留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图(6)

数据统计

分享

计量
  • 文章访问数:  165
  • HTML全文浏览量:  81
  • PDF下载量:  6
  • 被引次数: 0
Liang Chu, Haoyu Shen, Hudie Wei, Hongyu Chen, Guoqiang Ma, and Wensheng Yan, Morphology engineering of ZnO micro/nanostructures under mild conditions for optoelectronic application, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2965-x
Cite this article as:
Liang Chu, Haoyu Shen, Hudie Wei, Hongyu Chen, Guoqiang Ma, and Wensheng Yan, Morphology engineering of ZnO micro/nanostructures under mild conditions for optoelectronic application, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2965-x
引用本文 PDF XML SpringerLink
研究论文

ZnO微纳米结构在温和条件下的形态工程及其光电应用



  • 通讯作者:

    楚亮    E-mail: chuliang@hud.edu.cn

    马国强    E-mail: mgq1103@163.com

    严文生    E-mail: wensheng.yan@hdu.edu.cn

文章亮点

  • (1) 开发了一种在低温甚至室温下制备ZnO微/纳米结构的简便溶液法
  • (2) 深入研究了合成过程中氨水添加量和反应温度对ZnO结构和形貌的影响机制
  • (3) ZnO微花应用于紫外探测器展现出良好的三维光捕获能力和光电探测性能
  • 锌氧化物(ZnO)是一种重要的功能半导体,具有约3.37 eV的宽直接带隙。常采用溶剂热反应法合成ZnO微纳米结构,该方法成本低、操作简单且易于实现。此外,通过稍微改变反应过程中的条件,尤其是在室温下,ZnO的形态工程是被期望的。在本研究中,通过在低温(甚至室温)下改变氨水的添加量,在溶液中合成了ZnO微纳米结构。氨水能够在前驱体中形成Zn2+络合物,以控制反应速率,从而实现ZnO的形态工程,生成如纳米颗粒、纳米片、微花和单晶等不同形态。最终,ZnO微花和纳米片被应用于紫外探测器的光电应用中。
  • Research Article

    Morphology engineering of ZnO micro/nanostructures under mild conditions for optoelectronic application

    + Author Affiliations
    • Zinc oxide (ZnO) serves as a crucial functional semiconductor with a wide direct bandgap of approximately 3.37 eV. Solvothermal reaction is commonly used in the synthesis of ZnO micro/nanostructures, given its low cost, simplicity, and easy implementation. Moreover, ZnO morphology engineering has become desirable through the alteration of minor conditions in the reaction process, particularly at room temperature. In this work, ZnO micro/nanostructures were synthesized in a solution by varying the amounts of the ammonia added at low temperatures (including room temperature). The formation of Zn2+ complexes by ammonia in the precursor regulated the reaction rate of the morphology engineering of ZnO, which resulted in various structures, such as nanoparticles, nanosheets, microflowers, and single crystals. Finally, the obtained ZnO was used in the optoelectronic application of ultraviolet detectors.
    • loading
    • Supplementary Information-s12613-024-2965-x.docx
    • [1]
      Y.D. Gu, W.J. Mai, and P. Jiang, Characterization of structural and electrical properties of ZnO tetrapods, Int. J. Miner. Metall. Mater., 18(2011), No. 6, p. 686. doi: 10.1007/s12613-011-0497-7
      [2]
      S. Suwanboon, P. Amornpitoksuk, P. Bangrak, and C. Randorn, Physical and chemical properties of multifunctional ZnO nanostructures prepared by precipitation and hydrothermal methods, Ceram. Int., 40(2014), No. 1, p. 975. doi: 10.1016/j.ceramint.2013.06.094
      [3]
      E. Moyen, J.H. Kim, J. Kim, and J. Jang, ZnO nanoparticles for quantum-dot-based light-emitting diodes, ACS Appl. Nano Mater., 3(2020), No. 6, p. 5203. doi: 10.1021/acsanm.0c00639
      [4]
      G.C. Park, S.M. Hwang, S.M. Lee, et al., Hydrothermally grown in-doped ZnO nanorods on p-GaN films for color-tunable heterojunction light-emitting-diodes, Sci. Rep., 5(2015), art. No. 10410. doi: 10.1038/srep10410
      [5]
      Y. Li, F. Della Valle, M. Simonnet, I. Yamada, and J.J. Delaunay, High-performance UV detector made of ultra-long ZnO bridging nanowires, Nanotechnology, 20(2009), No. 4, art. No. 045501. doi: 10.1088/0957-4484/20/4/045501
      [6]
      Y. Ning, Z.M. Zhang, F. Teng, and X.S. Fang, Novel transparent and self-powered UV photodetector based on crossed ZnO nanofiber array homojunction, Small, 14(2018), No. 13, art. No. 1703754. doi: 10.1002/smll.201703754
      [7]
      S.K. Gupta, A. Joshi, and M. Kaur, Development of gas sensors using ZnO nanostructures, J. Chem. Sci., 122(2010), No. 1, p. 57. doi: 10.1007/s12039-010-0006-y
      [8]
      S.J. Li, Y. Lin, W.W. Tan, et al., Preparation and performance of dye-sensitized solar cells based on ZnO-modified TiO2 electrodes, Int. J. Miner. Metall. Mater., 17(2010), No. 1, p. 92. doi: 10.1007/s12613-010-0116-z
      [9]
      V. Consonni, J. Briscoe, E. Kärber, X. Li, and T. Cossuet, ZnO nanowires for solar cells: A comprehensive review, Nanotechnology, 30(2019), No. 36, art. No. 362001. doi: 10.1088/1361-6528/ab1f2e
      [10]
      P. Fan, D.Y. Zhang, Y. Wu, J.S. Yu, and T.P. Russell, Polymer-modified ZnO nanoparticles as electron transport layer for polymer-based solar cells, Adv. Funct. Mater., 30(2020), No. 32, art. No. 2002932. doi: 10.1002/adfm.202002932
      [11]
      K. Lim, W.S. Chow, and S.Y. Pung, Enhancement of thermal stability and UV resistance of halloysite nanotubes using zinc oxide functionalization via a solvent-free approach, Int. J. Miner. Metall. Mater., 26(2019), No. 6, p. 787. doi: 10.1007/s12613-019-1781-1
      [12]
      H.M. Shao, X.Y. Shen, X.T. Li, et al., Growth mechanism and photocatalytic evaluation of flower-like ZnO micro-structures prepared with SDBS assistance, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 729. doi: 10.1007/s12613-020-2138-5
      [13]
      V. Gerbreders, M. Krasovska, E. Sledevskis, et al., Hydrothermal synthesis of ZnO nanostructures with controllable morphology change, CrystEngComm, 22(2020), No. 8, p. 1346. doi: 10.1039/C9CE01556F
      [14]
      L.V. Podrezova, S. Porro, V. Cauda, M. Fontana, and G. Cicero, Comparison between ZnO nanowires grown by chemical vapor deposition and hydrothermal synthesis, Appl. Phys. A, 113(2013), No. 3, p. 623. doi: 10.1007/s00339-013-7838-5
      [15]
      Y.P. Zhao, C.C. Li, M.M. Chen, et al., Growth of aligned ZnO nanowires via modified atmospheric pressure chemical vapor deposition, Phys. Lett. A, 380(2016), No. 47, p. 3993. doi: 10.1016/j.physleta.2016.06.030
      [16]
      Y.B. He, L.H. Wang, L. Zhang, et al., Solubility limits and phase structures in epitaxial ZnOS alloy films grown by pulsed laser deposition, J. Alloys Compd., 534(2012), p. 81. doi: 10.1016/j.jallcom.2012.04.040
      [17]
      Y. Zhou, D. Li, X.C. Zhang, J.L. Chen, and S.Y. Zhang, Facile synthesis of ZnO micro-nanostructures with controllable morphology and their applications in dye-sensitized solar cells, Appl. Surf. Sci., 261(2012), p. 759. doi: 10.1016/j.apsusc.2012.07.160
      [18]
      C.K. Xu, P. Shin, L.L. Cao, and D. Gao, Preferential growth of long ZnO nanowire array and its application in dye-sensitized solar cells, J. Phys. Chem. C, 114(2010), No. 1, p. 125. doi: 10.1021/jp9085415
      [19]
      Y.F. Gao, M. Nagai, T.C. Chang, and J.J. Shyue, Solution-derived ZnO nanowire array film as photoelectrode in dye-sensitized solar cells, Cryst. Growth Des., 7(2007), No. 12, p. 2467. doi: 10.1021/cg060934k
      [20]
      J.M. Wang and L. Gao, Synthesis and characterization of ZnO nanoparticles assembled in one-dimensional order, Inorg. Chem. Commun., 6(2003), No. 7, p. 877. doi: 10.1016/S1387-7003(03)00134-5
      [21]
      Y.F. Chen, X.J. Yang, and S.H. Zhou, Structure and photoluminescence of ZnO/niobate composites self-assembled from Zn (NH3) ${}_{4}^{2+} $ solution with different pH and contents, J. Non-Cryst. Solids, 356(2010), No. 9-10, p. 509. doi: 10.1016/j.jnoncrysol.2009.12.020
      [22]
      G. Sathishkumar, C. Rajkuberan, K. Manikandan, S. Prabukumar, J. DanielJohn, and S. Sivaramakrishnan, Facile biosynthesis of antimicrobial zinc oxide (ZnO) nanoflakes using leaf extract of Couroupita guianensis Aubl. , Mater. Lett., 188(2017), p. 383.
      [23]
      H. Savaloni and R. Savari, Nano-structural variations of ZnO: N thin films as a function of deposition angle and annealing conditions: XRD, AFM, FESEM and EDS analyses, Mater. Chem. Phys., 214(2018), p. 402. doi: 10.1016/j.matchemphys.2018.04.099
      [24]
      J. Safaei and G.X. Wang, Progress and prospects of two-dimensional materials for membrane-based osmotic power generation, Nano Res. Energy, 1(2022), art. No. e9120008. doi: 10.26599/NRE.2022.9120008
      [25]
      Z. Chen, J.F. Li, T.Z. Li, et al., A CRISPR/Cas12a-empowered surface plasmon resonance platform for rapid and specific diagnosis of the Omicron variant of SARS–CoV–2, Natl. Sci. Rev., 9(2022), No. 8, art. No. nwac104. doi: 10.1093/nsr/nwac104
      [26]
      X.H. Zhang, X.Y. Han, J. Su, Q. Zhang, and Y.H. Gao, Well vertically aligned ZnO nanowire arrays with an ultra-fast recovery time for UV photodetector, Appl. Phys. A, 107(2012), No. 2, p. 255. doi: 10.1007/s00339-012-6886-6
      [27]
      D. Gedamu, I. Paulowicz, S. Kaps, et al., Rapid fabrication technique for interpenetrated ZnO nanotetrapod networks for fast UV sensors, Adv. Mater., 26(2014), No. 10, p. 1541. doi: 10.1002/adma.201304363

    Catalog


    • /

      返回文章
      返回