Cite this article as: |
Liming Tao, Jianjun Wang, Dejin Liao, Wenkai Jia, Zihan Zhao, Wenfang Che, Zhongxu Qi, Wei Sun, and Zhiyong Gao, Efficient desorption and reuse of collector from the flotation concentrate: A case study of scheelite, Int. J. Miner. Metall. Mater., 31(2024), No. 11, pp. 2435-2444. https://doi.org/10.1007/s12613-024-2951-3 |
王建军 E-mail: zhiyong.gao@csu.edu.cn
高志勇 E-mail: jianjunwang@csu.edu.cn
Supplementary Information-s12613-024-2951-3.docx |
[1] |
J.H. Kang, Y.H. Hu, W. Sun, et al., A significant improvement of scheelite flotation efficiency with etidronic acid, J. Cleaner Prod., 180(2018), p. 858. doi: 10.1016/j.jclepro.2018.01.192
|
[2] |
S.Y. Shuai, Z.Q. Huang, V.E. Burov, et al., Flotation separation of wolframite from calcite using a new trisiloxane surfactant as collector, Int. J. Min. Sci. Technol., 33(2023), No. 3, p. 379. doi: 10.1016/j.ijmst.2022.12.003
|
[3] |
Z. Wei, W. Sun, P.S. Wang, D. Liu, and H.S. Han, A novel metal–organic complex surfactant for high-efficiency mineral flotation, Chem. Eng. J., 426(2021), art. No. 130853. doi: 10.1016/j.cej.2021.130853
|
[4] |
X. Wang, Z.Q. Zhang, Y.F. Cui, et al., Alkyl dimethyl betaine activates the low-temperature collection capacity of sodium oleate for scheelite, Int. J. Miner. Metall. Mater., 31(2024), No. 1, p. 71. doi: 10.1007/s12613-023-2718-2
|
[5] |
T. Zhang, Technology practice in low grade phosphate rock to produce high concentration of phosphate fertilizer, Guangzhou Chem. Ind., 42(2014), No. 24, p. 153.
|
[6] |
R. Sun, H.Y. Xie, J.Z. Wu, Y.H. Liu, L.K. Gao, and R.X. Liu, Study on oxidative removal for sodium oleate on the surface of ilmenite, Nonferrous Met. Eng., 10(2020), No. 10, p. 73.
|
[7] |
R.P. Lyu, M.F. Zhi, Z.Y. Jiang, Z.C. Yuan, L.L. Zhu, and W. Yu, Study on the thermal activation of persulfate to remove organic agents from monazite flotation concentrates, Nonferrous Met. Eng., 13(2023), No. 5, p. 68.
|
[8] |
J.Y. He, W. Sun, H.B. Zeng, R.H. Fan, W. Hu, and Z.Y. Gao, Unraveling roles of lead ions in selective flotation of scheelite and fluorite from atomic force microscopy and first-principles calculations, Miner. Eng., 179(2022), art. No. 107424. doi: 10.1016/j.mineng.2022.107424
|
[9] |
H.S. Han, Y. Xiao, Y.H. Hu, et al., Replacing Petrov’s process with atmospheric flotation using Pb-BHA complexes for separating scheelite from fluorite, Miner. Eng., 145(2020), art. No. 106053. doi: 10.1016/j.mineng.2019.106053
|
[10] |
S.Z. Jin and L.M. Ou, Comparison of the effects of sodium oleate and benzohydroxamic acid on fine scheelite and cassiterite hydrophobic flocculation, Minerals, 12(2022), No. 6, art. No. 687. doi: 10.3390/min12060687
|
[11] |
X.S. Meng, M. Jiang, S.Y. Lin, et al., Removal of residual benzohydroxamic acid–lead complex from mineral processing wastewater by metal ion combined with gangue minerals, J. Cleaner Prod., 396(2023), art. No. 136578. doi: 10.1016/j.jclepro.2023.136578
|
[12] |
H. Wang, S. Wang, S.X. Wang, L.K. Fu, and L.B. Zhang, Efficient metal–organic framework adsorbents for removal of harmful heavy metal Pb(II) from solution: Activation energy and interaction mechanism, J. Environ. Chem. Eng., 11(2023), No. 2, art. No. 109335. doi: 10.1016/j.jece.2023.109335
|
[13] |
M.K. Li, J.Y. Wang, H.R. Shen, et al., Removal of benzohydroxamic acid–metal complexes pollution from beneficiation wastewater by metal-biochar/peroxymonosulfate system: Behaviors investigation and mechanism exploration, Chem. Eng. J., 461(2023), art. No. 142008. doi: 10.1016/j.cej.2023.142008
|
[14] |
Z.C. Pan, Z.C. Liu, J.J. Xiong, et al., Application and depression mechanism of sodium sulfite on galena-pyrite mixed concentrate flotation separation: Huize Lead–Zinc Mine, China, as an example, Miner. Eng., 185(2022), art. No. 107696. doi: 10.1016/j.mineng.2022.107696
|
[15] |
B.Y. Dong, P.X. Wang, Z.D. Li, W.J. Tu, and Y.W. Tan, Degrading hazardous benzohydroxamic acid in the industrial beneficiation wastewater by dielectric barrier discharge reactor, Sep. Purif. Technol., 299(2022), art. No. 121644. doi: 10.1016/j.seppur.2022.121644
|
[16] |
L.P. Chang, Y.J. Cao, G.X. Fan, C. Li, and W.J. Peng, A review of the applications of ion floatation: Wastewater treatment, mineral beneficiation and hydrometallurgy, RSC Adv., 9(2019), No. 35, p. 20226. doi: 10.1039/C9RA02905B
|
[17] |
W.G. Zhou, K. Liu, L. Wang, B.N. Zhou, J.J. Niu, and L.M. Ou, The role of bulk micro-nanobubbles in reagent desorption and potential implication in flotation separation of highly hydrophobized minerals, Ultrason. Sonochem., 64(2020), art. No. 104996. doi: 10.1016/j.ultsonch.2020.104996
|
[18] |
V. Vinayagam, S. Murugan, R. Kumaresan, et al., Sustainable adsorbents for the removal of pharmaceuticals from wastewater: A review, Chemosphere, 300(2022), art. No. 134597. doi: 10.1016/j.chemosphere.2022.134597
|
[19] |
H. Tang, J.M. Tao, A. Ruzsinszky, and J.P. Perdew, Van der Waals correction to the physisorption of graphene on metal surfaces, J. Phys. Chem. C, 123(2019), No. 22, p. 13748. doi: 10.1021/acs.jpcc.9b02838
|
[20] |
C. Han, D.Z. Wei, S.L. Gao, Q.X. Zai, Y.B. Shen, and W.G. Liu, Adsorption and desorption of butyl xanthate on chalcopyrite, J. Mater. Res. Technol., 9(2020), No. 6, p. 12654. doi: 10.1016/j.jmrt.2020.09.021
|
[21] |
H.J. Bao, M.R. Wu, X.S. Meng, S.Y. Lin, J.H. Kang, and W. Sun, Electrochemical oxidation degradation of xanthate and its mechanism: Effects of carbon chain length and electrolyte type, J. Cleaner Prod., 448(2024), art. No. 141626. doi: 10.1016/j.jclepro.2024.141626
|
[22] |
H.S. Han, R.L. Wang, W. Sun, Y.H. Hu, and W.J. Sun, The Method of Electrochemical Oxidation for Degrading Flotation Reagents on Mineral Surface, Chinese Patent, Appl. 202011424178.0, 2021.
|
[23] |
J.J. Wang, Z.Y. Gao, and W. Sun, Desorption and reuse of Pb-BHA-NaOL collector in scheelite flotation, Minerals, 13(2023), No. 4, art. No. 538. doi: 10.3390/min13040538
|
[24] |
T. Yue, H.S. Han, Y.H. Hu, et al., New insights into the role of Pb-BHA complexes in the flotation of tungsten minerals, JOM, 69(2017), No. 11, p. 2345. doi: 10.1007/s11837-017-2531-3
|
[25] |
G.Y. Xiang, L.M. Tao, W. Sun, S.H. Xu, and Z.Y. Gao, Mechanisms for the selective separation of spodumene from feldspar by sodium N-oleoylsarcosinate as an efficient collector, Appl. Surf. Sci., 636(2023), art. No. 157821. doi: 10.1016/j.apsusc.2023.157821
|
[26] |
E.R.L. Espiritu, S. Naseri, and K.E. Waters, Surface chemistry and flotation behavior of dolomite, monazite and bastnäsite in the presence of benzohydroxamate, sodium oleate and phosphoric acid ester collectors, Colloids Surf. A, 546(2018), p. 254. doi: 10.1016/j.colsurfa.2018.03.030
|
[27] |
Q.Y. Meng, Y.K. Xu, Z.T. Yuan, X. Zhao, and Y.S. Du, Separation mechanism of ilmenite from titanaugite with mixed BHA/NaOL collector, Miner. Eng., 176(2022), art. No. 107363. doi: 10.1016/j.mineng.2021.107363
|
[28] |
G.H. Han, Y.F. Du, Y.F. Huang, et al., Efficient removal of hazardous benzohydroxamic acid (BHA) contaminants from the industrial beneficiation wastewaters by facile precipitation flotation process, Sep. Purif. Technol., 279(2021), art. No. 119718. doi: 10.1016/j.seppur.2021.119718
|
[29] |
Q.Z. Yuan, G.J. Mei, C. Liu, Q. Cheng, and S.Y. Yang, The utilization of BHA and SBX collector mixture for the flotation of moderately oxidized pyrrhotite, Miner. Eng., 189(2022), art. No. 107890. doi: 10.1016/j.mineng.2022.107890
|
[30] |
W. Sun, L.J. Lan, H. Zeng, J.F. Zhou, S.A. Khoso, and L. Wang, Study on the flotation separation mechanism of diaspore from kaolinite using mixed NaOL/BHA collector, Miner. Eng., 186(2022), art. No. 107719. doi: 10.1016/j.mineng.2022.107719
|
[31] |
L.P. Luo, H.Q. Wu, L.H. Xu, et al., An in situ ATR-FTIR study of mixed collectors BHA/DDA adsorption in ilmenite-titanaugite flotation system, Int. J. Min. Sci. Technol., 31(2021), No. 4, p. 689. doi: 10.1016/j.ijmst.2021.05.001
|
[32] |
D.J. Goebbert, E. Garand, T. Wende, et al., Infrared spectroscopy of the microhydrated nitrate ions NO3−(H2O)1–6, J. Phys. Chem. A, 113(2009), No. 26, p. 7584. doi: 10.1021/jp9017103
|
[33] |
P.R. Gogate and A.L. Prajapat, Depolymerization using sonochemical reactors: A critical review, Ultrason. Sonochem., 27(2015), p. 480. doi: 10.1016/j.ultsonch.2015.06.019
|
[34] |
J. Rooze, E.V. Rebrov, J.C. Schouten, and J.T.F. Keurentjes, Dissolved gas and ultrasonic cavitation–A review, Ultrason. Sonochem., 20(2013), No. 1, p. 1. doi: 10.1016/j.ultsonch.2012.04.013
|
[35] |
Y.Q. Mao, Y.R. Chen, X.N. Bu, and G.Y. Xie, Effects of 20 kHz ultrasound on coal flotation: The roles of cavitation and acoustic radiation force, Fuel, 256(2019), art. No. 115938. doi: 10.1016/j.fuel.2019.115938
|
[36] |
Y.R. Chen, V.N.T. Truong, X.N. Bu, and G.Y. Xie, A review of effects and applications of ultrasound in mineral flotation, Ultrason. Sonochem., 60(2020), art. No. 104739. doi: 10.1016/j.ultsonch.2019.104739
|
[37] |
J.H. Fu, H.S. Han, Z. Wei, et al., Selective separation of scheelite from calcite using tartaric acid and Pb-BHA complexes, Colloids Surf. A, 622(2021), art. No. 126657. doi: 10.1016/j.colsurfa.2021.126657
|
[38] |
J.Y. He, W. Sun, D.X. Chen, Z.Y. Gao, and C.Y. Zhang, Interface interaction of benzohydroxamic acid with lead ions on oxide mineral surfaces: A coordination mechanism study, Langmuir, 37(2021), No. 11, p. 3490. doi: 10.1021/acs.langmuir.1c00322
|
[39] |
Z. Wei, W.J. Sun, Y.H. Hu, et al., Structures of Pb-BHA complexes adsorbed on scheelite surface, Front. Chem., 7(2019), art. No. 645. doi: 10.3389/fchem.2019.00645
|
[40] |
J. Liu, X. Wang, Y.M. Zhu, and Y.X. Han, Flotation separation of scheelite from fluorite by using DTPA as a depressant, Miner. Eng., 175(2022), art. No. 107311. doi: 10.1016/j.mineng.2021.107311
|
[41] |
Z.Q. Huang, S.Y. Shuai, V.E. Burov, et al., Application of a new amidoxime surfactant in flotation separation of scheelite and calcite: Adsorption mechanism and DFT calculation, J. Mol. Liq., 364(2022), art. No. 120036. doi: 10.1016/j.molliq.2022.120036
|