留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图(14)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  192
  • HTML全文浏览量:  83
  • PDF下载量:  10
  • 被引次数: 0
Mingyu Wang, Jue Tang, Mansheng Chu, Quan Shi,  and Zhen Zhang, Prediction and optimization of flue pressure in sintering process based on SHAP, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2955-z
Cite this article as:
Mingyu Wang, Jue Tang, Mansheng Chu, Quan Shi,  and Zhen Zhang, Prediction and optimization of flue pressure in sintering process based on SHAP, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2955-z
引用本文 PDF XML SpringerLink

基于SHAP的烧结过程烟道压力预测与优化


  • 通讯作者:

    唐珏    E-mail: tangj@smm.neu.edu.cn

文章亮点

  • (1) 基于大数据与烧结工艺机理,开发了烧结过程主管压力预测与优化模型
  • (2) 基于SHAP对预测模型进行可解释分析,并将分析过程应用于优化部分
  • (3) 成功在线应用,实现了大数据技术在烧结过程的深度应用
  • 烧结矿是高炉的主要原料。烟道压力是影响烧结矿质量的重要状态参数。本文基于SHAP对烟道压力预测和优化进行了研究,实现了烟道压力预测与操作参数反馈。首先收集并处理烧结过程数据。在对比了不同的特征选择方法与机器学习算法后,采用SHAP结合极限树算法建立烟道压力预测模型。在±0.25kPa的误差范围内,预测模型精度为92.63%。通过SHAP分析提升模型的可解释性。分析了不同烧结操作参数对烟道压力的影响、关键操作参数与烟道压力间的数值范围关系、烧结操作参数对烟道压力的协同影响以及烟道压力预测模型在单个样本上的预测过程。构建并分析烟道压力优化模型。在预测结果达到调整条件时,反馈操作参数组合调整方案。在验证过程中烟道压力被提升了5.87%,优化效果良好。
  • Research Article

    Prediction and optimization of flue pressure in sintering process based on SHAP

    + Author Affiliations
    • Sinter is the core raw material for blast furnaces. Flue pressure, which is an important state parameter, affects sinter quality. In this paper, flue pressure prediction and optimization were studied based on the shapley additive explanation (SHAP) to predict the flue pressure and take targeted adjustment measures. First, the sintering process data were collected and processed. A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP + extremely randomized trees (ET). The prediction accuracy of the model within the error range of ±0.25 kPa was 92.63%. SHAP analysis was employed to improve the interpretability of the prediction model. The effects of various sintering operation parameters on flue pressure, the relationship between the numerical range of key operation parameters and flue pressure, the effect of operation parameter combinations on flue pressure, and the prediction process of the flue pressure prediction model on a single sample were analyzed. A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions. The operating parameter combination was then pushed. The flue pressure was increased by 5.87% during the verification process, achieving a good optimization effect.
    • loading
    • [1]
      F.Q. Zheng, Y.F. Guo, J.F. Xiang, S. Wang, L.Z. Yang, and F. Chen, Improvement of iron ore sintering productivity by redistributing air volume during sintering process, ISIJ Int., 62(2022), No. 1, p. 74. doi: 10.2355/isijinternational.ISIJINT-2021-160
      [2]
      V. Roshan, K. Kumar, R. Kumar, and G.V.S. Nageswara Rao, Preparation of iron ore micro-pellets and their effect on sinter bed permeability, Trans. Indian Inst. Met., 71(2018), No. 9, p. 2157. doi: 10.1007/s12666-018-1347-3
      [3]
      A.M. Nyembwe, R.D. Cromarty, and A.M. Garbers-Craig, Effect of concentrate and micropellet additions on iron ore sinter bed permeability, Miner. Process. Extr. Metall., 125(2016), No. 3, p. 178. doi: 10.1080/03719553.2016.1180033
      [4]
      H. Zhou, Z.Y. Lai, L.Q. Lv, et al., Improvement in the permeability of sintering beds by drying treatment after granulating sinter raw materials containing concentrates, Adv. Powder Technol., 31(2020), No. 8, p. 3297. doi: 10.1016/j.apt.2020.06.017
      [5]
      H. Zhou, M.X. Zhou, D.P. O’dea, B.G. Ellis, J.Z. Chen, and M. Cheng, Influence of binder dosage on granule structure and packed bed properties in iron ore sintering process, ISIJ Int., 56(2016), No. 11, p. 1920. doi: 10.2355/isijinternational.ISIJINT-2016-298
      [6]
      L.M. Lu, M. Adam, A. Edenton, et al., Strategies for efficient utilization of CRL magnetite pellet feed in sintering and pelletising, [in] Proceedings 5th Baosteel Biennial Academic Conference, Shanghai, 2013, p. A31.
      [7]
      Q. Shi, J. Tang, and M.S. Chu, Evaluation, prediction, and feedback of blast furnace hearth activity based on data-driven analysis and process metallurgy, Steel Res. Int., 95(2024), No. 2, art. No. 2300385. doi: 10.1002/srin.202300385
      [8]
      Q. Shi, J. Tang, and M.S. Chu, Key issues and progress of industrial big data-based intelligent blast furnace ironmaking technology, Int. J. Miner. Metall. Mater., 30(2023), No. 9, p. 1651. doi: 10.1007/s12613-023-2636-3
      [9]
      X.X. Huang, X.H. Fan, X.L. Chen, G.M. Yang, and M. Gan, Bed permeability state prediction model of sintering process based on data mining technology, ISIJ Int., 56(2016), No. 12, p. 2113. doi: 10.2355/isijinternational.ISIJINT-2016-193
      [10]
      S.H. Wang, H.F. Li, Y.J. Zhang, and Z.S. Zou, A hybrid ensemble model based on ELM and improved AdaBoost.RT algorithm for predicting the iron ore sintering characters, Comput. Intell. Neurosci., 2019(2019), art. No. 4164296.
      [11]
      S. Liu, Q. Lyu, X.J. Liu, Y.Q. Sun, and X.S. Zhang, A prediction system of burn through point based on gradient boosting decision tree and decision rules, ISIJ Int., 59(2019), No. 12, p. 2156. doi: 10.2355/isijinternational.ISIJINT-2019-059
      [12]
      X. Chen, J. Hu, M. Wu, and W.H. Cao, T–S fuzzy logic based modeling and robust control for burning-through point in sintering process, IEEE Trans. Ind. Electron., 64(2017), No. 12, p. 9378. doi: 10.1109/TIE.2017.2708004
      [13]
      S. Du, M. Wu, L.F. Chen, L. Jin, W.H. Cao, and W. Pedrycz, Operating performance improvement based on prediction and grade assessment for sintering process, IEEE Trans. Cybern., 52(2022), No. 10, p. 10529. doi: 10.1109/TCYB.2021.3071665
      [14]
      S. Du, M. Wu, L.F. Chen, and W. Pedrycz, Prediction model of burn-through point with fuzzy time series for iron ore sintering process, Eng. Appl. Artif. Intell., 102(2021), art. No. 104259. doi: 10.1016/j.engappai.2021.104259
      [15]
      A. Goldstein, A. Kapelner, J. Bleich, and E. Pitkin, Peeking inside the black box: Visualizing statistical learning with plots of individual conditional expectation, J. Comput. Graph. Stat., 24(2015), No. 1, p. 44. doi: 10.1080/10618600.2014.907095
      [16]
      J. Kim, H.J. Lee, and H. Lee, Mining the determinants of review helpfulness: A novel approach using intelligent feature engineering and explainable AI, Data Technol. Appl., 57(2023), No. 1, p. 108.
      [17]
      L.S. Shapley and M. Shubik, A method for evaluating the distribution of power in a committee system, Am. Polit. Sci. Rev., 48(1954), No. 3, p. 787. doi: 10.2307/1951053
      [18]
      Z. Zhang, J. Tang, M.S. Chu, et al., The amount prediction and optimization of the returned ore generated from sintering process based on SHAP value and ensemble learning, Steel Res. Int., 94(2023), No. 9, art. No. 2300114. doi: 10.1002/srin.202300114
      [19]
      D.W. Jiang, Z.Y. Wang, K.J. Li, and J.L. Zhang, Analysis of blast furnace permeability regulation strategy based on machine learning, Steel Res. Int., 95(2024), No. 3, art. No. 2300590. doi: 10.1002/srin.202300590
      [20]
      S.J. Zhang, H.G. Lei, Z.C. Zhou, G.Q. Wang, and B. Qiu, Fatigue life analysis of high-strength bolts based on machine learning method and SHapley Additive exPlanations (SHAP) approach, Structures, 51(2023), p. 275. doi: 10.1016/j.istruc.2023.03.060
      [21]
      J. Takalo-Mattila, M. Heiskanen, V. Kyllönen, L. Määttä, and A. Bogdanoff, Explainable steel quality prediction system based on gradient boosting decision trees, IEEE Access, 10(2022), p. 68099. doi: 10.1109/ACCESS.2022.3185607
      [22]
      M.X. Zhou, H. Zhou, D.P. O’dea, B.G. Ellis, T. Honeyands, and X.T. Guo, Characterization of granule structure and packed bed properties of iron ore sinter feeds that contain concentrate, ISIJ Int., 57(2017), No. 6, p. 1004. doi: 10.2355/isijinternational.ISIJINT-2016-734
      [23]
      Y. Chabchoub, M.U. Togbe, A. Boly, and R. Chiky, An In-depth study and improvement of isolation forest, IEEE Access, 10(2022), p. 10219. doi: 10.1109/ACCESS.2022.3144425
      [24]
      H.X. Ma, T. Peng, C. Zhang, C.L. Ji, Y.M. Li, and M.S. Nazir, Developing an evolutionary deep learning framework with random forest feature selection and improved flow direction algorithm for NOx concentration prediction, Eng. Appl. Artif. Intell., 123(2023), art. No. 106367. doi: 10.1016/j.engappai.2023.106367
      [25]
      R.I. Hamilton and P.N. Papadopoulos, Using SHAP values and machine learning to understand trends in the transient stability limit, IEEE Trans. Power Syst., 39(2024), No. 1, p. 1384. doi: 10.1109/TPWRS.2023.3248941
      [26]
      M. Jamei, M. Ali, M. Karbasi, et al., Monthly sodium adsorption ratio forecasting in rivers using a dual interpretable glass-box complementary intelligent system: Hybridization of ensemble TVF–EMD–VMD, Boruta–SHAP, and eXplainable GPR, Expert Syst. Appl., 237(2024), art. No. 121512. doi: 10.1016/j.eswa.2023.121512
      [27]
      A. Aminifar, M. Shokri, F. Rabbi, V.K.I. Pun, and Y. Lamo, Extremely randomized trees with privacy preservation for distributed structured health data, IEEE Access, 10(2022), p. 6010. doi: 10.1109/ACCESS.2022.3141709
      [28]
      K. Uçak and G.Ö. Günel, Adaptive stable backstepping controller based on support vector regression for nonlinear systems, Eng. Appl. Artif. Intell., 129(2024), art. No. 107533. doi: 10.1016/j.engappai.2023.107533
      [29]
      S. Koley, T. Ray, I. Mohanty, S. Chatterjee, and M. Shome, Prediction of electrical resistivity of steel using artificial neural network, Ironmaking Steelmaking, 46(2019), No. 4, p. 383. doi: 10.1080/03019233.2017.1403109
      [30]
      X.P. Wang, T.H. Hu, and L.X. Tang, A multiobjective evolutionary nonlinear ensemble learning with evolutionary feature selection for silicon prediction in blast furnace, IEEE Trans. Neural Networks Learn. Syst., 33(2022), No. 5, p. 2080. doi: 10.1109/TNNLS.2021.3059784
      [31]
      S.L. Wu, J. Zhu, J.X. Fan, G.L. Zhang, and S.G. Chen, Sintering behavior of return fines and their effective utilization method, ISIJ Int., 53(2013), No. 9, p. 1561. doi: 10.2355/isijinternational.53.1561
      [32]
      X. Zhang, Q. Zhong, C. Liu, et al., Partial substitution of anthracite for coke breeze in iron ore sintering, Sci. Rep., 11(2021), No. 1, art. No. 1540. doi: 10.1038/s41598-021-80992-4

    Catalog


    • /

      返回文章
      返回