留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图(11)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  367
  • HTML全文浏览量:  162
  • PDF下载量:  27
  • 被引次数: 0
Mei Zhang, Wenhao Li, Yangfei Chen, Yang Jiang, Xiaofei Guo, and Han Dong, Microstructural evolution during the progressive transformation-induced plasticity effect in a Fe–0.1C–5Mn medium manganese steel, Int. J. Miner. Metall. Mater.,(2025). https://doi.org/10.1007/s12613-024-2963-z
Cite this article as:
Mei Zhang, Wenhao Li, Yangfei Chen, Yang Jiang, Xiaofei Guo, and Han Dong, Microstructural evolution during the progressive transformation-induced plasticity effect in a Fe–0.1C–5Mn medium manganese steel, Int. J. Miner. Metall. Mater.,(2025). https://doi.org/10.1007/s12613-024-2963-z
引用本文 PDF XML SpringerLink
研究论文

Fe-0.1C-5Mn中锰钢在渐进相变诱发塑性效应过程中的显微组织演变


  • 通讯作者:

    张梅    E-mail: zmei@shu.edu.cn

    郭晓菲    E-mail: xiaofei_guo@shu.edu.cn

    董瀚    E-mail: 13910077790@163.com

文章亮点

  • (1) 系统研究了Fe–0.10C–5Mn钢中的吕德斯带和PLC效应的形成。
  • (2) 系统研究了Fe–0.10C–5Mn钢在拉伸过程中的相变诱发塑性机制。
  • (3) 系统研究了Fe–0.10C–5Mn钢的形变过程中的断裂机制。
  • 研究了冷轧和临界退火的中锰钢(Fe–0.10C–5Mn)在单轴拉伸试验过程中的微观结构演变。在扫描电子显微镜、透射电子显微镜和 X 射线衍射分析下进行了原位观察,以确定渐进相变诱发塑性过程和相关断裂机制的特征。通过数字图像相关的局部应变测量,对这些发现进行了讨论。结果表明,钢中吕德斯带的形成仅限于应变1.5%,这主要是由于极少量稳定性较差的残余奥氏体(RA)发生了马氏体相变,导致局部应力集中和应变硬化,并进一步延缓了屈服。小尺寸的残余奥氏体表现出更高的稳定性,逐渐转变为马氏体,并具有稳定扩展的波特文–勒夏特列效应。在断裂前,残余奥氏体的体积分数从 26.8%逐渐下降到8.2%。在变形后期,裂纹主要起源于奥氏体/马氏体、铁素体/马氏体相界面以及铁素体相内。
  • Research Article

    Microstructural evolution during the progressive transformation-induced plasticity effect in a Fe–0.1C–5Mn medium manganese steel

    + Author Affiliations
    • In this study, the microstructural evolution of a cold-rolled and intercritical annealed medium-Mn steel (Fe–0.10C–5Mn) was investigated during uniaxial tensile testing. In-situ observations under scanning electron microscopy, transmission electron microscopy, and X-ray diffraction analysis were conducted to characterize the progressive transformation-induced plasticity process and associated fracture initiation mechanisms. These findings were discussed with the local strain measurements via digital image correlation. The results indicated that Lüders band formation in the steel was limited to 1.5% strain, which was mainly due to the early-stage martensitic phase transformation of a very small amount of the less stable large-sized retained austenite (RA), which led to localized stress concentrations and strain hardening and further retardation of yielding. The small-sized RA exhibited high stability and progressively transformed into martensite and contributed to a stably extended Portevin–Le Chatelier effect. The volume fraction of RA gradually decreased from 26.8% to 8.2% prior to fracture. In the late deformation stage, fracture initiation primarily occurred at the austenite/martensite and ferrite/martensite interfaces and the ferrite phase.
    • loading
    • [1]
      S.S. Li and H.W. Luo, Medium-Mn steels for hot forming application in the automotive industry, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 741. doi: 10.1007/s12613-020-2179-9
      [2]
      H. Xu, L.J. Zhou, W.L. Wang, and Y. Yi, A simple route for preparation of TRIP-assisted Si–Mn steel with excellent performance using direct strip casting, Int. J. Miner. Metall. Mater., 31(2024), No. 10, p. 2173. doi: 10.1007/s12613-023-2818-z
      [3]
      B. Hu, H. Sui, Q.H. Wen, Z. Wang, A. Gramlich, and H.W. Luo, Review on the plastic instability of medium-Mn steels for identifying the formation mechanisms of Lüders and Portevin–Le Chatelier bands, Int. J. Miner. Metall. Mater., 31(2024), No. 6, p. 1285. doi: 10.1007/s12613-023-2751-1
      [4]
      Y. Ma, R. Zheng, Z.Y. Gao, et al., Multiphase-field simulation of austenite reversion in medium-Mn steels, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 847. doi: 10.1007/s12613-021-2282-6
      [5]
      M.T. Kim, T.M. Park, K.H. Baik, W.S. Choi, and J. Han, Effects of cold rolling reduction ratio on microstructures and tensile properties of intercritically annealed medium-Mn steels, Mater. Sci. Eng. A, 752(2019), p. 43. doi: 10.1016/j.msea.2019.02.091
      [6]
      W.Q. Cao, C. Wang, J. Shi, M.Q. Wang, W.J. Hui, and H. Dong, Microstructure and mechanical properties of Fe–0.2C–5Mn steel processed by ART-annealing, Mater. Sci. Eng. A, 528(2011), No. 22-23, p. 6661. doi: 10.1016/j.msea.2011.05.039
      [7]
      M.H. Cai, W.J. Zhu, N. Stanford, L.B. Pan, Q. Chao, and P.D. Hodgson, Dependence of deformation behavior on grain size and strain rate in an ultrahigh strength-ductile Mn-based TRIP alloy, Mater. Sci. Eng. A, 653(2016), p. 35. doi: 10.1016/j.msea.2015.11.103
      [8]
      S. Lee and B.C. De Cooman, Annealing temperature dependence of the tensile behavior of 10 pct Mn multi-phase TWIP-TRIP steel, Metall. Mater. Trans. A, 45(2014), No. 13, p. 6039. doi: 10.1007/s11661-014-2540-6
      [9]
      Y.J. Wang, S. Zhao, R.B. Song, and B. Hu, Hot ductility behavior of a Fe–0.3C–9Mn–2Al medium Mn steel, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 422. doi: 10.1007/s12613-020-2206-x
      [10]
      S.P. Neog, A. Lodh, A. Karmakar, et al., Insights into the stability of retained austenite during wear, Philos. Mag., 103(2023), No. 3, p. 203. doi: 10.1080/14786435.2022.2139421
      [11]
      M.J. Zhao, L.H. Jiang, C.M. Li, L. Huang, C.Y. Sun, J.J. Li, and Z.H. Guo, Flow characteristics and hot workability of a typical low-alloy high-strength steel during multi-pass deformation, Int. J. Miner. Metall. Mater., 31(2024), No. 2, p. 323. doi: 10.1007/s12613-023-2736-0
      [12]
      J. Hu, X.Y. Li, Q.W. Meng, L.Y. Wang, Y.Z. Li, and W. Xu, Tailoring retained austenite and mechanical property improvement in Al–Si–V containing medium Mn steel via direct intercritical rolling, Mater. Sci. Eng. A, 855(2022), art. No. 143904. doi: 10.1016/j.msea.2022.143904
      [13]
      X.G. Wang and M.X. Huang, Temperature dependence of Lüders strain and its correlation with martensitic transformation in a medium Mn transformation-induced plasticity steel, J. Iron Steel Res. Int., 24(2017), No. 11, p. 1073. doi: 10.1016/S1006-706X(17)30156-5
      [14]
      M. Callahan, O. Hubert, F. Hild, A. Perlade, and J.H. Schmitt, Coincidence of strain-induced TRIP and propagative PLC bands in medium Mn steels, Mater. Sci. Eng. A, 704(2017), p. 391. doi: 10.1016/j.msea.2017.08.042
      [15]
      W.Q. Liu and J.H. Lian, Stress-state dependence of dynamic strain aging: Thermal hardening and blue brittleness, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 854. doi: 10.1007/s12613-021-2250-1
      [16]
      B.H. Sun, N. Vanderesse, F. Fazeli, et al., Discontinuous strain-induced martensite transformation related to the Portevin–Le Chatelier effect in a medium manganese steel, Scripta Mater., 133(2017), p. 9. doi: 10.1016/j.scriptamat.2017.01.022
      [17]
      F. Yang, H.W. Luo, E.X. Pu, S.L. Zhang, and H. Dong, On the characteristics of Portevin–Le Chatelier bands in cold-rolled 7Mn steel showing transformation-induced plasticity, Int. J. Plast., 103(2018), p. 188. doi: 10.1016/j.ijplas.2018.01.010
      [18]
      L.P. Tang, P.F. Wei, Z.L. Hu, and Q. Pang, Microstructure and mechanical properties stability of pre-hardening treatment in Al–Cu alloys for pre-hardening forming process, Int. J. Miner. Metall. Mater., 31(2024), No. 3, p. 539. doi: 10.1007/s12613-023-2758-7
      [19]
      F. Yang, J. Zhou, Y. Han, P. Liu, H.W. Luo, and H. Dong, A novel cold-rolled medium Mn steel with an ultra-high product of tensile strength and elongation, Mater. Lett., 258(2020), art. No. 126804. doi: 10.1016/j.matlet.2019.126804
      [20]
      S. Yan, T.L. Li, T.S. Liang, J.Q. Chen, Y. Zhao, and X.H. Liu, By controlling recrystallization degree: A plain medium Mn steel overcoming Lüders deformation and low yield-to-tensile ratio simultaneously, Mater. Sci. Eng. A, 758(2019), p. 79. doi: 10.1016/j.msea.2019.05.012
      [21]
      H.S. Wang, Y.X. Zhang, G. Yuan, et al., Significance of cold rolling reduction on Lüders band formation and mechanical behavior in cold-rolled intercritically annealed medium-Mn steel, Mater. Sci. Eng. A, 737(2018), p. 176. doi: 10.1016/j.msea.2018.09.045
      [22]
      Z.C. Li, H. Ding, R.D.K. Misra, and Z.H. Cai, Deformation behavior in cold-rolled medium-manganese TRIP steel and effect of pre-strain on the Lüders bands, Mater. Sci. Eng. A, 679(2017), p. 230. doi: 10.1016/j.msea.2016.10.042
      [23]
      J. Wu, Y. Hovanski, and M. Miles, Digital image correlation characterization and formability analysis of aluminum alloy TWB during forming, Materials, 15(2022), No. 15, art. No. 5291. doi: 10.3390/ma15155291
      [24]
      T. Wang, J. Hu, and R.D.K. Misra, Microstructure evolution and strain behavior of a medium Mn TRIP/TWIP steel for excellent combination of strength and ductility, Mater. Sci. Eng. A, 753(2019), p. 99. doi: 10.1016/j.msea.2019.03.021
      [25]
      B.H. Sun, F. Fazeli, C. Scott, N. Brodusch, R. Gauvin, and S. Yue, The influence of silicon additions on the deformation behavior of austenite–ferrite duplex medium manganese steels, Acta Mater., 148(2018), p. 249. doi: 10.1016/j.actamat.2018.02.005
      [26]
      P.J. Gibbs, E. De Moor, M.J. Merwin, B. Clausen, J.G. Speer, and D.K. Matlock, Austenite stability effects on tensile behavior of manganese-enriched-austenite transformation-induced plasticity steel, Metall. Mater. Trans. A, 42(2011), No. 12, p. 3691. doi: 10.1007/s11661-011-0687-y
      [27]
      C. Wang, W.Q. Cao, J. Shi, C.X. Huang, and H. Dong, Deformation microstructures and strengthening mechanisms of an ultrafine grained duplex medium-Mn steel, Mater. Sci. Eng. A, 562(2013), p. 89. doi: 10.1016/j.msea.2012.11.044
      [28]
      X.G. Wang, L. Wang, and M.X. Huang, Kinematic and thermal characteristics of Lüders and Portevin–Le Châtelier bands in a medium Mn transformation-induced plasticity steel, Acta Mater., 124(2017), p. 17. doi: 10.1016/j.actamat.2016.10.069
      [29]
      E.J. Seo, J.K. Kim, L. Cho, J. Mola, C.Y. Oh, and B.C. De Cooman, Micro-plasticity of medium Mn austenitic steel: Perfect dislocation plasticity and deformation twinning, Acta Mater., 135(2017), p. 112. doi: 10.1016/j.actamat.2017.06.014
      [30]
      M. Zhang, W.J. Wang, B.D. Zhang, Q.Y. Cen, and J. Liu, Influence of pre-straining on the low-cycle fatigue performance of Fe–0.1C–5Mn medium manganese steel, Int. J. Fatigue, 165(2022), art. No. 107186. doi: 10.1016/j.ijfatigue.2022.107186
      [31]
      K. Steineder, D. Krizan, R. Schneider, C. Béal, and C. Sommitsch, On the microstructural characteristics influencing the yielding behavior of ultra-fine grained medium-Mn steels, Acta Mater., 139(2017), p. 39. doi: 10.1016/j.actamat.2017.07.056
      [32]
      B.H. Sun, D. Palanisamy, D. Ponge, et al., Revealing fracture mechanisms of medium manganese steels with and without delta-ferrite, Acta Mater., 164(2019), p. 683. doi: 10.1016/j.actamat.2018.11.029
      [33]
      B.V. Narasimha Rao and G. Thomas, Structure-property relations and the design of Fe-4Cr-C base structural steels for high strength and toughness, Metall. Trans. A, 11(1980), No. 3, p. 441. doi: 10.1007/BF02654568
      [34]
      E. De Moor, D.K. Matlock, J.G. Speer, and M.J. Merwin, Austenite stabilization through manganese enrichment, Scripta Mater., 64(2011), No. 2, p. 185. doi: 10.1016/j.scriptamat.2010.09.040
      [35]
      J. Talonen, H. Hänninen, P. Nenonen, and G. Pape, Effect of strain rate on the strain-induced γ → α′-martensite transformation and mechanical properties of austenitic stainless steels, Metall. Mater. Trans. A, 36(2005), No. 2, p. 421. doi: 10.1007/s11661-005-0313-y

    Catalog


    • /

      返回文章
      返回