留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 11
Nov.  2024

图(12)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  493
  • HTML全文浏览量:  122
  • PDF下载量:  31
  • 被引次数: 0
Liming Tao, Jianjun Wang, Dejin Liao, Wenkai Jia, Zihan Zhao, Wenfang Che, Zhongxu Qi, Wei Sun, and Zhiyong Gao, Efficient desorption and reuse of collector from the flotation concentrate: A case study of scheelite, Int. J. Miner. Metall. Mater., 31(2024), No. 11, pp. 2435-2444. https://doi.org/10.1007/s12613-024-2951-3
Cite this article as:
Liming Tao, Jianjun Wang, Dejin Liao, Wenkai Jia, Zihan Zhao, Wenfang Che, Zhongxu Qi, Wei Sun, and Zhiyong Gao, Efficient desorption and reuse of collector from the flotation concentrate: A case study of scheelite, Int. J. Miner. Metall. Mater., 31(2024), No. 11, pp. 2435-2444. https://doi.org/10.1007/s12613-024-2951-3
引用本文 PDF XML SpringerLink
研究论文

浮选精矿表面捕收剂高效解吸与回用:以白钨矿为例



  • 通讯作者:

    王建军    E-mail: zhiyong.gao@csu.edu.cn

    高志勇    E-mail: jianjunwang@csu.edu.cn

文章亮点

  • (1) 超声波–强碱组合方法可减弱捕收剂在白钨矿表面的吸附并强化解吸。
  • (2) 超声波–强碱组合方法可解吸白钨精矿表面90.48%的Pb和63.75%的BHA。
  • (3) 超声波–强碱组合方法对解吸的捕收剂Pb离子和BHA活性没有破坏作用。
  • (4) 含有捕收剂的解吸液回用到浮选中,可节约25%的捕收剂用量。
  • 浮选是通过捕收剂对目的矿物的选择性吸附使其疏水上浮进而实现矿物分离富集的方法。浮选精矿表面吸附的捕收剂通常会对后续冶金过程产生不利影响,如降低产品纯度、毒化离子交换树脂、增加废水COD值等。为消除上述影响,通常需在冶金作业前将精矿表面的捕收剂脱除,但造成药剂浪费、冶金成本增加。本文提出在选矿厂将精矿矿浆进行简单处理使捕收剂从精矿表面解吸,并将含有捕收剂的解吸液直接返回用于浮选的新思路,既能减少浮选药剂成本,又能降低后续对于冶金的不利影响。硝酸铅-苯甲羟肟酸(Pb-BHA)配体是白钨矿浮选中常用的捕收剂。本文研究了不同物理方法(搅拌或超声)和化学方法(强酸或强碱)对白钨矿精矿表面Pb-BHA捕收剂解吸行为的影响。单矿物解吸试验表明,在矿浆pH值为13、超声处理15分钟的条件下,白钨精矿表面捕收剂的解吸效果最佳,Pb和BHA解吸率分别为90.48%和63.75%。实际矿浮选试验表明,采用强碱-超声组合方法解吸白钨精矿表面捕收剂并将解吸液用于浮选,可节省选矿厂25%的Pb离子和30%的BHA用量。机理研究表明,强碱环境破坏了Pb离子与BHA之间的化学键,超声波的空化效应有效降低了Pb-BHA捕收剂与白钨矿表面的作用强度,利于捕收剂的解吸脱附,但不会破坏捕收剂的活性。可见,超声–强碱组合方法可实现浮选精矿表面捕收剂的有效解吸,为冶炼厂提供“干净”的白钨精矿,捕收剂回用可有效降低选矿厂的捕收剂使用成本。
  • Research Article

    Efficient desorption and reuse of collector from the flotation concentrate: A case study of scheelite

    + Author Affiliations
    • Flotation is the most common method to obtain concentrate through the selective adsorption of collectors on target minerals to make them hydrophobic and floatable. In the hydrometallurgy of concentrate, collectors adsorbed on concentrate can damage ion-exchange resin and increase the chemical oxygen demand (COD) value of wastewater. In this work, we proposed a new scheme, i.e., desorbing the collectors from concentrate in ore dressing plant and reusing them in flotation flowsheet. Lead nitrate and benzohydroxamic acid (Pb-BHA) complex is a common collector in scheelite flotation. In this study, different physical (stirring or ultrasonic waves) and chemical (strong acid or alkali environment) methods for facilitating the desorption of Pb-BHA collector from scheelite concentrate were explored. Single-mineral desorption tests showed that under the condition of pulp pH 13 and ultrasonic treatment for 15 min, the highest desorption rates of Pb and BHA from the scheelite concentrate were 90.48% and 63.75%, respectively. Run-of-mine ore flotation tests revealed that the reuse of desorbed Pb and BHA reduced the collector dosage by 30% for BHA and 25% for Pb. The strong alkali environment broke the chemical bonds between Pb and BHA. The cavitation effect of ultrasonic waves effectively reduced the interaction intensity between Pb-BHA collector and scheelite surfaces. This method combining ultrasonic waves and strong alkali environment can effectively desorb the collectors from concentrate and provide “clean” scheelite concentrate for metallurgic plants; the reuse of desorbed collector in flotation flowsheet can reduce reagent cost for ore dressing plants.
    • loading
    • Supplementary Information-s12613-024-2951-3.docx
    • [1]
      J.H. Kang, Y.H. Hu, W. Sun, et al., A significant improvement of scheelite flotation efficiency with etidronic acid, J. Cleaner Prod., 180(2018), p. 858. doi: 10.1016/j.jclepro.2018.01.192
      [2]
      S.Y. Shuai, Z.Q. Huang, V.E. Burov, et al., Flotation separation of wolframite from calcite using a new trisiloxane surfactant as collector, Int. J. Min. Sci. Technol., 33(2023), No. 3, p. 379. doi: 10.1016/j.ijmst.2022.12.003
      [3]
      Z. Wei, W. Sun, P.S. Wang, D. Liu, and H.S. Han, A novel metal–organic complex surfactant for high-efficiency mineral flotation, Chem. Eng. J., 426(2021), art. No. 130853. doi: 10.1016/j.cej.2021.130853
      [4]
      X. Wang, Z.Q. Zhang, Y.F. Cui, et al., Alkyl dimethyl betaine activates the low-temperature collection capacity of sodium oleate for scheelite, Int. J. Miner. Metall. Mater., 31(2024), No. 1, p. 71. doi: 10.1007/s12613-023-2718-2
      [5]
      T. Zhang, Technology practice in low grade phosphate rock to produce high concentration of phosphate fertilizer, Guangzhou Chem. Ind., 42(2014), No. 24, p. 153.
      [6]
      R. Sun, H.Y. Xie, J.Z. Wu, Y.H. Liu, L.K. Gao, and R.X. Liu, Study on oxidative removal for sodium oleate on the surface of ilmenite, Nonferrous Met. Eng., 10(2020), No. 10, p. 73.
      [7]
      R.P. Lyu, M.F. Zhi, Z.Y. Jiang, Z.C. Yuan, L.L. Zhu, and W. Yu, Study on the thermal activation of persulfate to remove organic agents from monazite flotation concentrates, Nonferrous Met. Eng., 13(2023), No. 5, p. 68.
      [8]
      J.Y. He, W. Sun, H.B. Zeng, R.H. Fan, W. Hu, and Z.Y. Gao, Unraveling roles of lead ions in selective flotation of scheelite and fluorite from atomic force microscopy and first-principles calculations, Miner. Eng., 179(2022), art. No. 107424. doi: 10.1016/j.mineng.2022.107424
      [9]
      H.S. Han, Y. Xiao, Y.H. Hu, et al., Replacing Petrov’s process with atmospheric flotation using Pb-BHA complexes for separating scheelite from fluorite, Miner. Eng., 145(2020), art. No. 106053. doi: 10.1016/j.mineng.2019.106053
      [10]
      S.Z. Jin and L.M. Ou, Comparison of the effects of sodium oleate and benzohydroxamic acid on fine scheelite and cassiterite hydrophobic flocculation, Minerals, 12(2022), No. 6, art. No. 687. doi: 10.3390/min12060687
      [11]
      X.S. Meng, M. Jiang, S.Y. Lin, et al., Removal of residual benzohydroxamic acid–lead complex from mineral processing wastewater by metal ion combined with gangue minerals, J. Cleaner Prod., 396(2023), art. No. 136578. doi: 10.1016/j.jclepro.2023.136578
      [12]
      H. Wang, S. Wang, S.X. Wang, L.K. Fu, and L.B. Zhang, Efficient metal–organic framework adsorbents for removal of harmful heavy metal Pb(II) from solution: Activation energy and interaction mechanism, J. Environ. Chem. Eng., 11(2023), No. 2, art. No. 109335. doi: 10.1016/j.jece.2023.109335
      [13]
      M.K. Li, J.Y. Wang, H.R. Shen, et al., Removal of benzohydroxamic acid–metal complexes pollution from beneficiation wastewater by metal-biochar/peroxymonosulfate system: Behaviors investigation and mechanism exploration, Chem. Eng. J., 461(2023), art. No. 142008. doi: 10.1016/j.cej.2023.142008
      [14]
      Z.C. Pan, Z.C. Liu, J.J. Xiong, et al., Application and depression mechanism of sodium sulfite on galena-pyrite mixed concentrate flotation separation: Huize Lead–Zinc Mine, China, as an example, Miner. Eng., 185(2022), art. No. 107696. doi: 10.1016/j.mineng.2022.107696
      [15]
      B.Y. Dong, P.X. Wang, Z.D. Li, W.J. Tu, and Y.W. Tan, Degrading hazardous benzohydroxamic acid in the industrial beneficiation wastewater by dielectric barrier discharge reactor, Sep. Purif. Technol., 299(2022), art. No. 121644. doi: 10.1016/j.seppur.2022.121644
      [16]
      L.P. Chang, Y.J. Cao, G.X. Fan, C. Li, and W.J. Peng, A review of the applications of ion floatation: Wastewater treatment, mineral beneficiation and hydrometallurgy, RSC Adv., 9(2019), No. 35, p. 20226. doi: 10.1039/C9RA02905B
      [17]
      W.G. Zhou, K. Liu, L. Wang, B.N. Zhou, J.J. Niu, and L.M. Ou, The role of bulk micro-nanobubbles in reagent desorption and potential implication in flotation separation of highly hydrophobized minerals, Ultrason. Sonochem., 64(2020), art. No. 104996. doi: 10.1016/j.ultsonch.2020.104996
      [18]
      V. Vinayagam, S. Murugan, R. Kumaresan, et al., Sustainable adsorbents for the removal of pharmaceuticals from wastewater: A review, Chemosphere, 300(2022), art. No. 134597. doi: 10.1016/j.chemosphere.2022.134597
      [19]
      H. Tang, J.M. Tao, A. Ruzsinszky, and J.P. Perdew, Van der Waals correction to the physisorption of graphene on metal surfaces, J. Phys. Chem. C, 123(2019), No. 22, p. 13748. doi: 10.1021/acs.jpcc.9b02838
      [20]
      C. Han, D.Z. Wei, S.L. Gao, Q.X. Zai, Y.B. Shen, and W.G. Liu, Adsorption and desorption of butyl xanthate on chalcopyrite, J. Mater. Res. Technol., 9(2020), No. 6, p. 12654. doi: 10.1016/j.jmrt.2020.09.021
      [21]
      H.J. Bao, M.R. Wu, X.S. Meng, S.Y. Lin, J.H. Kang, and W. Sun, Electrochemical oxidation degradation of xanthate and its mechanism: Effects of carbon chain length and electrolyte type, J. Cleaner Prod., 448(2024), art. No. 141626. doi: 10.1016/j.jclepro.2024.141626
      [22]
      H.S. Han, R.L. Wang, W. Sun, Y.H. Hu, and W.J. Sun, The Method of Electrochemical Oxidation for Degrading Flotation Reagents on Mineral Surface, Chinese Patent, Appl. 202011424178.0, 2021.
      [23]
      J.J. Wang, Z.Y. Gao, and W. Sun, Desorption and reuse of Pb-BHA-NaOL collector in scheelite flotation, Minerals, 13(2023), No. 4, art. No. 538. doi: 10.3390/min13040538
      [24]
      T. Yue, H.S. Han, Y.H. Hu, et al., New insights into the role of Pb-BHA complexes in the flotation of tungsten minerals, JOM, 69(2017), No. 11, p. 2345. doi: 10.1007/s11837-017-2531-3
      [25]
      G.Y. Xiang, L.M. Tao, W. Sun, S.H. Xu, and Z.Y. Gao, Mechanisms for the selective separation of spodumene from feldspar by sodium N-oleoylsarcosinate as an efficient collector, Appl. Surf. Sci., 636(2023), art. No. 157821. doi: 10.1016/j.apsusc.2023.157821
      [26]
      E.R.L. Espiritu, S. Naseri, and K.E. Waters, Surface chemistry and flotation behavior of dolomite, monazite and bastnäsite in the presence of benzohydroxamate, sodium oleate and phosphoric acid ester collectors, Colloids Surf. A, 546(2018), p. 254. doi: 10.1016/j.colsurfa.2018.03.030
      [27]
      Q.Y. Meng, Y.K. Xu, Z.T. Yuan, X. Zhao, and Y.S. Du, Separation mechanism of ilmenite from titanaugite with mixed BHA/NaOL collector, Miner. Eng., 176(2022), art. No. 107363. doi: 10.1016/j.mineng.2021.107363
      [28]
      G.H. Han, Y.F. Du, Y.F. Huang, et al., Efficient removal of hazardous benzohydroxamic acid (BHA) contaminants from the industrial beneficiation wastewaters by facile precipitation flotation process, Sep. Purif. Technol., 279(2021), art. No. 119718. doi: 10.1016/j.seppur.2021.119718
      [29]
      Q.Z. Yuan, G.J. Mei, C. Liu, Q. Cheng, and S.Y. Yang, The utilization of BHA and SBX collector mixture for the flotation of moderately oxidized pyrrhotite, Miner. Eng., 189(2022), art. No. 107890. doi: 10.1016/j.mineng.2022.107890
      [30]
      W. Sun, L.J. Lan, H. Zeng, J.F. Zhou, S.A. Khoso, and L. Wang, Study on the flotation separation mechanism of diaspore from kaolinite using mixed NaOL/BHA collector, Miner. Eng., 186(2022), art. No. 107719. doi: 10.1016/j.mineng.2022.107719
      [31]
      L.P. Luo, H.Q. Wu, L.H. Xu, et al., An in situ ATR-FTIR study of mixed collectors BHA/DDA adsorption in ilmenite-titanaugite flotation system, Int. J. Min. Sci. Technol., 31(2021), No. 4, p. 689. doi: 10.1016/j.ijmst.2021.05.001
      [32]
      D.J. Goebbert, E. Garand, T. Wende, et al., Infrared spectroscopy of the microhydrated nitrate ions NO3(H2O)1–6, J. Phys. Chem. A, 113(2009), No. 26, p. 7584. doi: 10.1021/jp9017103
      [33]
      P.R. Gogate and A.L. Prajapat, Depolymerization using sonochemical reactors: A critical review, Ultrason. Sonochem., 27(2015), p. 480. doi: 10.1016/j.ultsonch.2015.06.019
      [34]
      J. Rooze, E.V. Rebrov, J.C. Schouten, and J.T.F. Keurentjes, Dissolved gas and ultrasonic cavitation–A review, Ultrason. Sonochem., 20(2013), No. 1, p. 1. doi: 10.1016/j.ultsonch.2012.04.013
      [35]
      Y.Q. Mao, Y.R. Chen, X.N. Bu, and G.Y. Xie, Effects of 20 kHz ultrasound on coal flotation: The roles of cavitation and acoustic radiation force, Fuel, 256(2019), art. No. 115938. doi: 10.1016/j.fuel.2019.115938
      [36]
      Y.R. Chen, V.N.T. Truong, X.N. Bu, and G.Y. Xie, A review of effects and applications of ultrasound in mineral flotation, Ultrason. Sonochem., 60(2020), art. No. 104739. doi: 10.1016/j.ultsonch.2019.104739
      [37]
      J.H. Fu, H.S. Han, Z. Wei, et al., Selective separation of scheelite from calcite using tartaric acid and Pb-BHA complexes, Colloids Surf. A, 622(2021), art. No. 126657. doi: 10.1016/j.colsurfa.2021.126657
      [38]
      J.Y. He, W. Sun, D.X. Chen, Z.Y. Gao, and C.Y. Zhang, Interface interaction of benzohydroxamic acid with lead ions on oxide mineral surfaces: A coordination mechanism study, Langmuir, 37(2021), No. 11, p. 3490. doi: 10.1021/acs.langmuir.1c00322
      [39]
      Z. Wei, W.J. Sun, Y.H. Hu, et al., Structures of Pb-BHA complexes adsorbed on scheelite surface, Front. Chem., 7(2019), art. No. 645. doi: 10.3389/fchem.2019.00645
      [40]
      J. Liu, X. Wang, Y.M. Zhu, and Y.X. Han, Flotation separation of scheelite from fluorite by using DTPA as a depressant, Miner. Eng., 175(2022), art. No. 107311. doi: 10.1016/j.mineng.2021.107311
      [41]
      Z.Q. Huang, S.Y. Shuai, V.E. Burov, et al., Application of a new amidoxime surfactant in flotation separation of scheelite and calcite: Adsorption mechanism and DFT calculation, J. Mol. Liq., 364(2022), art. No. 120036. doi: 10.1016/j.molliq.2022.120036

    Catalog


    • /

      返回文章
      返回