留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图(8)

数据统计

分享

计量
  • 文章访问数:  440
  • HTML全文浏览量:  190
  • PDF下载量:  30
  • 被引次数: 0
Junkang Chen, Yongyue Zhuang, Yanxin Qiao, Yu Zhang, Aihua Yuan, and Hu Zhou, Co/Co7Fe3 heterostructures with controllable alloying degree on carbon spheres as bifunctional electrocatalyst for rechargeable zinc–air batteries, Int. J. Miner. Metall. Mater.,(2025). https://doi.org/10.1007/s12613-024-2958-9
Cite this article as:
Junkang Chen, Yongyue Zhuang, Yanxin Qiao, Yu Zhang, Aihua Yuan, and Hu Zhou, Co/Co7Fe3 heterostructures with controllable alloying degree on carbon spheres as bifunctional electrocatalyst for rechargeable zinc–air batteries, Int. J. Miner. Metall. Mater.,(2025). https://doi.org/10.1007/s12613-024-2958-9
引用本文 PDF XML SpringerLink
研究论文

碳球负载可控合金化程度的Co/Co7Fe3异质结构作为可充电锌空气电池的双功能电催化剂



  • 通讯作者:

    周虎    E-mail: zhmiao119@sina.com

文章亮点

  • (1) 通过控制合金化程度在碳球表面负载了Co/Co7Fe3异质结构。
  • (2) 碳球载体以及Co和Co7Fe3之间的界面作用协同提升了ORR和OER催化效率。
  • (3) 基于Co/Co7Fe3催化剂的锌空气电池展现出稳定的充放电性能。
  • 探索具有高效氧还原反应(ORR)和氧析出反应(OER)的非贵金属电催化剂对于开发可充电锌空气电池(ZAB)极为关键。本文采用控制合金化程度的策略制备了Co/Co7Fe3异质结构修饰的氮掺杂碳球(NCS)(CoFe@NCS)。通过控制合金化程度调变催化剂的物相组成,最佳样品CoFe0.08@NCS在碱性电解质中的ORR半波电位为0.80 V,在10 mA·cm-2时的OER过电位为283 mV。研究表明,分级多孔结构及高活性Co7Fe3合金与金属Co之间界面电子耦合作用是该材料表现出优异双功能电催化活性和耐久性的主要原因。将CoFe0.08@NCS材料用作可充电液态ZAB的空气电极催化剂时,电池显示出较高的功率密度(157 mW·cm-2)并在150 h内保持稳定的充放电电压,优于以贵金属为催化剂的电池性能。此外,所组装的固态柔性ZAB在不同弯曲条件下展现出稳定的器件性能。本论文工作推进了金属/合金基电催化剂在可再生能源转换技术中的应用。
  • Research Article

    Co/Co7Fe3 heterostructures with controllable alloying degree on carbon spheres as bifunctional electrocatalyst for rechargeable zinc–air batteries

    + Author Affiliations
    • Exploring efficient and nonprecious metal electrocatalysts of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is crucial for developing rechargeable zinc–air batteries (ZABs). Herein, an alloying-degree control strategy was employed to fabricate nitrogen-doped carbon sphere (NCS) decorated with dual-phase Co/Co7Fe3 heterojunctions (CoFe@NCS). The phase composition of materials has been adjusted by controlling the alloying degree. The optimal CoFe0.08@NCS electrocatalyst displays a half-wave potential of 0.80 V for ORR and an overpotential of 283 mV at 10 mA·cm−2 for OER in an alkaline electrolyte. The intriguing bifunctional electrocatalytic activity and durability is attributed to the hierarchically porous structure and interfacial electron coupling of highly-active Co7Fe3 alloy and metallic Co species. When the CoFe0.08@NCS material is used as air–cathode catalyst of rechargeable liquid-state zinc–air battery (ZAB), the device shows a high peak power-density (157 mW·cm−2) and maintains a stable voltage gap over 150 h, outperforming those of the benchmark (Pt/C+RuO2)-based device. In particular, the as-fabricated solid-state flexible ZAB delivers a reliable compatibility under different bending conditions. Our work provides a promising strategy to develop metal/alloy-based electrocatalysts for the application in renewable energy conversion technologies.
    • loading
    • Supplementary Information-10.1007s12613-024-2958-9.doc
    • [1]
      X.W. Lv, Z. Wang, Z. Lai, et al., Rechargeable zinc-air batteries: Advances, challenges, and prospects, Small, 20(2024), No. 4, art. No. 2306396. doi: 10.1002/smll.202306396
      [2]
      S.J. Liu, X.H. Wan, Y. Sun, et al., Cobalt-based multicomponent nanoparticles supported on N-doped graphene as advanced cathodic catalyst for zinc–air batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 12, p. 2212. doi: 10.1007/s12613-022-2498-0
      [3]
      S.C. Qiao, H.W. Shou, W.J. Xu, et al., Regulating and identifying the structures of PdAu alloys with splendid oxygen reduction activity for rechargeable zinc–air batteries, Energy Environ. Sci., 16(2023), No. 12, p. 5842. doi: 10.1039/D3EE02719H
      [4]
      P.Q. Chen, Y.X. Tai, H. Wu, Y.F. Gao, J.Y. Chen, and J.G. Cheng, Novel confinement combustion method of nanosized WC/C for efficient electrocatalytic oxygen reduction, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1627. doi: 10.1007/s12613-021-2265-7
      [5]
      C.X. Zhao, J.N. Liu, J. Wang, D. Ren, B.Q. Li, and Q. Zhang, Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts, Chem. Soc. Rev., 50(2021), No. 13, p. 7745. doi: 10.1039/D1CS00135C
      [6]
      S. Das, A. Kundu, T. Kuila, and N.C. Murmu, Recent advancements on designing transition metal-based carbon-supported single atom catalysts for oxygen electrocatalysis: Miles to go for sustainable Zn–air batteries, Energy Storage Mater., 61(2023), art. No. 102890. doi: 10.1016/j.ensm.2023.102890
      [7]
      Z.B. Chen, K. Huang, B.W. Zhang, et al., Corrosion engineering on AlCoCrFeNi high-entropy alloys toward highly efficient electrocatalysts for the oxygen evolution of alkaline seawater, Int. J. Miner. Metall. Mater., 30(2023), No. 10, p. 1922. doi: 10.1007/s12613-023-2624-7
      [8]
      Z. Peng, C.C. Han, C.Y. Huang, Z.H. Dong, and X.G. Ma, Preventing surface passivation of transition metal nanoparticles in oxygen electrocatalyst to extend the lifespan of Zn–air battery, J. Mater. Sci. Technol., 128(2022), p. 205. doi: 10.1016/j.jmst.2022.03.033
      [9]
      W.W. Tian, J.T. Ren, and Z.Y. Yuan, In-situ cobalt-nickel alloy catalyzed nitrogen-doped carbon nanotube arrays as superior freestanding air electrodes for flexible zinc–air and aluminum–air batteries, Appl. Catal. B: Environ., 317(2022), art. No. 121764. doi: 10.1016/j.apcatb.2022.121764
      [10]
      Y. Wang, W.H. Luo, S. Gong, et al., Synthesis of high-entropy-alloy nanoparticles by a step-alloying strategy as a superior multifunctional electrocatalyst, Adv. Mater., 35(2023), No. 36, art. No. 2302499. doi: 10.1002/adma.202302499
      [11]
      Y. Niu, X. Teng, S. Gong, M. Xu, S.G. Sun, and Z. Chen, Engineering two-phase bifunctional oxygen electrocatalysts with tunable and synergetic components for flexible Zn–air batteries, Nano-Micro Lett., 13(2021), art. No. 126. doi: 10.1007/s40820-021-00650-2
      [12]
      J. Liang, J. Chen, G. Wang, J. Liu, N. Wang, and Z. Shi, Hydrogel-derived Co3ZnC/Co nanoparticles with heterojunctions supported on N-doped porous carbon and carbon nanotubes for the highly efficient oxygen reduction reaction in Zn–air batteries, ACS Appl. Mater. Interfaces, 14(2022), No. 43, p. 48789. doi: 10.1021/acsami.2c14939
      [13]
      L. Gui, J.J. Huang, Y. Xing, et al., Near-infrared light-driven multifunctional metal ion (Cu2+)-loaded polydopamine nanomotors for therapeutic angiogenesis in critical limb ischemia, Nano Res., 16(2023), No. 4, p. 5108. doi: 10.1007/s12274-022-5356-2
      [14]
      H.H. Yang, X.R. Qian, N. Zhang, et al., Alliance of atomic-scale/nanoscale Fe/Co active sites with hierarchically porous N-doped carbon frameworks for efficient electrocatalytic oxygen reduction, Rare Met., 42(2023), No. 11, p. 3766. doi: 10.1007/s12598-023-02397-8
      [15]
      H.R. Li, L. Schill, R. Fehrmann, and A. Riisager, Recent developments of core–shell structured catalysts for the selective catalytic reduction of NO x with ammonia, Inorg. Chem. Front., 10(2023), No. 3, p. 727. doi: 10.1039/D2QI02106D
      [16]
      X.L. Zhang, B.L. Liang, Z.Y. Lin, et al., Engineering heterostructured Co0.7Fe0.3@Co doped leaf-like carbon nanoplates from dual metal-organic frameworks for high-efficiency oxygen reduction reaction in microbial fuel cell, J. Power Sources, 520(2022), art. No. 230799. doi: 10.1016/j.jpowsour.2021.230799
      [17]
      S. Liu, B.Q. Quan, M.J. Sheng, et al., A novel in situ growth ZIF-67 on biological porous carbon encapsulated phase change composites with electromagnetic interference shielding and multifunctional energy conversion, Nano Energy, 114(2023), art. No. 108669. doi: 10.1016/j.nanoen.2023.108669
      [18]
      A.W. Wang, J.X. Ni, W. Wang, et al., MOF Derived Co−Fe nitrogen doped graphite carbon@crosslinked magnetic chitosan Micro−nanoreactor for environmental applications: Synergy enhancement effect of adsorption−PMS activation, Appl. Catal. B: Environ., 319(2022), art. No. 121926. doi: 10.1016/j.apcatb.2022.121926
      [19]
      Y. Xiong, Z. Jiang, L. Gong, et al., Construction of Co/FeCo@Fe(Co)3O4 heterojunction rich in oxygen vacancies derived from metal–organic frameworks using O2 plasma as a high-performance bifunctional catalyst for rechargeable zinc–air batteries, J. Colloid Interface Sci., 649(2023), p. 36. doi: 10.1016/j.jcis.2023.06.040
      [20]
      X.Y. Wang, X.Q. Xu, Y. Nie, R.H. Wang, and J.L. Zou, Electronic-state modulation of metallic Co-assisted Co7Fe3 alloy heterostructure for highly efficient and stable overall water splitting, Adv. Sci., 10(2023), No. 22, art. No. 2301961. doi: 10.1002/advs.202301961
      [21]
      Z.M. Tang, L. Xu, C. Xie, et al., Synthesis of CuCo2S4@expanded graphite with crystal/amorphous heterointerface and defects for electromagnetic wave absorption, Nat. Commun., 14(2023), art. No. 5951. doi: 10.1038/s41467-023-41697-6
      [22]
      J.J. Zhang, C.X. Xu, Y.J. Zhang, et al., Structural and compositional analysis of MOF-derived carbon nanomaterials for the oxygen reduction reaction, Chem. Commun., 60(2024), No. 19, p. 2572. doi: 10.1039/D3CC05653H
      [23]
      H. Hu, Y. Liu, F.L. Shi, et al., Corrosion dynamics of carbon-supported platinum electrocatalysts with metal–carbon interactions revealed by In situ liquid transmission electron microscopy, Nano Lett, 24(2024), No. 7, p. 2157. doi: 10.1021/acs.nanolett.3c03839
      [24]
      X.Y. Wang, Y. Yang, R. Wang, L. Li, X.H. Zhao, and W.M. Zhang, Porous Ni3S2–Co9S8 carbon aerogels derived from carrageenan/NiCo-MOF hydrogels as an efficient electrocatalyst for oxygen evolution in rechargeable Zn–air batteries, Langmuir, 38(2022), No. 23, p. 7280. doi: 10.1021/acs.langmuir.2c00805
      [25]
      Y. Shen, S.Q. He, Y.Y. Zhuang, et al., Polypyrrole template-assisted synthesis of tubular Fe-NC nanostructure-based electrocatalysts for efficient oxygen reduction reaction in rechargeable zinc–air battery, ACS Appl. Nano Mater., 6(2023), No. 18, p. 16873. doi: 10.1021/acsanm.3c03056
      [26]
      S.W. Xia, Q.X. Zhou, R.X. Sun, et al. , In-situ immobilization of CoNi nanoparticles into N-doped carbon nanotubes/nanowire-coupled superstructures as an efficient Mott-Schottky electrocatalyst toward electrocatalytic oxygen reduction, Chin. J. Catal., 54(2023), p. 278. doi: 10.1016/S1872-2067(23)64545-0
      [27]
      L. Sun, J.H. Geng, M.Y. Gao, et al., Novel WS2/Fe0.95S1.05 hierarchical nanosphere as a highly efficient electrocatalyst for hydrogen evolution reaction, Chem. Eur. J., 27(2021), No. 42, p. 10998. doi: 10.1002/chem.202101182
      [28]
      Y.Y. Zhuang, H. Cheng, C.F. Meng, B.Y. Chen, and H. Zhou, Self-catalyzed Co, N-doped carbon nanotubes-grafted hollow carbon polyhedrons as efficient trifunctional electrocatalysts for zinc–air batteries and self-powered overall water splitting, J. Colloid Interface Sci., 643(2023), p. 162. doi: 10.1016/j.jcis.2023.04.022
      [29]
      Y.S. Wang, W.C. Peng, J. Wang, et al., Sulfamethoxazole degradation by regulating active sites on distilled spirits lees-derived biochar in a continuous flow fixed bed peroxymonosulfate reactor, Appl. Catal. B: Environ., 310(2022), art. No. 121342. doi: 10.1016/j.apcatb.2022.121342
      [30]
      F. Shi, K.Y. Zhu, X.K. Li, E.D. Wang, X.F. Zhu, and W.S. Yang, Porous carbon layers wrapped CoFe alloy for ultrastable Zn–air batteries exceeding 20, 000 charging-discharging cycles, J. Energy Chem., 61(2021), p. 327. doi: 10.1016/j.jechem.2021.01.032
      [31]
      J.H. Xian, S.S. Li, H. Su, et al., Electrosynthesis of α-amino acids from NO and other NO x species over CoFe alloy-decorated self-standing carbon fiber membranes, Angew. Chem. Int. Ed., 62(2023), No. 30, art. No. e202306726. doi: 10.1002/anie.202306726
      [32]
      Y. Irmawati, F. Balqis, F. Destyorini, et al., Cobalt nanoparticles encapsulated with N-doped bamboo-like carbon nanofibers as bifunctional catalysts for oxygen reduction/evolution reactions in a wide pH range, ACS Appl. Nano Mater., 6(2023), No. 4, p. 2708. doi: 10.1021/acsanm.2c05091
      [33]
      G.A. Gebreslase, M.V. Martínez-Huerta, and M.J. Lázaro, Recent progress on bimetallic NiCo and CoFe based electrocatalysts for alkaline oxygen evolution reaction: A review, J. Energy Chem., 67(2022), p. 101. doi: 10.1016/j.jechem.2021.10.009
      [34]
      X.Y. Wang, H.S. Xu, S.H. Huang, et al., CoFe alloy nanoparticles embedded in vertically grown nanosheets on N-doped carbon nanofibers as a trifunctional electrocatalyst for high-performance microbial fuel cells, Appl. Surf. Sci., 609(2023), art. No. 155452. doi: 10.1016/j.apsusc.2022.155452
      [35]
      A.M. Limaye, J.S. Zeng, A.P. Willard, and K. Manthiram, Bayesian data analysis reveals no preference for cardinal Tafel slopes in CO2 reduction electrocatalysis, Nat. Commun., 12(2021), art. No. 703. doi: 10.1038/s41467-021-20924-y
      [36]
      A. Biswas, S. Nandi, N. Kamboj, J. Pan, A. Bhowmik, and R.S. Dey, Alteration of electronic band structure via a metal–semiconductor interfacial effect enables high faradaic efficiency for electrochemical nitrogen fixation, ACS Nano, 15(2021), No. 12, p. 20364. doi: 10.1021/acsnano.1c08652
      [37]
      B.F. Shen, Y. Feng, Y. Wang, et al., Holey MXene nanosheets intimately coupled with ultrathin Ni–Fe layered double hydroxides for boosted hydrogen and oxygen evolution reactions, Carbon, 212(2023), art. No. 118141. doi: 10.1016/j.carbon.2023.118141
      [38]
      P. Patta, Y.Y. Chen, M. Natesan, et al., Investigation of Zn-substituted FeCo2O4 for the oxygen evolution reaction and reaction mechanism monitoring through In situ near-ambient-pressure X-ray photoelectron spectroscopy, ACS Catal., 13(2023), No. 20, p. 13434. doi: 10.1021/acscatal.3c02326
      [39]
      J. Li, F. Yang, Y.Z. Du, X.Y. Cai, Q.D. Hu, and J.L. Zhang, Bi0.15Sr0.85Co0.8Fe0.2O3−δ perovskite: A novel bifunctional oxygen electrocatalyst with superior durability in alkaline media, J. Mater. Sci. Technol., 108(2022), p. 158. doi: 10.1016/j.jmst.2021.09.027
      [40]
      Y. Zhang, B.Y. Chen, Y.X. Qiao, et al., FeNi alloys incorporated N-doped carbon nanotubes as efficient bifunctional electrocatalyst with phase-dependent activity for oxygen and hydrogen evolution reactions, J. Mater. Sci. Technol., 201(2024), p. 157. doi: 10.1016/j.jmst.2024.03.046
      [41]
      L.H. Song, J. Zhang, S. Sarkar, et al., Interface engineering of FeCo-Co structure as bifunctional oxygen electrocatalyst for rechargeable zinc–air batteries via alloying degree control strategy, Chem. Eng. J., 433(2022), art. No. 133686. doi: 10.1016/j.cej.2021.133686
      [42]
      W.Y. Chen, J. Wu, Z.Y. Li, et al., High-density CoSe2 sites embedded within 2D porous N-doped carbon for high-performance oxygen reduction reaction electrocatalysis, Inorg. Chem., 63(2024), No. 9, p. 4429. doi: 10.1021/acs.inorgchem.4c00094
      [43]
      H.Y. Xia, R.Y. Pang, X. Dong, et al., Boosting oxygen reduction reaction kinetics by designing rich vacancy coupling pentagons in the defective carbon, J. Am. Chem. Soc., 145(2023), No. 47, p. 25695. doi: 10.1021/jacs.3c08556
      [44]
      X.K. Wang, Z.K. Chen, Z.K. Han, et al., Manipulation of new married edge-adjacent Fe2N5 catalysts and identification of active species for oxygen reduction in wide pH range, Adv. Funct. Mater., 32(2022), No. 18, art. No. 2111835. doi: 10.1002/adfm.202111835
      [45]
      T.X. Tu, X. Zhou, P.F. Zhang, et al., Co7Fe3 nanoparticles confined in N-doped carbon nanocubes for highly efficient, rechargeable zinc–air batteries, ACS Sustainable Chem. Eng., 10(2022), No. 27, p. 8694. doi: 10.1021/acssuschemeng.1c08618
      [46]
      X.F. Li, Y. Li, L.C. Zheng, et al., Optimization of Fe and Co distribution on Fe-CoZn-ZIF derived polyhedral carbon via secondary adsorption for reversible catalysis of oxygen and zinc–air batteries, J. Alloys Compd., 968(2023), art. No. 172152. doi: 10.1016/j.jallcom.2023.172152
      [47]
      G.Y. Li, Y.T. Long, Z. Li, et al., Reducing the charging voltage of a Zn–air battery to 1.6 V enabled by redox radical-mediated biomass oxidation, ACS Sustainable Chem. Eng., 11(2023), No. 23, p. 8642. doi: 10.1021/acssuschemeng.3c01799
      [48]
      L. Zhong, H. Zhou, R.F. Li, et al., Co/CoO x heterojunctions encapsulated N-doped carbon sheets via a dual-template-guided strategy as efficient electrocatalysts for rechargeable Zn–air battery, J. Colloid Interface Sci., 599(2021), p. 46. doi: 10.1016/j.jcis.2021.04.084
      [49]
      Q.Y. Jin, L.P. Xiao, W.D. He, H. Cui, and C.X. Wang, Self-supported metal (Fe, Co, Ni)-embedded nitrogen-doping carbon nanorod framework as trifunctional electrode for flexible Zn–air batteries and switchable water electrolysis, Green Energy Environ., 8(2023), No. 6, p. 1644. doi: 10.1016/j.gee.2022.03.008

    Catalog


    • /

      返回文章
      返回