留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 12
Dec.  2024

图(15)  / 表(6)

数据统计

分享

计量
  • 文章访问数:  594
  • HTML全文浏览量:  265
  • PDF下载量:  33
  • 被引次数: 0
Dake Zhao, Guijun Bi, Jie Chen, WaiMeng Quach, Ran Feng, Antti Salminen,  and Fangyong Niu, A critical review of direct laser additive manufacturing ceramics, Int. J. Miner. Metall. Mater., 31(2024), No. 12, pp. 2607-2626. https://doi.org/10.1007/s12613-024-2960-2
Cite this article as:
Dake Zhao, Guijun Bi, Jie Chen, WaiMeng Quach, Ran Feng, Antti Salminen,  and Fangyong Niu, A critical review of direct laser additive manufacturing ceramics, Int. J. Miner. Metall. Mater., 31(2024), No. 12, pp. 2607-2626. https://doi.org/10.1007/s12613-024-2960-2
引用本文 PDF XML SpringerLink
综述

直接激光增材制造陶瓷研究进展综述


  • 通讯作者:

    毕贵军    E-mail: gj.bi@giim.ac.cn

文章亮点

  • (1) 介绍了一步直接激光增材制造陶瓷的工艺原理和材料体系。
  • (2) 综述了直接激光增材制造陶瓷成形质量、微观组织和力学性能及改善策略。
  • (3) 展望了直接激光增材制造在高性能陶瓷方面的未来发展趋势和潜在应用。
  • 现代工业对成型-烧结一体化的迫切需求激发了陶瓷直接增材制造技术的发展。在各种增材制造技术中,直接激光增材制造(DLAM)由于无需模具和粘合剂以及仅需一步即可灵活制造陶瓷的特点,受到陶瓷制备和增材制造领域持续和广泛的关注。在过去的十多年中,利用DLAM制备高性能陶瓷取得了显著和令人鼓舞的进展,这些材料包括Al2O3、ZrO2、Al2O3/ZrO2、SiC等。然而,孔隙和裂纹缺陷以及由此导致的几何尺寸有限、力学性能不足等挑战,阻碍了DLAM制造陶瓷部件在高端设备中的实际应用。本文对DLAM技术制备多种陶瓷材料的研究进展进行了批判性评述,涵盖几何性能、裂纹与孔隙、表面粗糙度等成形质量及抑制策略,同时关注微观组织和力学性能以及提升方法。最后,本文对该领域当前面临的挑战、未来研究机会和潜在应用进行了总结和展望。
  • Review

    A critical review of direct laser additive manufacturing ceramics

    + Author Affiliations
    • The urgent need for integrated molding and sintering across various industries has inspired the development of additive manufacturing (AM) ceramics. Among the different AM technologies, direct laser additive manufacturing (DLAM) stands out as a group of highly promising technology for flexibly manufacturing ceramics without molds and adhesives in a single step. Over the last decade, significant and encouraging progress has been accomplished in DLAM of high-performance ceramics, including Al2O3, ZrO2, Al2O3/ZrO2, SiC, and others. However, high-performance ceramics fabricated by DLAM face challenges such as formation of pores and cracks and resultant low mechanical properties, hindering their practical application in high-end equipment. Further improvements are necessary before they can be widely adopted. Methods such as field-assisted techniques and post-processing can be employed to address these challenges, but a more systematic review is needed. This work aims to critically review the advancements in direct selective laser sintering/melting (SLS/SLM) and laser directed energy deposition (LDED) for various ceramic material systems. Additionally, it provides an overview of the current challenges, future research opportunities, and potential applications associated with DLAM of high-performance ceramics.
    • loading
    • [1]
      D.K. Zhao, G.J. Bi, J. Chen, et al., Melt-grown behaviour of heat treated high-purity alumina ceramics prepared by laser directed energy deposition, Ceram. Int., 50(2024), No. 1, p. 1777. doi: 10.1016/j.ceramint.2023.10.277
      [2]
      B.K. Yıldız, H. Yılmaz, and Y.K. Tür, Influence of nickel addition on the microstructure and mechanical properties of Al2O3–5vol%ZrO2 ceramic composites prepared via precipitation method, Int. J. Miner. Metall. Mater., 26(2019), No. 7, p. 908. doi: 10.1007/s12613-019-1792-y
      [3]
      J.X. Wen, T.B. Zhu, Z.P. Xie, W.B. Cao, and W. Liu, A strategy to obtain a high-density and high-strength zirconia ceramic via ceramic injection molding by the modification of oleic acid, Int. J. Miner. Metall. Mater., 24(2017), No. 6, p. 718. doi: 10.1007/s12613-017-1455-9
      [4]
      R.Y. Su, J.Y. Chen, X.Q. Zhang, et al., Accuracy controlling and mechanical behaviors of precursor-derived ceramic SiOC microlattices by projection micro stereolithography (PμSL) 3D printing, J. Adv. Ceram., 12(2023), No. 11, p. 2134. doi: 10.26599/JAC.2023.9220818
      [5]
      D.K. Zhao, D.J. Wu, J. Shi, F.Y. Niu, and G.Y. Ma, Microstructure and mechanical properties of melt-grown alumina-mullite/glass composites fabricated by directed laser deposition, J. Adv. Ceram., 11(2022), No. 1, p. 75. doi: 10.1007/s40145-021-0518-6
      [6]
      N.P. Padture, Advanced structural ceramics in aerospace propulsion, Nat. Mater., 15(2016), p. 804. doi: 10.1038/nmat4687
      [7]
      S.J. Zinkle and G.S. Was, Materials challenges in nuclear energy, Acta Mater., 61(2013), No. 3, p. 735. doi: 10.1016/j.actamat.2012.11.004
      [8]
      C.L. Cramer, E. Ionescu, M. Graczyk-Zajac, et al., Additive manufacturing of ceramic materials for energy applications: Road map and opportunities, J. Eur. Ceram. Soc., 42(2022), No. 7, p. 3049. doi: 10.1016/j.jeurceramsoc.2022.01.058
      [9]
      K.P. Misra and R.D.K. Misra, Advanced ceramics, [in] K.P. Misra and R.D.K. Misra, eds., Ceramic Science and Engineering, Elsevier, Amsterdam, 2022, p. 21.
      [10]
      P.X. Zhang, E.H. Wang, J.J. Liu, T. Yang, H.L. Wang, and X.M. Hou, Porous high-entropy rare-earth phosphate (REPO4, RE = La, Sm, Eu, Ce, Pr and Gd) ceramics with excellent thermal insulation performance via pore structure tailoring, Int. J. Miner. Metall. Mater., 31(2024), No. 7, p. 1651. doi: 10.1007/s12613-023-2788-1
      [11]
      M. Rodchom, P. Wimuktiwan, K. Soongprasit, D. Atong, and S. Vichaphund, Preparation and characterization of ceramic materials with low thermal conductivity and high strength using high-calcium fly ash, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1635. doi: 10.1007/s12613-021-2367-2
      [12]
      M.H. Zhang, B.C. Zhang, Y.J. Wen, and X.H. Qu, Research progress on selective laser melting processing for nickel-based superalloy, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 369. doi: 10.1007/s12613-021-2331-1
      [13]
      X.Q. Zhang, K.Q. Zhang, B. Zhang, Y. Li, and R.J. He, Mechanical properties of additively-manufactured cellular ceramic structures: A comprehensive study, J. Adv. Ceram., 11(2022), No. 12, p. 1918. doi: 10.1007/s40145-022-0656-5
      [14]
      X.K. Zhao and X.S. Hai, Microstructure and tribological behavior of the nickel-coated–graphite-reinforced Babbitt metal composite fabricated via selective laser melting, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 320. doi: 10.1007/s12613-020-2195-9
      [15]
      Y.L. Lin, D. Wang, C. Yang, W.W. Zhang, and Z. Wang, An Al–Al interpenetrating-phase composite by 3D printing and hot extrusion, Int. J. Miner. Metall. Mater., 30(2023), No. 4, p. 678. doi: 10.1007/s12613-022-2543-z
      [16]
      K.Q. Zhang, Q.Y. Meng, Z.L. Qu, and R.J. He, A review of defects in vat photopolymerization additive-manufactured ceramics: Characterization, control, and challenges, J. Eur. Ceram. Soc., 44(2024), No. 3, p. 1361. doi: 10.1016/j.jeurceramsoc.2023.10.067
      [17]
      Y.B. Shan, Y. Bai, S. Yang, et al., 3D-printed strontium-incorporated β-TCP bioceramic triply periodic minimal surface scaffolds with simultaneous high porosity, enhanced strength, and excellent bioactivity, J. Adv. Ceram., 12(2023), No. 9, p. 1671. doi: 10.26599/JAC.2023.9220787
      [18]
      W. Zheng, J.M. Wu, S. Chen, et al., Influence of Al2O3 content on mechanical properties of silica-based ceramic cores prepared by stereolithography, J. Adv. Ceram., 10(2021), No. 6, p. 1381. doi: 10.1007/s40145-021-0513-y
      [19]
      M. Schmidt, M. Merklein, D. Bourell, et al., Laser based additive manufacturing in industry and academia, CIRP Ann., 66(2017), No. 2, p. 561. doi: 10.1016/j.cirp.2017.05.011
      [20]
      S. Dadhania, 3D Printing Ceramics 2022–2032: Technology and Market Outlook, 2022 [2023-11-26]. https://www.idtechex.com/en/research-report/3d-printing-ceramics-2022-2032-technology-and-market-outlook/834
      [21]
      S. Pfeiffer, K. Florio, D. Puccio, et al., Direct laser additive manufacturing of high performance oxide ceramics: A state-of-the-art review, J. Eur. Ceram. Soc., 41(2021), No. 13, p. 6087. doi: 10.1016/j.jeurceramsoc.2021.05.035
      [22]
      Y. Lakhdar, C. Tuck, J. Binner, A. Terry, and R. Goodridge, Additive manufacturing of advanced ceramic materials, Prog. Mater. Sci., 116(2021), art. No. 100736. doi: 10.1016/j.pmatsci.2020.100736
      [23]
      Z.Q. Fan, Q.Y. Tan, C.W. Kang, and H. Huang, Advances and challenges in direct additive manufacturing of dense ceramic oxides, Int. J. Extreme Manuf., 6(2024), No. 5, art. No. 052004. doi: 10.1088/2631-7990/ad5424
      [24]
      E. Juste, F. Petit, V. Lardot, and F. Cambier, Shaping of ceramic parts by selective laser melting of powder bed, J. Mater. Res., 29(2014), No. 17, p. 2086. doi: 10.1557/jmr.2014.127
      [25]
      Z.Q. Fan, M.Y. Lu, and H. Huang, Selective laser melting of alumina: A single track study, Ceram. Int., 44(2018), No. 8, p. 9484. doi: 10.1016/j.ceramint.2018.02.166
      [26]
      L. Ferrage, G. Bertrand, and P. Lenormand, Dense yttria-stabilized zirconia obtained by direct selective laser sintering, Addit. Manuf., 21(2018), p. 472. doi: 10.1016/j.addma.2018.02.005
      [27]
      M. Abdelmoula, G. Küçüktürk, D. Grossin, A.M. Zarazaga, F. Maury, and M. Ferrato, Direct selective laser sintering of silicon carbide: Realizing the full potential through process parameter optimization, Ceram. Int., 49(2023), No. 20, p. 32426. doi: 10.1016/j.ceramint.2023.07.189
      [28]
      K.C. Datsiou, E. Saleh, F. Spirrett, R. Goodridge, I. Ashcroft, and D. Eustice, Additive manufacturing of glass with laser powder bed fusion, J. Am. Ceram. Soc., 102(2019), No. 8, p. 4410. doi: 10.1111/jace.16440
      [29]
      A. Ratsimba, A. Zerrouki, N. Tessier-Doyen, et al., Densification behaviour and three-dimensional printing of Y2O3 ceramic powder by selective laser sintering, Ceram. Int., 47(2021), No. 6, p. 7465. doi: 10.1016/j.ceramint.2020.11.087
      [30]
      X. Zhang, F. Wang, Z.P. Wu, et al., Direct selective laser sintering of hexagonal barium titanate ceramics, J. Am. Ceram. Soc., 104(2021), No. 3, p. 1271. doi: 10.1111/jace.17568
      [31]
      X. Zhang, N. Li, X. Chen, M. Stroup, Y.F. Lu, and B. Cui, Direct selective laser sintering of high-entropy carbide ceramics, J. Mater. Res., 38(2023), No. 1, p. 187. doi: 10.1557/s43578-022-00766-0
      [32]
      J. Wilkes, Y.C. Hagedorn, W. Meiners, and K. Wissenbach, Additive manufacturing of ZrO2–Al2O3 ceramic components by selective laser melting, Rapid Prototyping J., 19(2013), No. 1, p. 51. doi: 10.1108/13552541311292736
      [33]
      F. Verga, M. Borlaf, L. Conti, et al., Laser-based powder bed fusion of alumina toughened zirconia, Addit. Manuf., 31(2020), art. No. 100959. doi: 10.1016/j.addma.2019.100959
      [34]
      Y. Zhang, K. Zhang, D. Chen, et al., Morphology and formation mechanism of cracks in Al2O3–ZrO2 eutectic ceramics fabricated via laser powder bed fusion, J. Am. Ceram. Soc., 107(2024), No. 4, p. 2128. doi: 10.1111/jace.19586
      [35]
      Z.L. Shen, H.J. Su, H.F. Liu, et al., Directly fabricated Al2O3/GdAlO3 eutectic ceramic with large smooth surface by selective laser melting: Rapid solidification behavior and thermal field simulation, J. Eur. Ceram. Soc., 42(2022), No. 3, p. 1088. doi: 10.1016/j.jeurceramsoc.2021.11.003
      [36]
      H.F. Liu, H.J. Su, Z.L. Shen, et al., Direct formation of Al2O3/GdAlO3/ZrO2 ternary eutectic ceramics by selective laser melting: Microstructure evolutions, J. Eur. Ceram. Soc., 38(2018), No. 15, p. 5144. doi: 10.1016/j.jeurceramsoc.2018.07.040
      [37]
      V.K. Balla, S. Bose, and A. Bandyopadhyay, Processing of bulk alumina ceramics using laser engineered net shaping, Int. J. Appl. Ceram. Technol., 5(2008), No. 3, p. 234. doi: 10.1111/j.1744-7402.2008.02202.x
      [38]
      F.Y. Niu, D.J. Wu, F. Lu, G. Liu, G.Y. Ma, and Z.Y. Jia, Microstructure and macro properties of Al2O3 ceramics prepared by laser engineered net shaping, Ceram. Int., 44(2018), No. 12, p. 14303. doi: 10.1016/j.ceramint.2018.05.036
      [39]
      Z.Q. Fan, Y.T. Zhao, M.Y. Lu, and H. Huang, Yttria stabilized zirconia (YSZ) thin wall structures fabricated using laser engineered net shaping (LENS), Int. J. Adv. Manuf. Technol., 105(2019), No. 11, p. 4491. doi: 10.1007/s00170-019-03322-z
      [40]
      J.M. Pappas, A.R. Thakur, E.C. Kinzel, and X.Y. Dong, Direct 3D printing of transparent magnesium aluminate spinel ceramics, J. Laser Appl., 33(2021), No. 1, art. No. 012018. doi: 10.2351/7.0000327
      [41]
      D.J. Wu, D.K. Zhao, Y.F. Huang, F.Y. Niu, and G.Y. Ma, Shaping quality, microstructure, and mechanical properties of melt-grown mullite ceramics by directed laser deposition, J. Alloys Compd., 871(2021), art. No. 159609. doi: 10.1016/j.jallcom.2021.159609
      [42]
      F.Y. Niu, D.J. Wu, G.Y. Ma, J.T. Wang, M.H. Guo, and B. Zhang, Nanosized microstructure of Al2O3–ZrO2 (Y2O3) eutectics fabricated by laser engineered net shaping, Scripta Mater., 95(2015), p. 39. doi: 10.1016/j.scriptamat.2014.09.026
      [43]
      Y.B. Hu, H. Wang, W.L. Cong, and B. Zhao, Directed energy deposition of zirconia-toughened alumina ceramic: Novel microstructure formation and mechanical performance, J. Manuf. Sci. Eng., 142(2020), No. 2, art. No. 021005. doi: 10.1115/1.4045626
      [44]
      Z.Q. Fan, Y. Yin, Q.Y. Tan, et al., Unveiling solidification mode transition and crystallographic characteristics in laser 3D-printed Al2O3–ZrO2 eutectic ceramics, Scripta Mater., 210(2022), art. No. 114433. doi: 10.1016/j.scriptamat.2021.114433
      [45]
      S. Yan, Y.F. Huang, D.K. Zhao, F.Y. Niu, G.Y. Ma, and D.J. Wu, 3D printing of nano-scale Al2O3–ZrO2 eutectic ceramic: Principle analysis and process optimization of pores, Addit. Manuf., 28(2019), p. 120. doi: 10.1016/j.addma.2019.04.024
      [46]
      F.Z. Li, X.W. Zhang, C.Y. Sui, J.Z. Wu, H.Y. Wei, and Y. Zhang, Microstructure and mechanical properties of Al2O3–ZrO2 ceramic deposited by laser direct material deposition, Ceram. Int., 44(2018), No. 15, p. 18960. doi: 10.1016/j.ceramint.2018.07.135
      [47]
      J.M. Pappas, A.R. Thakur, and X.Y. Dong, Effects of zirconia doping on additively manufactured alumina ceramics by laser direct deposition, Mater. Des., 192(2020), art. No. 108711. doi: 10.1016/j.matdes.2020.108711
      [48]
      Y.F. Huang, D.J. Wu, D.K. Zhao, F.Y. Niu, and G.Y. Ma, Investigation of melt-growth alumina/aluminum titanate composite ceramics prepared by directed energy deposition, Int. J. Extreme Manuf., 3(2021), No. 3, art. No. 035101. doi: 10.1088/2631-7990/abf71a
      [49]
      H.J. Su, H.F. Liu, H. Jiang, et al., One-step preparation of melt-grown Al2O3/GdAlO3/ZrO2 eutectic ceramics with large size and irregular shape by directed energy deposition, Addit. Manuf., 70(2023), art. No. 103563. doi: 10.1016/j.addma.2023.103563
      [50]
      Z.Q. Fan, Y.T. Zhao, Q.Y. Tan, et al., Nanostructured Al2O3–YAG–ZrO2 ternary eutectic components prepared by laser engineered net shaping, Acta Mater., 170(2019), p. 24. doi: 10.1016/j.actamat.2019.03.020
      [51]
      Z.Q. Fan, Y.T. Zhao, Q.Y. Tan, B.W. Yu, M.X. Zhang, and H. Huang, New insights into the growth mechanism of 3D-printed Al2O3–Y3Al5O12 binary eutectic composites, Scripta Mater., 178(2020), p. 274. doi: 10.1016/j.scriptamat.2019.11.040
      [52]
      Y.D. Qiu, J.M. Wu, A.N. Chen, et al., Balling phenomenon and cracks in alumina ceramics prepared by direct selective laser melting assisted with pressure treatment, Ceram. Int., 46(2020), No. 9, p. 13854. doi: 10.1016/j.ceramint.2020.02.178
      [53]
      D.J. Wu, J.D. San, F.Y. Niu, et al., Effect and mechanism of ZrO2 doping on the cracking behavior of melt-grown Al2O3 ceramics prepared by directed laser deposition, Int. J. Appl. Ceram. Technol., 17(2020), No. 1, p. 227. doi: 10.1111/ijac.13374
      [54]
      A. Montón Zarazaga, M. Abdelmoula, G. Küçüktürk, F. Maury, M. Ferrato, and D. Grossin, Process parameters investigation for direct powder bed selective laser processing of silicon carbide parts, Prog. Addit. Manuf., 7(2022), No. 6, p. 1307. doi: 10.1007/s40964-022-00305-7
      [55]
      Q. Liu, B. Song, and H.L. Liao, Microstructure study on selective laser melting yttria stabilized zirconia ceramic with near IR fiber laser, Rapid Prototyping J., 20(2014), No. 5, p. 346. doi: 10.1108/RPJ-12-2012-0113
      [56]
      Y.F. Huang, D.J. Wu, D.K. Zhao, et al., Process optimization of melt growth alumina/aluminum titanate composites directed energy deposition: Effects of scanning speed, Addit. Manuf., 35(2020), art. No. 101210. doi: 10.1016/j.addma.2020.101210
      [57]
      Z.L. Shen, H.J. Su, M.H. Yu, et al., Large-size complex-structure ternary eutectic ceramic fabricated using laser powder bed fusion assisted with finite element analysis, Addit. Manuf., 72(2023), art. No. 103627. doi: 10.1016/j.addma.2023.103627
      [58]
      P. Bertrand, F. Bayle, C. Combe, P. Goeuriot, and I. Smurov, Ceramic components manufacturing by selective laser sintering, Appl. Surf. Sci., 254(2007), No. 4, p. 989. doi: 10.1016/j.apsusc.2007.08.085
      [59]
      I. Shishkovsky, I. Yadroitsev, P. Bertrand, and I. Smurov, Alumina–zirconium ceramics synthesis by selective laser sintering/melting, Appl. Surf. Sci., 254(2007), No. 4, p. 966. doi: 10.1016/j.apsusc.2007.09.001
      [60]
      Y.Z. Li, Y.B. Hu, W.L. Cong, L. Zhi, and Z.N. Guo, Additive manufacturing of alumina using laser engineered net shaping: Effects of deposition variables, Ceram. Int., 43(2017), No. 10, p. 7768. doi: 10.1016/j.ceramint.2017.03.085
      [61]
      D.J. Wu, D.K. Zhao, F.Y. Niu, Y.F. Huang, J. Zhu, and G.Y. Ma, In situ synthesis of melt-grown mullite ceramics using directed laser deposition, J. Mater. Sci., 55(2020), No. 27, p. 12761. doi: 10.1007/s10853-020-04938-3
      [62]
      S.Q. Ma, Y.Q. Jiang, S. Fu, et al., 3D-printed Lunar regolith simulant-based geopolymer composites with bio-inspired sandwich architectures, J. Adv. Ceram., 12(2023), No. 3, p. 510. doi: 10.26599/JAC.2023.9220700
      [63]
      Y. Tang, J.Y.H. Fuh, H.T. Loh, Y.S. Wong, and L. Lu, Direct laser sintering of a silica sand, Mater. Des., 24(2003), No. 8, p. 623. doi: 10.1016/S0261-3069(03)00126-2
      [64]
      E.M. Fayed, A.S. Elmesalamy, M. Sobih, and Y. Elshaer, Characterization of direct selective laser sintering of alumina, Int. J. Adv. Manuf. Technol., 94(2018), No. 5, p. 2333. doi: 10.1007/s00170-017-0981-y
      [65]
      Y.C. Hagedorn, N. Balachandran, W. Meiners, K. Wissenbach, and R. Poprawe, SLM of net-shaped high strength ceramics: new opportunities for producing dental restorations, [in] Proceedings for the 2011 International Solid Freeform Fabrication Symposium, Austin, 2011, p. 8.
      [66]
      M. Abdelmoula, G. Küçüktürk, E. Juste, and F. Petit, Powder bed selective laser processing of alumina: Scanning strategies investigation, Appl. Sci., 12(2022), No. 2, art. No. 764. doi: 10.3390/app12020764
      [67]
      Z.W. Xiong, K. Zhang, Z.G. Zhu, et al., Effect of laser focus shift on the forming quality, microstructure and mechanical properties of additively manufactured Al2O3–ZrO2 eutectic ceramics, Ceram. Int., 49(2023), No. 22, p. 35948. doi: 10.1016/j.ceramint.2023.08.275
      [68]
      H.F. Liu, H.J. Su, Z.L. Shen, et al., Insights into high thermal stability of laser additively manufactured Al2O3/GdAlO3/ZrO2 eutectic ceramics under high temperatures, Addit. Manuf., 48(2021), Part B, art. No. 102425. doi: 10.1016/j.addma.2021.102425
      [69]
      G.K. Mishra, C.P. Paul, A.K. Rai, A.K. Agrawal, S.K. Rai, and K.S. Bindra, Experimental investigation on laser directed energy deposition based additive manufacturing of Al2O3 bulk structures, Ceram. Int., 47(2021), No. 4, p. 5708. doi: 10.1016/j.ceramint.2020.10.157
      [70]
      J. Deckers, S. Meyers, J.P. Kruth, and J. Vleugels, Direct selective laser sintering/melting of high density alumina powder layers at elevated temperatures, Physics Procedia, 56(2014), p. 117. doi: 10.1016/j.phpro.2014.08.154
      [71]
      Q. Liu, Y. Danlos, B. Song, B.C. Zhang, S. Yin, and H.L. Liao, Effect of high-temperature preheating on the selective laser melting of yttria-stabilized zirconia ceramic, J. Mater. Process. Technol., 222(2015), p. 61. doi: 10.1016/j.jmatprotec.2015.02.036
      [72]
      G.Y. Ma, S. Yan, F.Y. Niu, Y.L. Zhang, and D.J. Wu, Microstructure and mechanical properties of solid Al2O3–ZrO2 (Y2O3) eutectics prepared by laser engineered net shaping, J. Laser Appl., 29(2017), No. 2, art. No. 022305. doi: 10.2351/1.4983258
      [73]
      S. Yan, D.J. Wu, F.Y. Niu, Y.F. Huang, N. Liu, and G.Y. Ma, Effect of ultrasonic power on forming quality of nano-sized Al2O3–ZrO2 eutectic ceramic via laser engineered net shaping (LENS), Ceram. Int., 44(2018), No. 1, p. 1120. doi: 10.1016/j.ceramint.2017.10.067
      [74]
      H.F. Liu, H.J. Su, Z.L. Shen, et al., One-step additive manufacturing and microstructure evolution of melt-grown Al2O3/GdAlO3/ZrO2 eutectic ceramics by laser directed energy deposition, J. Eur. Ceram. Soc., 41(2021), No. 6, p. 3547. doi: 10.1016/j.jeurceramsoc.2021.01.047
      [75]
      Y. Zheng, K. Zhang, T.T. Liu, W.H. Liao, C.D. Zhang, and H. Shao, Cracks of alumina ceramics by selective laser melting, Ceram. Int., 45(2019), No. 1, p. 175. doi: 10.1016/j.ceramint.2018.09.149
      [76]
      H. Yves-Christian, W. Jan, M. Wilhelm, W. Konrad, and P. Reinhart, Net shaped high performance oxide ceramic parts by selective laser melting, Physics Procedia, 5(2010), p. 587. doi: 10.1016/j.phpro.2010.08.086
      [77]
      F.Y. Niu, D.J. Wu, S. Yan, G.Y. Ma, and B. Zhang, Process optimization for suppressing cracks in laser engineered net shaping of Al2O3 ceramics, JOM, 69(2017), No. 3, p. 557. doi: 10.1007/s11837-016-2191-8
      [78]
      Z.W. Liu, C.B. Ma, Z.X. Chang, et al., Formation mechanism and quantitative analysis of pores in Al2O3–ZrO2 ceramic different structures by laser additive manufacturing, Ceram. Int., 49(2023), No. 10, p. 16099. doi: 10.1016/j.ceramint.2023.01.208
      [79]
      Y.H. Wang, Q.R. Zhang, H.B. Zhang, and J.C. Lei, Deep-learning-based localized porosity analysis for laser-sintered Al2O3 ceramic paste, Ceram. Int., 49(2023), No. 14, p. 23426. doi: 10.1016/j.ceramint.2023.04.175
      [80]
      Z. Liu, K. Song, B. Gao, et al., Microstructure and mechanical properties of Al2O3/ZrO2 directionally solidified eutectic ceramic prepared by laser 3D printing, J. Mater. Sci. Technol., 32(2016), No. 4, p. 320. doi: 10.1016/j.jmst.2015.11.017
      [81]
      S. Buls, J. Vleugels, and B. Van Hooreweder, Microwave assisted selective laser melting of technical ceramics, [in] Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium–An Additive Manufacturing Conference, Austin, 2018, p. 2349.
      [82]
      J. Wilkes, Selective Laser Melting for Generative Production of Components from High-Strength Oxide Ceramics (in Germany ) [Dissertation], RWTH Aachen University, Aachen, 2009.
      [83]
      D.J. Wu, F. Lu, D.K. Zhao, et al., Effect of doping SiC particles on cracks and pores of Al2O3–ZrO2 eutectic ceramics fabricated by directed laser deposition, J. Mater. Sci., 54(2019), No. 13, p. 9321. doi: 10.1007/s10853-019-03555-z
      [84]
      S. Yan, D.J. Wu, Y.F. Huang, et al., C fiber toughening Al2O3–ZrO2 eutectic via ultrasonic-assisted directed laser deposition, Mater. Lett., 235(2019), p. 228. doi: 10.1016/j.matlet.2018.10.047
      [85]
      S.M. Hashemi, S. Parvizi, H. Baghbanijavid, et al., Computational modelling of process–structure–property–performance relationships in metal additive manufacturing: A review, Int. Mater. Rev., 67(2022), No. 1, p. 1. doi: 10.1080/09506608.2020.1868889
      [86]
      S. Pfeiffer, M. Makowska, K. Florio, et al., Selective laser melting of thermal pre-treated metal oxide doped aluminum oxide granules, Open Ceram., 2(2020), art. No. 100007. doi: 10.1016/j.oceram.2020.100007
      [87]
      D.J. Wu, J.D. San, F.Y. Niu, D.K. Zhao, Y.F. Huang, and G.Y. Ma, Directed laser deposition of Al2O3–ZrO2 melt-grown composite ceramics with multiple composition ratios, J. Mater. Sci., 55(2020), No. 16, p. 6794. doi: 10.1007/s10853-020-04524-7
      [88]
      S. Yan, D.J. Wu, G.Y. Ma, F.Y. Niu, R.K. Kang, and D.M. Guo, Formation mechanism and process optimization of nano Al2O3–ZrO2 eutectic ceramic via laser engineered net shaping (LENS), Ceram. Int., 43(2017), No. 17, p. 14742. doi: 10.1016/j.ceramint.2017.07.214
      [89]
      D.J. Wu, H.C. Liu, F. Lu, et al., Al2O3–YAG eutectic ceramic prepared by laser additive manufacturing with water-cooled substrate, Ceram. Int., 45(2019), No. 3, p. 4119. doi: 10.1016/j.ceramint.2018.11.032
      [90]
      H.F. Liu, H.J. Su, Z.L. Shen, et al., Preparation of large-size Al2O3/GdAlO3/ZrO2 ternary eutectic ceramic rod by laser directed energy deposition and its microstructure homogenization mechanism, J. Mater. Sci. Technol., 85(2021), p. 218. doi: 10.1016/j.jmst.2021.01.025
      [91]
      D.J. Wu, Y.F. Huang, F.Y. Niu, et al., Effects of TiO2 doping on microstructure and properties of directed laser deposition alumina/aluminum titanate composites, Virtual Phys. Prototyping, 14(2019), No. 4, p. 371. doi: 10.1080/17452759.2019.1622987
      [92]
      A. Montón, M. Abdelmoula, G. Küçüktürk, F. Maury, D. Grossin, and M. Ferrato, Experimental and numerical study for direct powder bed selective laser processing (sintering/melting) of silicon carbide ceramic, Mater. Res. Express, 8(2021), No. 4, art. No. 045603. doi: 10.1088/2053-1591/abf6fc
      [93]
      Y.B. Hu, F.D. Ning, W.L. Cong, Y.C. Li, X.L. Wang, and H. Wang, Ultrasonic vibration-assisted laser engineering net shaping of ZrO2–Al2O3 bulk parts: Effects on crack suppression, microstructure, and mechanical properties, Ceram. Int., 44(2018), No. 3, p. 2752. doi: 10.1016/j.ceramint.2017.11.013
      [94]
      S. Yan, D.J. Wu, F.Y. Niu, G.Y. Ma, and R.K. Kang, Al2O3–ZrO2 eutectic ceramic via ultrasonic-assisted laser engineered net shaping, Ceram. Int., 43(2017), No. 17, p. 15905. doi: 10.1016/j.ceramint.2017.08.165
      [95]
      D.K. Zhao, D.J. Wu, F.Y. Niu, et al., Heat treatment of melt-grown alumina ceramics with trace glass fabricated by laser directed energy deposition, Mater. Charact., 196(2023), art. No. 112639. doi: 10.1016/j.matchar.2022.112639
      [96]
      F. Verga, M. Makowska, G. Cellerai, K. Florio, M. Schmid, and K. Wegener, Crack-healing, a novel approach for a laser-based powder bed fusion of high-performance ceramic oxides, Addit. Manuf. Lett., 1(2021), art. No. 100021. doi: 10.1016/j.addlet.2021.100021
      [97]
      H.F. Liu, H.J. Su, Z.L. Shen, et al., Formation mechanism and roles of oxygen vacancies in melt-grown Al2O3/GdAlO3/ZrO2 eutectic ceramic by laser 3D printing, J. Adv. Ceram., 11(2022), No. 11, p. 1751. doi: 10.1007/s40145-022-0645-8
      [98]
      M. Wang, S. Shi, and J. Fineberg, Tensile cracks can shatter classical speed limits, Science, 381(2023), No. 6656, p. 415. doi: 10.1126/science.adg7693

    Catalog


    • /

      返回文章
      返回