留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 12
Dec.  2024

图(8)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  440
  • HTML全文浏览量:  206
  • PDF下载量:  14
  • 被引次数: 0
Zhen He, Jiaming Liu, Yuqian Wei, Yunfei Song, Wuxin Yang, Aobo Yang, Yuxin Wang, and Bo Li, Polypyrrole-coated triple-layer yolk–shell Fe2O3 anode materials with their superior overall performance in lithium-ion batteries, Int. J. Miner. Metall. Mater., 31(2024), No. 12, pp. 2737-2748. https://doi.org/10.1007/s12613-024-2954-0
Cite this article as:
Zhen He, Jiaming Liu, Yuqian Wei, Yunfei Song, Wuxin Yang, Aobo Yang, Yuxin Wang, and Bo Li, Polypyrrole-coated triple-layer yolk–shell Fe2O3 anode materials with their superior overall performance in lithium-ion batteries, Int. J. Miner. Metall. Mater., 31(2024), No. 12, pp. 2737-2748. https://doi.org/10.1007/s12613-024-2954-0
引用本文 PDF XML SpringerLink
研究论文

聚吡咯涂层三层蛋黄壳Fe2O3负极材料及其在锂离子电池中的卓越综合性能



  • 通讯作者:

    王宇鑫    E-mail: ywan943@163.com

    李波    E-mail: bli219@aucklanduni.ac.nz

文章亮点

  • (1) 通过一种创新的原位合成方法成功制备了具有三层蛋黄壳结构的纳米材料
  • (2) 聚吡咯均匀涂覆层显著提升了其导电性能并增强了整体结构的稳定性
  • (3) 三层蛋黄壳复合结构能够适应基体在充放电过程中的体积膨胀
  • (4) 通过电极材料结构优化实现了具有超高稳定性和快速充放电能力
  • 氧化铁(Fe2O3)作为一种极具吸引力的阳极候选材料,在迅速扩展的储能市场中崭露头角。然而作为电极材料,它在循环过程中会经历显著的体积变化,导致电池循环寿命大幅缩短。本文创新性地合成了均匀涂覆导电聚吡咯层(Fe2O3@Ppy-TLY)的三层蛋黄壳结构Fe2O3,为制备高性能Fe2O3阳极材料开辟了新途径。均匀的聚吡咯涂层不仅引入了更多的反应位点和吸附位点,还在充放电过程中保持了结构的稳定性。作为锂离子电池的电极材料,Fe2O3@Ppy-TLY 展现出卓越的锂存储性能,包括高可逆比容量(在1 C下循环500次后仍能保持1375.11 mAh⋅g−1的放电容量)、优异的循环稳定性(在6000次循环后仍能保持 544.33 mAh⋅g−1),以及优异的大电流充放电性能(在15 C下循环10000次后仍能保持156.75 mAh⋅g−1的可逆容量)。本研究展示了Fe2O3阳极设计的创新进展,旨在提升其在储能领域的应用性能。
  • Research Article

    Polypyrrole-coated triple-layer yolk–shell Fe2O3 anode materials with their superior overall performance in lithium-ion batteries

    + Author Affiliations
    • Iron oxide (Fe2O3) emerges as a highly attractive anode candidate among rapidly expanding energy storage market. Nonetheless, its considerable volume changes during cycling as an electrode material result in a vast reduced battery cycle life. In this work, an approach is pioneered for preparing high-performance Fe2O3 anode materials, by innovatively synthesizing a triple-layer yolk–shell Fe2O3 uniformly coated with a conductive polypyrrole (Ppy) layer (Fe2O3@Ppy-TLY). The uniform polypyrrole coating introduces more reaction sites and adsorption sites, and maintains structure stability through charge-discharge process. In the uses as lithium-ion battery electrodes, Fe2O3@Ppy-TLY demonstrates high reversible specific capacity (maintaining a discharge capacity of 1375.11 mAh·g−1 after 500 cycles at 1 C), exceptional cycling stability (retaining the steady charge-discharge performance at 544.33 mAh·g−1 after 6000 ultrafast charge-discharge cycles at a 10 C current density), and outstanding high current charge-discharge performance (retaining a reversible capacity of 156.75 mAh·g−1 after 10000 cycles at 15 C), thereby exhibiting superior lithium storage performance. This work introduces innovative advancements for Fe2O3 anode design, aiming to enhance its performance in energy storage fields.
    • loading
    • Supplementary Information-s12613-024-2954-0.docx
    • [1]
      J.X. Sun, L.Q. Ye, X.R. Zhao, P.P. Zhang, and J. Yang, Electronic modulation and structural engineering of carbon-based anodes for low-temperature lithium-ion batteries: A review, Molecules, 28(2023), No. 5, art. No. 2108. doi: 10.3390/molecules28052108
      [2]
      P.F. Hu, C.F. Meng, F.G. Li, et al., Hierarchical multi-yolk–shell copper oxide@copper-1,3,5-benzenetricarboxylate as an ultrastable anode for lithium ion batteries, J. Colloid Interface Sci., 617(2022), p. 568. doi: 10.1016/j.jcis.2022.02.134
      [3]
      L. Chen, M.R. Yang, F. Kong, J.Y. Guo, H.B. Shu, and J. Dai, Metallic penta-graphene/penta-BN2 heterostructure with high specific capacity: A novel application platform for Li/Na-ion batteries, J. Alloys Compd., 901(2022), art. No. 163538. doi: 10.1016/j.jallcom.2021.163538
      [4]
      J.L. Chen, X.M. Guo, M.Y. Gao, et al., Self-supporting dual-confined porous Si@c-ZIF@carbon nanofibers for high-performance lithium-ion batteries, Chem. Commun., 57(2021), No. 81, p. 10580. doi: 10.1039/D1CC04172J
      [5]
      J.J. Xu, D. Wang, S.Y. Kong, R.Z. Li, Z.L. Hong, and F.Q. Huang, Pyrochlore phase Ce2Sn2O7 via an atom-confining strategy for reversible lithium storage, J. Mater. Chem. A, 8(2020), No. 11, p. 5744. doi: 10.1039/C9TA13602A
      [6]
      D. Zhang, C.Y. Zhang, X. Zheng, et al., Facile synthesis of the Mn3O4 polyhedron grown on N-doped honeycomb carbon as high-performance negative material for lithium-ion batteries, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1152. doi: 10.1007/s12613-022-2590-5
      [7]
      L. Chen, M.R. Yang, F. Kong, W.L. Du, J.Y. Guo, and H.B. Shu, Penta-BCN monolayer with high specific capacity and mobility as a compelling anode material for rechargeable batteries, Phys. Chem. Chem. Phys., 23(2021), No. 32, p. 17693. doi: 10.1039/D1CP03017E
      [8]
      P. Wang, M.Q. Shen, H. Zhou, C.F. Meng, and A.H. Yuan, MOF-derived CuS@Cu-BTC composites as high-performance anodes for lithium-ion batteries, Small, 15(2019), No. 47, art. No. 1903522. doi: 10.1002/smll.201903522
      [9]
      J. Yu, Y.B. Wei, B.C. Meng, et al., Homogeneous distributed natural pyrite-derived composite induced by modified graphite as high-performance lithium-ion batteries anode, Int. J. Miner. Metall. Mater., 30(2023), No. 7, p. 1353. doi: 10.1007/s12613-023-2598-5
      [10]
      K. Cao, L. Jiao, H. Liu, et al., 3D Hierarchical porous α-Fe2O3 nanosheets for high-performance lithium-ion batteries, Adv. Energy Mater., 5(2015), No. 4, art. No. 1401421. doi: 10.1002/aenm.201401421
      [11]
      J.F. Zhao, S.C. Zhang, W.B. Liu, Z.J. Du, and H. Fang, Fe3O4/PPy composite nanospheres as anode for lithium-ion batteries with superior cycling performance, Electrochim. Acta, 121(2014), p. 428. doi: 10.1016/j.electacta.2013.12.105
      [12]
      B. Li, T. Zhang, S.H. Wei, and W. Gao, Nitrogen-doped carbon hollow spheres packed with multiple nano Sn particles for enhanced lithium storage, Chem. Eng. J., 446(2022), art. No. 136768. doi: 10.1016/j.cej.2022.136768
      [13]
      B. Li, W. Zhang, T. Zhang, S.H. Wei, and W. Gao, Accurately tailoring yolk–shell spheres to balance cycling stability and volumetric capacity of lithium storage, J. Alloys Compd., 917(2022), art. No. 165548. doi: 10.1016/j.jallcom.2022.165548
      [14]
      G.L. Xia, Q.L. Gao, D.L. Sun, and X.B. Yu, Porous carbon nanofibers encapsulated with peapod-like hematite nanoparticles for high-rate and long-life battery anodes, Small, 13(2017), No. 44, art. No. 1701561. doi: 10.1002/smll.201701561
      [15]
      J.M. Jeong, B.G. Choi, S.C. Lee, et al., Hierarchical hollow spheres of Fe2O3@Polyaniline for lithium ion battery anodes, Adv. Mater., 25(2013), No. 43, p. 6250. doi: 10.1002/adma.201302710
      [16]
      Y.C. Chen, C.X. Kang, L. Ma, et al., MOF-derived Fe2O3 decorated with MnO2 nanosheet arrays as anode for high energy density hybrid supercapacitor, Chem. Eng. J., 417(2021), art. No. 129243. doi: 10.1016/j.cej.2021.129243
      [17]
      C. Park, E. Samuel, B. Joshi, et al., Supersonically sprayed Fe2O3/C/CNT composites for highly stable Li-ion battery anodes, Chem. Eng. J., 395(2020), art. No. 125018. doi: 10.1016/j.cej.2020.125018
      [18]
      Y.S. Choi, W. Choi, W.S. Yoon, and J.M. Kim, Unveiling the genesis and effectiveness of negative fading in nanostructured iron oxide anode materials for lithium-ion batteries, ACS Nano, 16(2022), No. 1, p. 631. doi: 10.1021/acsnano.1c07943
      [19]
      X.Y. Chen, N. Sawut, K.A. Chen, et al., Filling carbon: A microstructure-engineered hard carbon for efficient alkali metal ion storage, Energy Environ. Sci., 16(2023), No. 9, p. 4041. doi: 10.1039/D3EE01154B
      [20]
      H. Kim, J.C. Hyun, D.H. Kim, et al., Revisiting lithium- and sodium-ion storage in hard carbon anodes, Adv. Mater., 35(2023), No. 12, art. No. 2209128. doi: 10.1002/adma.202209128
      [21]
      W.J. Han, X.Y. Qin, J.X. Wu, et al., Electrosprayed porous Fe3O4/carbon microspheres as anode materials for high-performance lithium-ion batteries, Nano Res., 11(2018), No. 2, p. 892. doi: 10.1007/s12274-017-1700-6
      [22]
      S.Y. Zhang, P.G. Zhang, A.J. Xie, S.K. Li, F.Z. Huang, and Y.H. Shen, A novel 2D porous print fabric-like α-Fe2O3 sheet with high performance as the anode material for lithium-ion battery, Electrochim. Acta, 212(2016), p. 912. doi: 10.1016/j.electacta.2016.06.099
      [23]
      H. Huang, L.J. Kong, W. Shuang, W. Xu, J. He, and X.H. Bu, Controlled synthesis of core–shell Fe2O3@N-C with ultralong cycle life for lithium-ion batteries, Chin. Chem. Lett., 33(2022), No. 2, p. 1037. doi: 10.1016/j.cclet.2021.08.013
      [24]
      X.Y. Hou, J.L. Kang, G. Zhou, and J.T. Wang, Preparation of Fe2O3@C composite with octahedron-like Fe2O3 embedded in carbon framework as a superior anode for LIBs, Mater. Lett., 313(2022), art. No. 131736. doi: 10.1016/j.matlet.2022.131736
      [25]
      Z.X. Lu, J. Wang, W.L. Feng, et al., Zinc single-atom regulated hard carbons for high rate and low temperature sodium ion batteries, Adv. Mater., 35(2023),No. 26, art. No. 2211461. doi: 10.1002/adma.202211461
      [26]
      F.P. Chen, Y.J. Di, Q. Su, et al., Vanadium-modified hard carbon spheres with sufficient pseudographitic domains as high-performance anode for sodium-ion batteries, Carbon Energy, 5(2023), No. 2, art. No. e191. doi: 10.1002/cey2.191
      [27]
      H.Y. Wang, H.X. Chen, C. Chen, et al., Tea-derived carbon materials as anode for high-performance sodium ion batteries, Chin. Chem. Lett., 34(2023), No. 4, art. No. 107465. doi: 10.1016/j.cclet.2022.04.063
      [28]
      C. Zhao, Z.F. Yan, B. Zhou, et al., Identifying the role of lewis-base sites for the chemistry in lithium-oxygen batteries, Angew. Chem. Int. Ed., 62(2023), No. 32, art. No. e202302746. doi: 10.1002/anie.202302746
      [29]
      L.L. Zhang, T. Wang, T.N. Gao, et al., Multistage self-assembly strategy: Designed synthesis of N-doped mesoporous carbon with high and controllable pyridine N content for ultrahigh surface-area-normalized capacitance, CCS Chem., 3(2021), No. 2, p. 870. doi: 10.31635/ccschem.020.202000233
      [30]
      R. Arrigo, M. Hävecker, S. Wrabetz, et al., Tuning the acid/base properties of nanocarbons by functionalization via amination, J. Am. Chem. Soc., 132(2010), No. 28, p. 9616. doi: 10.1021/ja910169v
      [31]
      J.Y. Mao, D.C. Niu, N. Zheng, et al., Fe3O4-embedded and N-doped hierarchically porous carbon nanospheres as high-performance lithium ion battery anodes, ACS Sustainable Chem. Eng., 7(2019), No. 3, p. 3424. doi: 10.1021/acssuschemeng.8b05651
      [32]
      P. Bhattacharya, M. Kota, D.H. Suh, K.C. Roh, and H.S. Park, Biomimetic spider-web-like composites for enhanced rate capability and cycle life of lithium ion battery anodes, Adv. Energy Mater., 7(2017), No. 17, art. No. 1700331. doi: 10.1002/aenm.201700331
      [33]
      Z.C. Yang, J.G. Shen, and L.A. Archer, An in situ method of creating metal oxide–carbon composites and their application as anode materials for lithium-ion batteries, J. Mater. Chem., 21(2011), No. 30, p. 11092. doi: 10.1039/c1jm10902b
      [34]
      Y. Yang, J.Q. Li, D.Q. Chen, and J.B. Zhao, A facile electrophoretic deposition route to the Fe3O4/CNTs/rGO composite electrode as a binder-free anode for lithium ion battery, ACS Appl. Mater. Interfaces, 8(2016), No. 40, p. 26730. doi: 10.1021/acsami.6b07990
      [35]
      F.X. Ma, H.B. Wu, C.Y. Xu, L. Zhen, and X.W. (David) Lou, Self-organized sheaf-like Fe3O4/C hierarchical microrods with superior lithium storage properties, Nanoscale, 7(2015), No. 10, p. 4411. doi: 10.1039/C5NR00046G
      [36]
      L.P. Kong, Y.T. Zhu, P.J. Williams, M. Kabbani, F.R. Brushett, and J.L.M. Rupp, Insights into Li+ storage mechanisms, kinetics, and reversibility of defect-engineered and functionalized multi-walled carbon nanotubes for enhanced energy storage, J. Mater. Chem. A, 12(2024), No. 7, p. 4299. doi: 10.1039/D3TA07362A
      [37]
      J.H. Kim, G.D. Park, and Y.C. Kang, Amorphous iron oxide–selenite composite microspheres with a yolk–shell structure as highly efficient anode materials for lithium-ion batteries, Nanoscale, 12(2020), No. 19, p. 10790. doi: 10.1039/D0NR01905D
      [38]
      X. Huang, H. Yu, J. Chen, Z.Y. Lu, R. Yazami, and H.H. Hng, Ultrahigh rate capabilities of lithium-ion batteries from 3D ordered hierarchically porous electrodes with entrapped active nanoparticles configuration, Adv. Mater., 26(2014), No. 8, p. 1296. doi: 10.1002/adma.201304467
      [39]
      S.H. Lee, S.H. Yu, J.E. Lee, et al., Self-assembled Fe3O4 nanoparticle clusters as high-performance anodes for lithium ion batteries via geometric confinement, Nano Lett., 13(2013), No. 9, p. 4249. doi: 10.1021/nl401952h
      [40]
      L. Liu, X.F. Yang, C.X. Lv, et al., Seaweed-derived route to Fe2O3 hollow nanoparticles/N-doped graphene aerogels with high lithium ion storage performance, ACS Appl. Mater. Interfaces, 8(2016), No. 11, p. 7047. doi: 10.1021/acsami.5b12427
      [41]
      L.W. Su, Y.R. Zhong, and Z. Zhou, Role of transition metal nanoparticles in the extra lithium storage capacity of transition metal oxides: A case study of hierarchical core–shell Fe3O4@C and Fe@C microspheres, J. Mater. Chem. A, 1(2013), No. 47, p. 15158. doi: 10.1039/c3ta13233a
      [42]
      T.Z. Yuan, Y.Z. Jiang, W.P. Sun, et al., Ever-increasing pseudocapacitance in RGO–MnO–RGO sandwich nanostructures for ultrahigh-rate lithium storage, Adv. Funct. Mater., 26(2016), No. 13, p. 2198. doi: 10.1002/adfm.201504849
      [43]
      Y.T. Ma, J. Huang, X. Liu, et al., 3D graphene-encapsulated hierarchical urchin-like Fe3O4 porous particles with enhanced lithium storage properties, Chem. Eng. J., 327(2017), p. 678. doi: 10.1016/j.cej.2017.06.147
      [44]
      H. Wu, G.H. Yu, L.J. Pan, et al., Stable Li-ion battery anodes by in situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles, Nat. Commun., 4(2013), art. No. 1943. doi: 10.1038/ncomms2941
      [45]
      X.S. Zhou, L.J. Wan, and Y.G. Guo, Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries, Adv. Mater., 25(2013), No. 15, p. 2152. doi: 10.1002/adma.201300071
      [46]
      J.H. Zhao, X.X. He, W.H. Lai, et al., Catalytic defect-repairing using manganese ions for hard carbon anode with high-capacity and high-initial-coulombic-efficiency in sodium-ion batteries, Adv. Energy Mater., 13(2023), No. 18, art. No. 2300444. doi: 10.1002/aenm.202300444
      [47]
      J.C. Guo, Q. Liu, C.S. Wang, and M.R. Zachariah, Interdispersed amorphous MnOx–carbon nanocomposites with superior electrochemical performance as lithium-storage material, Adv. Funct. Mater., 22(2012), No. 4, p. 803. doi: 10.1002/adfm.201102137
      [48]
      P. Santhoshkumar, K. Prasanna, Y.N. Jo, I.N. Sivagami, S.H. Kang, and C.W. Lee, A facile and highly efficient short-time homogenization hydrothermal approach for the smart production of high-quality α-Fe2O3 for rechargeable lithium batteries, J. Mater. Chem. A, 5(2017), No. 32, p. 16712. doi: 10.1039/C7TA04797E
      [49]
      M. Hong, Y.J. Su, C. Zhou, et al., Scalable synthesis of γ-Fe2O3/CNT composite as high-performance anode material for lithium-ion batteries, J. Alloys Compd., 770(2019), p. 116. doi: 10.1016/j.jallcom.2018.08.118
      [50]
      P. Huang, W. Tao, H.X. Wu, et al., N-doped coaxial CNTs@α-Fe2O3@C nanofibers as anode material for high performance lithium ion battery, J. Energy Chem., 27(2018), No. 5, p. 1453. doi: 10.1016/j.jechem.2017.09.011
      [51]
      M. Li, H.R. Du, L. Kuai, K.F. Huang, Y.Y. Xia, and B.Y. Geng, Scalable dry production process of a superior 3D net-like carbon-based iron oxide anode material for lithium-ion batteries, Angew. Chem. Int. Ed., 56(2017), No. 41, p. 12649. doi: 10.1002/anie.201707647
      [52]
      Z.Z. Du, X.J. Chen, W. Hu, et al., Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium–sulfur batteries, J. Am. Chem. Soc., 141(2019), No. 9, p. 3977. doi: 10.1021/jacs.8b12973

    Catalog


    • /

      返回文章
      返回