Cite this article as: |
Junkang Chen, Yongyue Zhuang, Yanxin Qiao, Yu Zhang, Aihua Yuan, and Hu Zhou, Co/Co7Fe3 heterostructures with controllable alloying degree on carbon spheres as bifunctional electrocatalyst for rechargeable zinc–air batteries, Int. J. Miner. Metall. Mater.,(2025). https://doi.org/10.1007/s12613-024-2958-9 |
周虎 E-mail: zhmiao119@sina.com
Supplementary Information-10.1007s12613-024-2958-9.doc |
[1] |
X.W. Lv, Z. Wang, Z. Lai, et al., Rechargeable zinc-air batteries: Advances, challenges, and prospects, Small, 20(2024), No. 4, art. No. 2306396. doi: 10.1002/smll.202306396
|
[2] |
S.J. Liu, X.H. Wan, Y. Sun, et al., Cobalt-based multicomponent nanoparticles supported on N-doped graphene as advanced cathodic catalyst for zinc–air batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 12, p. 2212. doi: 10.1007/s12613-022-2498-0
|
[3] |
S.C. Qiao, H.W. Shou, W.J. Xu, et al., Regulating and identifying the structures of PdAu alloys with splendid oxygen reduction activity for rechargeable zinc–air batteries, Energy Environ. Sci., 16(2023), No. 12, p. 5842. doi: 10.1039/D3EE02719H
|
[4] |
P.Q. Chen, Y.X. Tai, H. Wu, Y.F. Gao, J.Y. Chen, and J.G. Cheng, Novel confinement combustion method of nanosized WC/C for efficient electrocatalytic oxygen reduction, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1627. doi: 10.1007/s12613-021-2265-7
|
[5] |
C.X. Zhao, J.N. Liu, J. Wang, D. Ren, B.Q. Li, and Q. Zhang, Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts, Chem. Soc. Rev., 50(2021), No. 13, p. 7745. doi: 10.1039/D1CS00135C
|
[6] |
S. Das, A. Kundu, T. Kuila, and N.C. Murmu, Recent advancements on designing transition metal-based carbon-supported single atom catalysts for oxygen electrocatalysis: Miles to go for sustainable Zn–air batteries, Energy Storage Mater., 61(2023), art. No. 102890. doi: 10.1016/j.ensm.2023.102890
|
[7] |
Z.B. Chen, K. Huang, B.W. Zhang, et al., Corrosion engineering on AlCoCrFeNi high-entropy alloys toward highly efficient electrocatalysts for the oxygen evolution of alkaline seawater, Int. J. Miner. Metall. Mater., 30(2023), No. 10, p. 1922. doi: 10.1007/s12613-023-2624-7
|
[8] |
Z. Peng, C.C. Han, C.Y. Huang, Z.H. Dong, and X.G. Ma, Preventing surface passivation of transition metal nanoparticles in oxygen electrocatalyst to extend the lifespan of Zn–air battery, J. Mater. Sci. Technol., 128(2022), p. 205. doi: 10.1016/j.jmst.2022.03.033
|
[9] |
W.W. Tian, J.T. Ren, and Z.Y. Yuan, In-situ cobalt-nickel alloy catalyzed nitrogen-doped carbon nanotube arrays as superior freestanding air electrodes for flexible zinc–air and aluminum–air batteries, Appl. Catal. B: Environ., 317(2022), art. No. 121764. doi: 10.1016/j.apcatb.2022.121764
|
[10] |
Y. Wang, W.H. Luo, S. Gong, et al., Synthesis of high-entropy-alloy nanoparticles by a step-alloying strategy as a superior multifunctional electrocatalyst, Adv. Mater., 35(2023), No. 36, art. No. 2302499. doi: 10.1002/adma.202302499
|
[11] |
Y. Niu, X. Teng, S. Gong, M. Xu, S.G. Sun, and Z. Chen, Engineering two-phase bifunctional oxygen electrocatalysts with tunable and synergetic components for flexible Zn–air batteries, Nano-Micro Lett., 13(2021), art. No. 126. doi: 10.1007/s40820-021-00650-2
|
[12] |
J. Liang, J. Chen, G. Wang, J. Liu, N. Wang, and Z. Shi, Hydrogel-derived Co3ZnC/Co nanoparticles with heterojunctions supported on N-doped porous carbon and carbon nanotubes for the highly efficient oxygen reduction reaction in Zn–air batteries, ACS Appl. Mater. Interfaces, 14(2022), No. 43, p. 48789. doi: 10.1021/acsami.2c14939
|
[13] |
L. Gui, J.J. Huang, Y. Xing, et al., Near-infrared light-driven multifunctional metal ion (Cu2+)-loaded polydopamine nanomotors for therapeutic angiogenesis in critical limb ischemia, Nano Res., 16(2023), No. 4, p. 5108. doi: 10.1007/s12274-022-5356-2
|
[14] |
H.H. Yang, X.R. Qian, N. Zhang, et al., Alliance of atomic-scale/nanoscale Fe/Co active sites with hierarchically porous N-doped carbon frameworks for efficient electrocatalytic oxygen reduction, Rare Met., 42(2023), No. 11, p. 3766. doi: 10.1007/s12598-023-02397-8
|
[15] |
H.R. Li, L. Schill, R. Fehrmann, and A. Riisager, Recent developments of core–shell structured catalysts for the selective catalytic reduction of NO x with ammonia, Inorg. Chem. Front., 10(2023), No. 3, p. 727. doi: 10.1039/D2QI02106D
|
[16] |
X.L. Zhang, B.L. Liang, Z.Y. Lin, et al., Engineering heterostructured Co0.7Fe0.3@Co doped leaf-like carbon nanoplates from dual metal-organic frameworks for high-efficiency oxygen reduction reaction in microbial fuel cell, J. Power Sources, 520(2022), art. No. 230799. doi: 10.1016/j.jpowsour.2021.230799
|
[17] |
S. Liu, B.Q. Quan, M.J. Sheng, et al., A novel in situ growth ZIF-67 on biological porous carbon encapsulated phase change composites with electromagnetic interference shielding and multifunctional energy conversion, Nano Energy, 114(2023), art. No. 108669. doi: 10.1016/j.nanoen.2023.108669
|
[18] |
A.W. Wang, J.X. Ni, W. Wang, et al., MOF Derived Co−Fe nitrogen doped graphite carbon@crosslinked magnetic chitosan Micro−nanoreactor for environmental applications: Synergy enhancement effect of adsorption−PMS activation, Appl. Catal. B: Environ., 319(2022), art. No. 121926. doi: 10.1016/j.apcatb.2022.121926
|
[19] |
Y. Xiong, Z. Jiang, L. Gong, et al., Construction of Co/FeCo@Fe(Co)3O4 heterojunction rich in oxygen vacancies derived from metal–organic frameworks using O2 plasma as a high-performance bifunctional catalyst for rechargeable zinc–air batteries, J. Colloid Interface Sci., 649(2023), p. 36. doi: 10.1016/j.jcis.2023.06.040
|
[20] |
X.Y. Wang, X.Q. Xu, Y. Nie, R.H. Wang, and J.L. Zou, Electronic-state modulation of metallic Co-assisted Co7Fe3 alloy heterostructure for highly efficient and stable overall water splitting, Adv. Sci., 10(2023), No. 22, art. No. 2301961. doi: 10.1002/advs.202301961
|
[21] |
Z.M. Tang, L. Xu, C. Xie, et al., Synthesis of CuCo2S4@expanded graphite with crystal/amorphous heterointerface and defects for electromagnetic wave absorption, Nat. Commun., 14(2023), art. No. 5951. doi: 10.1038/s41467-023-41697-6
|
[22] |
J.J. Zhang, C.X. Xu, Y.J. Zhang, et al., Structural and compositional analysis of MOF-derived carbon nanomaterials for the oxygen reduction reaction, Chem. Commun., 60(2024), No. 19, p. 2572. doi: 10.1039/D3CC05653H
|
[23] |
H. Hu, Y. Liu, F.L. Shi, et al., Corrosion dynamics of carbon-supported platinum electrocatalysts with metal–carbon interactions revealed by In situ liquid transmission electron microscopy, Nano Lett, 24(2024), No. 7, p. 2157. doi: 10.1021/acs.nanolett.3c03839
|
[24] |
X.Y. Wang, Y. Yang, R. Wang, L. Li, X.H. Zhao, and W.M. Zhang, Porous Ni3S2–Co9S8 carbon aerogels derived from carrageenan/NiCo-MOF hydrogels as an efficient electrocatalyst for oxygen evolution in rechargeable Zn–air batteries, Langmuir, 38(2022), No. 23, p. 7280. doi: 10.1021/acs.langmuir.2c00805
|
[25] |
Y. Shen, S.Q. He, Y.Y. Zhuang, et al., Polypyrrole template-assisted synthesis of tubular Fe-NC nanostructure-based electrocatalysts for efficient oxygen reduction reaction in rechargeable zinc–air battery, ACS Appl. Nano Mater., 6(2023), No. 18, p. 16873. doi: 10.1021/acsanm.3c03056
|
[26] |
S.W. Xia, Q.X. Zhou, R.X. Sun, et al. , In-situ immobilization of CoNi nanoparticles into N-doped carbon nanotubes/nanowire-coupled superstructures as an efficient Mott-Schottky electrocatalyst toward electrocatalytic oxygen reduction, Chin. J. Catal., 54(2023), p. 278. doi: 10.1016/S1872-2067(23)64545-0
|
[27] |
L. Sun, J.H. Geng, M.Y. Gao, et al., Novel WS2/Fe0.95S1.05 hierarchical nanosphere as a highly efficient electrocatalyst for hydrogen evolution reaction, Chem. Eur. J., 27(2021), No. 42, p. 10998. doi: 10.1002/chem.202101182
|
[28] |
Y.Y. Zhuang, H. Cheng, C.F. Meng, B.Y. Chen, and H. Zhou, Self-catalyzed Co, N-doped carbon nanotubes-grafted hollow carbon polyhedrons as efficient trifunctional electrocatalysts for zinc–air batteries and self-powered overall water splitting, J. Colloid Interface Sci., 643(2023), p. 162. doi: 10.1016/j.jcis.2023.04.022
|
[29] |
Y.S. Wang, W.C. Peng, J. Wang, et al., Sulfamethoxazole degradation by regulating active sites on distilled spirits lees-derived biochar in a continuous flow fixed bed peroxymonosulfate reactor, Appl. Catal. B: Environ., 310(2022), art. No. 121342. doi: 10.1016/j.apcatb.2022.121342
|
[30] |
F. Shi, K.Y. Zhu, X.K. Li, E.D. Wang, X.F. Zhu, and W.S. Yang, Porous carbon layers wrapped CoFe alloy for ultrastable Zn–air batteries exceeding 20, 000 charging-discharging cycles, J. Energy Chem., 61(2021), p. 327. doi: 10.1016/j.jechem.2021.01.032
|
[31] |
J.H. Xian, S.S. Li, H. Su, et al., Electrosynthesis of α-amino acids from NO and other NO x species over CoFe alloy-decorated self-standing carbon fiber membranes, Angew. Chem. Int. Ed., 62(2023), No. 30, art. No. e202306726. doi: 10.1002/anie.202306726
|
[32] |
Y. Irmawati, F. Balqis, F. Destyorini, et al., Cobalt nanoparticles encapsulated with N-doped bamboo-like carbon nanofibers as bifunctional catalysts for oxygen reduction/evolution reactions in a wide pH range, ACS Appl. Nano Mater., 6(2023), No. 4, p. 2708. doi: 10.1021/acsanm.2c05091
|
[33] |
G.A. Gebreslase, M.V. Martínez-Huerta, and M.J. Lázaro, Recent progress on bimetallic NiCo and CoFe based electrocatalysts for alkaline oxygen evolution reaction: A review, J. Energy Chem., 67(2022), p. 101. doi: 10.1016/j.jechem.2021.10.009
|
[34] |
X.Y. Wang, H.S. Xu, S.H. Huang, et al., CoFe alloy nanoparticles embedded in vertically grown nanosheets on N-doped carbon nanofibers as a trifunctional electrocatalyst for high-performance microbial fuel cells, Appl. Surf. Sci., 609(2023), art. No. 155452. doi: 10.1016/j.apsusc.2022.155452
|
[35] |
A.M. Limaye, J.S. Zeng, A.P. Willard, and K. Manthiram, Bayesian data analysis reveals no preference for cardinal Tafel slopes in CO2 reduction electrocatalysis, Nat. Commun., 12(2021), art. No. 703. doi: 10.1038/s41467-021-20924-y
|
[36] |
A. Biswas, S. Nandi, N. Kamboj, J. Pan, A. Bhowmik, and R.S. Dey, Alteration of electronic band structure via a metal–semiconductor interfacial effect enables high faradaic efficiency for electrochemical nitrogen fixation, ACS Nano, 15(2021), No. 12, p. 20364. doi: 10.1021/acsnano.1c08652
|
[37] |
B.F. Shen, Y. Feng, Y. Wang, et al., Holey MXene nanosheets intimately coupled with ultrathin Ni–Fe layered double hydroxides for boosted hydrogen and oxygen evolution reactions, Carbon, 212(2023), art. No. 118141. doi: 10.1016/j.carbon.2023.118141
|
[38] |
P. Patta, Y.Y. Chen, M. Natesan, et al., Investigation of Zn-substituted FeCo2O4 for the oxygen evolution reaction and reaction mechanism monitoring through In situ near-ambient-pressure X-ray photoelectron spectroscopy, ACS Catal., 13(2023), No. 20, p. 13434. doi: 10.1021/acscatal.3c02326
|
[39] |
J. Li, F. Yang, Y.Z. Du, X.Y. Cai, Q.D. Hu, and J.L. Zhang, Bi0.15Sr0.85Co0.8Fe0.2O3−δ perovskite: A novel bifunctional oxygen electrocatalyst with superior durability in alkaline media, J. Mater. Sci. Technol., 108(2022), p. 158. doi: 10.1016/j.jmst.2021.09.027
|
[40] |
Y. Zhang, B.Y. Chen, Y.X. Qiao, et al., FeNi alloys incorporated N-doped carbon nanotubes as efficient bifunctional electrocatalyst with phase-dependent activity for oxygen and hydrogen evolution reactions, J. Mater. Sci. Technol., 201(2024), p. 157. doi: 10.1016/j.jmst.2024.03.046
|
[41] |
L.H. Song, J. Zhang, S. Sarkar, et al., Interface engineering of FeCo-Co structure as bifunctional oxygen electrocatalyst for rechargeable zinc–air batteries via alloying degree control strategy, Chem. Eng. J., 433(2022), art. No. 133686. doi: 10.1016/j.cej.2021.133686
|
[42] |
W.Y. Chen, J. Wu, Z.Y. Li, et al., High-density CoSe2 sites embedded within 2D porous N-doped carbon for high-performance oxygen reduction reaction electrocatalysis, Inorg. Chem., 63(2024), No. 9, p. 4429. doi: 10.1021/acs.inorgchem.4c00094
|
[43] |
H.Y. Xia, R.Y. Pang, X. Dong, et al., Boosting oxygen reduction reaction kinetics by designing rich vacancy coupling pentagons in the defective carbon, J. Am. Chem. Soc., 145(2023), No. 47, p. 25695. doi: 10.1021/jacs.3c08556
|
[44] |
X.K. Wang, Z.K. Chen, Z.K. Han, et al., Manipulation of new married edge-adjacent Fe2N5 catalysts and identification of active species for oxygen reduction in wide pH range, Adv. Funct. Mater., 32(2022), No. 18, art. No. 2111835. doi: 10.1002/adfm.202111835
|
[45] |
T.X. Tu, X. Zhou, P.F. Zhang, et al., Co7Fe3 nanoparticles confined in N-doped carbon nanocubes for highly efficient, rechargeable zinc–air batteries, ACS Sustainable Chem. Eng., 10(2022), No. 27, p. 8694. doi: 10.1021/acssuschemeng.1c08618
|
[46] |
X.F. Li, Y. Li, L.C. Zheng, et al., Optimization of Fe and Co distribution on Fe-CoZn-ZIF derived polyhedral carbon via secondary adsorption for reversible catalysis of oxygen and zinc–air batteries, J. Alloys Compd., 968(2023), art. No. 172152. doi: 10.1016/j.jallcom.2023.172152
|
[47] |
G.Y. Li, Y.T. Long, Z. Li, et al., Reducing the charging voltage of a Zn–air battery to 1.6 V enabled by redox radical-mediated biomass oxidation, ACS Sustainable Chem. Eng., 11(2023), No. 23, p. 8642. doi: 10.1021/acssuschemeng.3c01799
|
[48] |
L. Zhong, H. Zhou, R.F. Li, et al., Co/CoO x heterojunctions encapsulated N-doped carbon sheets via a dual-template-guided strategy as efficient electrocatalysts for rechargeable Zn–air battery, J. Colloid Interface Sci., 599(2021), p. 46. doi: 10.1016/j.jcis.2021.04.084
|
[49] |
Q.Y. Jin, L.P. Xiao, W.D. He, H. Cui, and C.X. Wang, Self-supported metal (Fe, Co, Ni)-embedded nitrogen-doping carbon nanorod framework as trifunctional electrode for flexible Zn–air batteries and switchable water electrolysis, Green Energy Environ., 8(2023), No. 6, p. 1644. doi: 10.1016/j.gee.2022.03.008
|