W. Shoesmith, Hydrogen absorption into titanium under cathodic polarization: An in situ neutron reflectometry and EIS study, J. Electrochem. Soc., 160(2013), No. 9, p. C414. doi: 10.1149/2.020309jes
      [125]
      N. Krstajić, M. Popović, B. Grgur, M. Vojnović, and D. Šepa, On the kinetics of the hydrogen evolution reaction on nickel in alkaline solution Part I. The mechanism, J. Electroanal. Chem., 512(2001), No. 1-2, p. 16. doi: 10.1016/S0022-0728(01)00590-3
      [126]
      O. Azizi, M. Jafarian, F. Gobal, H. Heli, and M.G. Mahjani, The investigation of the kinetics and mechanism of hydrogen evolution reaction on tin, Int. J. Hydrogen Energy, 32(2007), No. 12, p. 1755. doi: 10.1016/j.ijhydene.2006.08.043
      [127]
      A. Alobaid, C.S. Wang, and R.A. Adomaitis, Mechanism and kinetics of HER and OER on NiFe LDH films in an alkaline electrolyte, J. Electrochem. Soc., 165(2018), No. 15, p. J3395. doi: 10.1149/2.0481815jes
      [128]
      L.J. Bannenberg, H. Schreuders, L. van Eijck, et al., Impact of nanostructuring on the phase behavior of insertion materials: The hydrogenation kinetics of a magnesium thin film, J. Phys. Chem. C, 120(2016), No. 19, p. 10185. doi: 10.1021/acs.jpcc.6b02302
      [129]
      W. Wu, L.L. Zhu, P.L. Chai, et al., Atmospheric corrosion behavior of Nb- and Sb-added weathering steels exposed to the South China Sea, Int. J. Miner. Metall. Mater., 29(2022), No. 11, p. 2041. doi: 10.1007/s12613-021-2383-2
      [130]
      Z.J. Wang, Q. Shi, G.F. Zhang, et al., Effect of the pyrite content on chalcopyrite flotation in the presence of different regrinding conditions, Int. J. Miner. Metall. Mater., (2024). https://doi.org/10.1007/s12613-024-2828-5.
      [131]
      X.X. Wang, L.L. Jin, J.K. Wang, et al., Assessing corrosion protection property of coatings loaded with corrosion inhibitors using real-time atmospheric corrosion monitoring (ACM) technique, Int. J. Miner. Metall. Mater., (2024). https://doi.org/10.1007/s12613-024-2860-5.
      [132]
      X.J. Yang, J.H. Jia, Q. Li, et al., Stress-assisted corrosion mechanism of 3Ni steel by using gradient boosting decision tree machining learning method, Int. J. Miner. Metall. Mater., 31(2024), No. 6, p. 1311. doi: 10.1007/s12613-023-2661-2
      [133]
      J. Chen, Z. Qin, and D.W. Shoesmith, The mechanism of sulphide film growth on copper in anaerobic sulphide solutions under natural corrosion conditions, Innov. Corros. Mater. Sci., 8(2019), No. 2, p. 108.
      [134]
      N. Senior, T. Martino, P.G. Keech, W.J. Binns, N. Diomidis, and C. Lilja, The use of hydrogen in monitoring the anoxic corrosion of copper, Mater. Corros., 74(2023), No. 11-12, p. 1645. doi: 10.1002/maco.202313769
      [135]
      N.A. Senior, R.C. Newman, D. Artymowicz, W.J. Binns, P.G. Keech, and D.S. Hall, Communication—A method to measure extremely low corrosion rates of copper metal in anoxic aqueous media, J. Electrochem. Soc., 166(2019), No. 11, p. C3015. doi: 10.1149/2.0031911jes

    Catalog


    • /

      返回文章
      返回