留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图(12)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  239
  • HTML全文浏览量:  115
  • PDF下载量:  28
  • 被引次数: 0
Xiuli Han, Bowen Duan, Lei Liu, Shilong Fang, and Weiwei Wang, Preparation and applications of calcium ferrite as a functional material: A review, Int. J. Miner. Metall. Mater.,(2025). https://doi.org/10.1007/s12613-024-2966-9
Cite this article as:
Xiuli Han, Bowen Duan, Lei Liu, Shilong Fang, and Weiwei Wang, Preparation and applications of calcium ferrite as a functional material: A review, Int. J. Miner. Metall. Mater.,(2025). https://doi.org/10.1007/s12613-024-2966-9
引用本文 PDF XML SpringerLink
综述

铁酸钙功能材料的制备及应用研究进展


  • 通讯作者:

    韩秀丽    E-mail: hanxl@ncst.edu.cn

    段博文    E-mail: duanbw1688@stu.ncst.edu.cn

文章亮点

  • (1) 根据铁酸钙的组成和结构类型,阐述不同类型铁酸的制备方法及优缺点
  • (2) 系统总结了铁酸钙及其复合材料在光催化、生物医学以及电化学等领域的研究进展
  • (3) 基于铁酸钙在功能材料应用领域中的巨大潜力,进一步展望了铁酸钙的发展前景
  • 铁酸钙是一种重要的无机功能材料,具有优异的磁性、电化学、催化和良好生物相容性能,具备成为下一代绿色高效新型功能材料的巨大潜力,对材料化工、环境工程以及生物医学等领域的发展具有重要意义。文章系统地总结了铁酸钙作为功能材料的研究进展。在此基础上,分析了不同类型铁酸钙的化学成分和晶体结构;详细介绍了铁酸钙及其复合材料的不同制备方法;阐明了不同性能铁酸钙及其复合材料在光催化、生物医学、电化学等领域的应用现状。基于对国内外铁酸钙合成方法的对比分析,指出当前铁酸钙合成方法存在的主要问题以及在未来实际生产中面临的挑战;最后从潜在技术应用角度展望了铁酸钙未来研究的重点方向,以期为铁酸钙的合成和高效利用提供参考。
  • Review

    Preparation and applications of calcium ferrite as a functional material: A review

    + Author Affiliations
    • Calcium ferrite (CF) is recognized as a potential green and efficient functional material because of its advantages of magnetism, electrochemistry, catalysis, and biocompatibility in the fields of materials chemistry, environmental engineering, and biomedicine. Therefore, the obtained research results need to be systematically summarized, and new perspectives on CF and its composite materials need to be analyzed. Based on the presented studies of CF and its composite materials, the types and structures of the crystal are summarized. In addition, the current application technologies and theoretical mechanisms with various properties in different fields are elucidated. Moreover, the various preparation methods of CF and its composite materials are elaborated in detail. Most importantly, the advantages and disadvantages of the synthesis methods of CF and its composite materials are discussed, and the existing problems and emerging challenges in practical production are identified. Furthermore, the key future research directions of CF and its composite materials have been prospected from the potential application technologies to provide references for its synthesis and efficient utilization.
    • loading
    • [1]
      X. Zhao, N.T. Gao, S.C. Wu, S.Z. Li, and S.J. Wu, Enhancing performance of low-temperature processed CsPbI2Br all-inorganic perovskite solar cells using polyethylene oxide-modified TiO2, Int. J. Miner. Metall. Mater., 31(2024), No. 4, p. 786. doi: 10.1007/s12613-023-2742-2
      [2]
      Y. Ugata and N. Yabuuchi, New functionality of electrode materials with highly concentrated electrolytes, Trends Chem., 5(2023), No. 9, p. 672. doi: 10.1016/j.trechm.2023.07.003
      [3]
      X.Y. Wang, S. Jan, Z.Y. Wang, and X.B. Jin, Solid Bi2O3-derived nanostructured metallic bismuth with high formate selectivity for the electrocatalytic reduction of CO2, Int. J. Miner. Metall. Mater., 31(2024), No. 4, p. 803. doi: 10.1007/s12613-023-2770-y
      [4]
      J.B. Miao, Y.X. Du, R.T. Li, et al., Recent advances and perspectives of zinc metal-free anodes for zinc ion batteries, Int. J. Miner. Metall. Mater., 31(2024), No. 1, p. 33. doi: 10.1007/s12613-023-2665-y
      [5]
      A. Singh, R. Bhardwaj, R.K. Mishra, A.K. Sundramoorthy, V. Gupta, and S. Arya, Potential of functional gel polymers as electrolytes for supercapacitors, Ionics, 29(2023), No. 10, p. 3831. doi: 10.1007/s11581-023-05112-w
      [6]
      P. Zhang, Y.H. Wu, H.R. Sun, J.Q. Zhao, Z.M. Cheng, and X.H. Kang, MnO2/carbon nanocomposite based on silkworm excrement for high-performance supercapacitors, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1735. doi: 10.1007/s12613-021-2272-8
      [7]
      J.X. Li, H. Yuan, W.J. Zhang, R.J. Zhu, and Z.B. Jiao, Construction of BiVO4/BiOCl@C Z-scheme heterojunction for enhanced photoelectrochemical performance, Int. J. Miner. Metall. Mater., 29(2022), No. 11, p. 1971. doi: 10.1007/s12613-022-2481-9
      [8]
      T. Zhang, P.F. Wang, Y. Li, Y.P. Bao, T.T. Lim, and S.H. Zhan, Advances in dual-functional photocatalysis for simultaneous reduction of hexavalent chromium and oxidation of organics in wastewater, Environ. Funct. Mater., 2(2023), No. 1, p. 1.
      [9]
      J.S. Yuan, Y. Zhang, X.Y. Zhang, L. Zhao, H.L. Shen, and S.G. Zhang, Template-free synthesis of core–shell Fe3O4@MoS2@mesoporous TiO2 magnetic photocatalyst for wastewater treatment, Int. J. Miner. Metall. Mater., 30(2023), No. 1, p. 177. doi: 10.1007/s12613-022-2473-9
      [10]
      D. Ali, I. Muneer, F. Bashir, et al., Sol–gel derived iron-manganese oxide nanoparticles: A promising dual-functional material for solar photocatalysis and antimicrobial applications, J. Sol Gel Sci. Technol., 107(2023), No. 2, p. 452. doi: 10.1007/s10971-023-06123-9
      [11]
      Y. Xue, X.M. Liu, N. Zhang, Y. Shao, and C.C. Xu, Enhanced photocatalytic performance of iron oxides@HTCC fabricated from zinc extraction tailings for methylene blue degradation: Investigation of the photocatalytic mechanism, Int. J. Miner. Metall. Mater., 30(2023), No. 12, p. 2364. doi: 10.1007/s12613-023-2723-5
      [12]
      J. Arshad, F.M.A. Alzahrani, S. Munir, et al., Integration of 2D graphene oxide sheets with MgFe2O4/ZnO heterojunction for improved photocatalytic degradation of organic dyes and benzoic acid, Ceram. Int., 49(2023), No. 11, p. 18988. doi: 10.1016/j.ceramint.2023.03.024
      [13]
      E. Einafshar, N. Einafshar, and M. Khazaei, Recent advances in MXene quantum dots: A platform with unique properties for general-purpose functional materials with novel biomedical applications, Top. Curr. Chem., 381(2023), No. 5, art. No. 27. doi: 10.1007/s41061-023-00439-4
      [14]
      S.K. Bhattacharyya, S. Maiti, N.C. Das, and S. Banerjee, Antibacterial and antiviral functional materials based on polymer nanocomposites [in] K. Deshmukh and C.M. Hussain, eds., Antibacterial and Antiviral Functional Materials, Vol. 1, ACS Publication, New York, 2023, p. 171.
      [15]
      R. Sanchis-Gual, M. Coronado-Puchau, T. Mallah, and E. Coronado, Hybrid nanostructures based on gold nanoparticles and functional coordination polymers: Chemistry, physics and applications in biomedicine, catalysis and magnetism, Coord. Chem. Rev., 480(2023), art. No. 215025. doi: 10.1016/j.ccr.2023.215025
      [16]
      J.L. Su, J. Teng, Z.L. Xu, and Y. Li, Biodegradable magnesium-matrix composites: A review, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 724. doi: 10.1007/s12613-020-1987-2
      [17]
      J.D.G. Hamilton, B.F. Hoskins, W.G. Mumme, W.E. Borbidge, and M.A. Montague, The crystal structure and crystal chemistry of Ca2.3Mg0.8Al1.5Si1.1Fe8.3O20 (SFCA): solid solution limits and selected phase relationships of SFCA in the SiO2–Fe2O3–CaO–Al2O3 system, Neues Jahrb. Mineral. Abh., 161(1989), No. 1, p. 1.
      [18]
      W.G. Mumme, J.M.F. Clout, and R.W. Gable, The crystal structure of SFCA-I, Ca3.18 Fe3+14.66Al1.34 Fe2+0.82O28, a homologue of the aenigmatite structure type, and new crystal structure refinements of ß-CFF, Ca2.99Fe3+14.30Fe2+0.55O25 and Mg-free SFCA, Ca2.45Fe3+9.04 Al1.74Fe2+0.16Si0.6O20, Neues Jahrb. Mineral. Abh., 173(1998), No. 1, p. 93.
      [19]
      N.A.S. Webster, M.I. Pownceby, I.C. Madsen, and J.A. Kimpton, Silico-ferrite of calcium and aluminum (SFCA) iron ore sinter bonding phases: new insights into their formation during heating and cooling, Metall. Mater. Trans. B, 43(2012), p. p.1344.
      [20]
      K. Sugiyama, A. Monkawa, and T. Sugiyama, Crystal structure of the SFCAM phase Ca2(Ca, Fe, Mg, Al)6(Fe, Al, Si)6O20, ISIJ Int., 45(2005), No. 4, p. 560. doi: 10.2355/isijinternational.45.560
      [21]
      G. Lal, K. Punia, S.N. Dolia, P.A. Alvi, S. Dalela, and S. Kumar, Rietveld refinement, Raman, optical, dielectric, Mössbauer and magnetic characterization of superparamagnetic fcc-CaFe2O4 nanoparticles, Ceram. Int., 45(2019), No. 5, p. 5837. doi: 10.1016/j.ceramint.2018.12.050
      [22]
      S. Khezerlou, M. Babazadeh, A. Mehrizad, P. Gharbani, and M. Es’haghi, Preparation of hydroxyapatite-calcium ferrite composite for application in loading and sustainable release of amoxicillin: Optimization and modeling of the process by response surface methodology and artificial neural network, Ceram. Int., 47(2021), No. 17, p. 24287. doi: 10.1016/j.ceramint.2021.05.140
      [23]
      T.L. Ajeesha, A. Manikandan, A. Anantharaman, et al., Structural investigation of Cu doped calcium ferrite (Ca1− xCu xFe2O4; x = 0, 0.2, 0.4, 0.6, 0.8, 1) nanomaterials prepared by co-precipitation method, J. Mater. Res. Technol., 18(2022), p. 705. doi: 10.1016/j.jmrt.2022.02.081
      [24]
      A. Mehrizad, Prompt loading and prolonged release of metronidazole by calcium ferrite–carbon nanotubes carrier: Optimization and modeling of the process by RSM and ANN, Diamond Relat. Mater., 135(2023), art. No. 109899. doi: 10.1016/j.diamond.2023.109899
      [25]
      M. Naseri, E. Naderi, and A.R. Sadrolhosseini, Effect of phase transformation on physical and biological properties of PVA/CaFe2O4 nanocomposite, Fibres Polym., 17(2016), No. 10, p. 1667. doi: 10.1007/s12221-016-6030-x
      [26]
      X. Liu, Y.H. Zhang, Y.S. Jia, et al., Visible light-responsive carbon-decorated p-type semiconductor CaFe2O4 nanorod photocatalyst for efficient remediation of organic pollutants, Chin. J. Catal., 38(2017), No. 10, p. 1770. doi: 10.1016/S1872-2067(17)62888-2
      [27]
      A. Šutka, M. Kodu, R. Pärna, et al., Orthorhombic CaFe2O4: A promising p-type gas sensor, Sens. Actuators B, 224(2016), p. 260. doi: 10.1016/j.snb.2015.10.041
      [28]
      A. Manohar and C. Krishnamoorthi, Structural, optical, dielectric and magnetic properties of CaFe2O4 nanocrystals prepared by solvothermal reflux method, J. Alloys Compd., 722(2017), p. 818. doi: 10.1016/j.jallcom.2017.06.145
      [29]
      A.C. Gandhi, R. Das, F.C. Chou, and J.G. Lin, Magnetocrystalline two-fold symmetry in CaFe2O4 single crystal, J. Phys. Condens. Matter, 29(2017), No. 17, art. No. 175802. doi: 10.1088/1361-648X/aa61f2
      [30]
      S. Kamaraj, U.M. Palanisamy, M.S.B. Kadhar Mohamed, A. Gangasalam, G.A. Maria, and R. Kandasamy, Curcumin drug delivery by vanillin-chitosan coated with calcium ferrite hybrid nanoparticles as carrier, Eur. J. Pharm. Sci., 116(2018), p. 48. doi: 10.1016/j.ejps.2018.01.023
      [31]
      R.B. Sosman and H.E. Merwin, Preliminary report on the system, lime: ferric oxide, J. Wash. Acad. Sci., 6(1916), No. 15, p. 532.
      [32]
      B. Phillips and A. Muan, Phase equilibria in the system CaO–iron oxide in air and at 1 atm. O2 pressure, J. Am. Ceram. Soc., 41(1958), No. 11, p. 445. doi: 10.1111/j.1151-2916.1958.tb12893.x
      [33]
      H.I. Saleh, Synthesis and formation mechanisms of calcium ferrite compounds, J. Mater. Sci. Technol., 20(2004), No. 5, p. 530.
      [34]
      E.F. Bertaut, P. Blum, and A. Sagnières, Structure du ferrite bicalcique et de la brownmillerite, Acta Crystallogr., 12(1959), No. 2, p. 149. doi: 10.1107/S0365110X59000433
      [35]
      F. Liao, Mechanism of Al2O3 Effect in Processes of Formation and Reduction of Complex Calcium Ferrites (SFCA ) [Dissertation], University of Science and Technology Beijing, Beijing, 2020.
      [36]
      X. Ding, Study of the Mechanism on Formation of Calcium Ferrite in the Fe2O3–CaO–SiO2 System [Dissertation], University of Science and Technology Beijing, Beijing, 2015.
      [37]
      X. Ding and X.M. Guo, The formation process of silico-ferrite of calcium (SFC) from binary calcium ferrite, Metall. Mater. Trans. B, 45(2014), No. 4, p. 1221. doi: 10.1007/s11663-014-0041-z
      [38]
      E.S. Grew, U. Hålenius, M. Pasero, and J. Barbier, Recommended nomenclature for the sapphirine and surinamite groups (sapphirine supergroup), Mineral. Mag., 72(2008), No. 4, p. 839. doi: 10.1180/minmag.2008.072.4.839
      [39]
      K. Inoue and T. Ikeda, The solid solution state and the crystal structure of calcium ferrite formed in lime-fluxed iron ores, Tetsu-to-Hagane, 68(1982), No. 15, p. 2190. doi: 10.2355/tetsutohagane1955.68.15_2190
      [40]
      S. Nicol, J. Chen, M.I. Pownceby, and N.A.S. Webster, A review of the chemistry, structure and formation conditions of silico-ferrite of calcium and aluminum (‘SFCA’) phases, ISIJ Int., 58(2018), No. 12, p. 2157. doi: 10.2355/isijinternational.ISIJINT-2018-203
      [41]
      L.H. Hsieh and J.A. Whiteman, Effect of oxygen potential on mineral formation in lime-fluxed iron ore sinter, ISIJ Int., 29(1989), No. 8, p. 625. doi: 10.2355/isijinternational.29.625
      [42]
      Z.R. Su, L.H. Shen, J.C. Yan, and L.L. Wang, Characteristics of rice-hull chemical looping gasification with calcium-ferrite as oxygen carrier, Acta Petrolei Sin. (Pet. Process. Sect.), 36(2020), No. 6, p. 1219.
      [43]
      C. Zhao, F. Wang, and J.F. Zhu, Analysis of the phase and morphology calcium ferrite powder prepared by high energy milling, J. Synth. Cryst., 41(2012), No. 1, p. 85.
      [44]
      N. Yang and X.M. Guo, Effect of Al2O3 on the composition and microstructures of crystal products of CaO–Fe2O3 melt, Iron Steel Vanadium Titanium, 40(2019), No. 2, p. 132.
      [45]
      K. Zöll, T. Manninger, V. Kahlenberg, H. Krüger, and P. Tropper, Investigations on the crystal structure and the stability field of FCAM-I (Ca3MgAl6Fe10O28), an iso-structure to SFCA-I, Metall. Mater. Trans. B, 48(2017), No. 4, p. 2207. doi: 10.1007/s11663-017-0988-7
      [46]
      A.K. Das, R. Govindaraj, and A. Srinivasan, Structural and magnetic properties of Sol–gel derived CaFe2O4 nanoparticles, J. Magn. Magn. Mater., 451(2018), p. 526. doi: 10.1016/j.jmmm.2017.11.102
      [47]
      N.S. Alsaiari, A. Amari, K.M. Katubi, F.M. Alzahrani, F. Ben Rebah, and M.A. Tahoon, The synthesis of magnetic nitrogen-doped graphene oxide nanocomposite for the removal of reactive orange 12 dye, Adsorpt. Sci. Technol., 2022(2022), art. No. 9417542. doi: 10.1155/2022/9417542
      [48]
      H.J. Sun, The Research of the Preparation and Properties of p-Type Semiconductor CaFe2O4 Doping with Transition Metal [Dissertation], Hebei University of Technology, Tianjin, 2016.
      [49]
      H.Y. Xue, Photocatalytic activity and mechanism of nano-CaFe2O4, Inorg. Chem. Ind., 49(2017), No. 9, p. 85.
      [50]
      C. Liu, B.S. Zou, A.J. Rondinone, and Z.J. Zhang, Chemical control of superparamagnetic properties of magnesium and cobalt spinel ferrite nanoparticles through atomic level magnetic couplings, J. Am. Chem. Soc.,122(2000), No. 26, p. 6263. doi: 10.1021/ja000784g
      [51]
      B.L. Shinde, L.A. Dhale, U.M. Mandle, and K.S. Lohar, An efficient one-pot synthesis of benzimidazoles using magnetically recoverable catalyst chromium doped nickel copper zinc spinel ferrite, Int. Res. J. Pharm., 10(2019), No. 8, p. 50. doi: 10.7897/2230-8407.1008245
      [52]
      N.H. Sulaiman, M.J. Ghazali, J. Yunas, A. Rajabi, B.Y. Majlis, and M. Razali, Synthesis and characterization of CaFe2O4 nanoparticles via co-precipitation and auto-combustion methods, Ceram. Int., 44(2018), No. 1, p. 46. doi: 10.1016/j.ceramint.2017.08.203
      [53]
      Z.H. Han, H.F. Kang, N.N. Yuan, X.T. Guo, J.J. Ma, and Q.J. Guo, Retention mechanism of calcium ferrite and compositions of ash on selenium during chemical looping gasification, Particuology, 79(2023), p. 143. doi: 10.1016/j.partic.2022.11.002
      [54]
      X.J. Lan, S.H. Liu, Y.J. Wang, and Q.W. Zhang, Preparation and photocatalytic properties of calcium ferrite nanoparticles by two methods, J. Dalian Jiaotong Univ., 40(2019), No. 1, p. 90.
      [55]
      F. Qi, Preparation and catalytic performance of composite CaCO3/CaFe2O4 catalyst, Inorg. Chem. Ind., 50(2018), No. 03, p. 77.
      [56]
      Y.X. Cui, J.H. Han, W.D. Wang, L.K. Zhang, Y.M. Li, and P. Sun, Adsorption performance and mechanism of magnetic porous activated carbon/calcium ferrite composite for thorium (IV), Chin. J. Nonferrous Met., 32(2022), No. 1, p. 236.
      [57]
      A.M. EL-Rafei, A.S. El-Kalliny, and T.A. Gad-Allah, Electrospun magnetically separable calcium ferrite nanofibers for photocatalytic water purification, J. Magn. Magn. Mater., 428(2017), p. 92. doi: 10.1016/j.jmmm.2016.12.020
      [58]
      R.N. Araujo, E.P. Nascimento, H.C.T. Firmino, et al., α-Fe2O3 fibers: An efficient photocatalyst for dye degradation under visible light, J. Alloys Compd., 882(2021), art. No. 160683. doi: 10.1016/j.jallcom.2021.160683
      [59]
      R. Dom, H.G. Kim, and P.H. Borse, Photo chemical hydrogen generation from orthorhombic CaFe2O4 nanoparticles synthesized by different methods, ChemistrySelect, 2(2017), No. 8, p. 2556. doi: 10.1002/slct.201601956
      [60]
      J. Zhao, H. Su, H.B. Zuo, J.S. Wang, and Q.G. Xue, The mechanism of preparation calcium ferrite from desulfurization gypsum produced in sintering, J. Cleaner Prod., 267(2020), art. No. 122002. doi: 10.1016/j.jclepro.2020.122002
      [61]
      U.I. Gaya and A.H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems, J. Photochem. Photobiol. C, 9(2008), No. 1, p. 1. doi: 10.1016/j.jphotochemrev.2007.12.003
      [62]
      X.B. Chen, Titanium dioxide nanomaterials and their energy applications, Chin. J. Catal., 30(2009), No. 8, p. 839. doi: 10.1016/S1872-2067(08)60126-6
      [63]
      Z.J. Zhang and W.Z. Wang, Solution combustion synthesis of CaFe2O4 nanocrystal as a magnetically separable photocatalyst, Mater. Lett., 133(2014), p. 212. doi: 10.1016/j.matlet.2014.07.050
      [64]
      K. Sekizawa, T. Nonaka, T. Arai, and T. Morikawa, Structural improvement of CaFe2O4 by metal doping toward enhanced cathodic photocurrent, ACS Appl. Mater. Interfaces, 6(2014), No. 14, p. 10969. doi: 10.1021/am502500y
      [65]
      S. Shenoy, C. Chuaicham, T. Okumura, K. Sekar, and K. Sasaki, Simple tactic polycondensation synthesis of Z-scheme quasi-polymeric g-C3N4/CaFe2O4 composite for enhanced photocatalytic water depollution via p-n heterojunction, Chem. Eng. J., 453(2023), art. No. 139758. doi: 10.1016/j.cej.2022.139758
      [66]
      P.H. Borse, J.Y. Kim, J.S. Lee, et al., Ti-dopant-enhanced photocatalytic activity of a CaFe2O4/MgFe2O4 bulk heterojunction under visible-light irradiation, J. Korean Phys. Soc., 61(2012), No. 1, p. 73. doi: 10.3938/jkps.61.73
      [67]
      T. Vangijzegem, D. Stanicki, and S. Laurent, Magnetic iron oxide nanoparticles for drug delivery: Applications and characteristics, Expert Opin. Drug Delivery, 16(2019), No. 1, p. 69. doi: 10.1080/17425247.2019.1554647
      [68]
      S. Palanisamy and Y.M. Wang, Superparamagnetic iron oxide nanoparticulate system: Synthesis, targeting, drug delivery and therapy in cancer, Dalton Trans., 48(2019), No. 26, p. 9490. doi: 10.1039/C9DT00459A
      [69]
      M. Amiri, M. Salavati-Niasari, and A. Akbari, Magnetic nanocarriers: Evolution of spinel ferrites for medical applications, Adv. Colloid Interface Sci., 265(2019), p. 29. doi: 10.1016/j.cis.2019.01.003
      [70]
      S.A. Hassanzadeh-Tabrizi, H. Norbakhsh, R. Pournajaf, and M. Tayebi, Synthesis of mesoporous cobalt ferrite/hydroxyapatite core-shell nanocomposite for magnetic hyperthermia and drug release applications, Ceram. Int., 47(2021), No. 13, p. 18167. doi: 10.1016/j.ceramint.2021.03.135
      [71]
      A. Nigam and S.J. Pawar, Structural, magnetic, and antimicrobial properties of zinc doped magnesium ferrite for drug delivery applications, Ceram. Int., 46(2020), No. 4, p. 4058. doi: 10.1016/j.ceramint.2019.10.243
      [72]
      B.K. Purushothaman, M. Harsha S, P.U. Maheswari, and K.M. Meera Sheriffa Begum, Magnetic assisted curcumin drug delivery using folate receptor targeted hybrid casein-calcium ferrite nanocarrier, J. Drug Delivery Sci. Technol., 52(2019), p. 509. doi: 10.1016/j.jddst.2019.05.010
      [73]
      A. Tomitaka, A. Hirukawa, T. Yamada, S. Morishita, and Y. Takemura, Biocompatibility of various ferrite nanoparticles evaluated by in vitro cytotoxicity assays using HeLa cells, J. Magn. Magn. Mater., 321(2009), No. 10, p. 1482. doi: 10.1016/j.jmmm.2009.02.058
      [74]
      Y. Jumril, S. Noor Humam, and M.J. Ghazali, Synthesis of calcium ferrite nanoparticles (CaFe2O4-NPs) using auto-combustion method for targeted drug delivery, Key Eng. Mater., 775(2018), p. 115. doi: 10.4028/www.scientific.net/KEM.775.115
      [75]
      L. Khanna and N.K. Verma, Synthesis, characterization and in vitro cytotoxicity study of calcium ferrite nanoparticles, Mater. Sci. Semicond. Process., 16(2013), No. 6, p. 1842. doi: 10.1016/j.mssp.2013.07.016
      [76]
      H. Yang, C.X. Zhang, X.Y. Shi, et al., Water-soluble superparamagnetic manganese ferrite nanoparticles for magnetic resonance imaging, Biomaterials, 31(2010), No. 13, p. 3667. doi: 10.1016/j.biomaterials.2010.01.055
      [77]
      G. Baldi, D. Bonacchi, M.C. Franchini, et al., Synthesis and coating of cobalt ferrite nanoparticles: A first step toward the obtainment of new magnetic nanocarriers, Langmuir, 23(2007), No. 7, p. 4026. doi: 10.1021/la063255k
      [78]
      X.G. Liu, Z. Yuan, T.D. Zhao, H. Zhang, L.J. Guo, and Q. Tao, Synthesis of monodispersed calcium ferrite (CaFe2O4) nanocubes with hydrophilic surface for pH-induced drug release and tongue squamous cell carcinoma treatment, Phys. E, 140(2022), art. No. 115178. doi: 10.1016/j.physe.2022.115178
      [79]
      L. Khanna and N.K. Verma, Biocompatibility and superparamagnetism in novel silica/CaFe2O4 nanocomposite, Mater. Lett., 128(2014), p. 376. doi: 10.1016/j.matlet.2014.04.168
      [80]
      L. Zhang, X.L. Li, D. Liu, Y. Ying, L.Q. Jiang, and S.L. Che, Influence of particle size and Ca addition on the magnetic performance and microstructure of MnZn ferrite, Mater. Sci. Forum, 787(2014), p. 362. doi: 10.4028/www.scientific.net/MSF.787.362
      [81]
      P. Thakur, S. Taneja, D. Chahar, B. Ravelo, and A. Thakur, Recent advances on synthesis, characterization and high frequency applications of Ni-Zn ferrite nanoparticles, J. Magn. Magn. Mater., 530(2021), art. No. 167925. doi: 10.1016/j.jmmm.2021.167925
      [82]
      V.J. Angadi, K.M. Batoo, S. Hussain, H.R. Lakshmiprasanna, K. Manjunatha, and S.O. Manjunatha, Role of superparamagnetic nanoparticles in humidity sensing behavior of holmium doped manganese-bismuth ferrites for relative humidity sensor applications, J. Mater. Sci. Mater. Electron., 33(2022), No. 31, p. 24308. doi: 10.1007/s10854-022-09151-3
      [83]
      S. Kumari, N. Dhanda, A. Thakur, et al., Nano Ca–Mg–Zn ferrites as tuneable photocatalyst for UV light-induced degradation of rhodamine B dye and antimicrobial behavior for water purification, Ceram. Int., 49(2023), No. 8, p. 12469. doi: 10.1016/j.ceramint.2022.12.107
      [84]
      J.C. Maxwell, A Treatise on Electricity snd Magnetism, Oxford: Clarendon Press, 1873.
      [85]
      W.A. Yager, The distribution of relaxation times in typical dielectrics, J. Appl. Phys., 7(1936), No. 12, p. 434.
      [86]
      P. Shankar, B. Shetty, A.L. Jayasheelan, N.R.S. Reddy, and C.S. Prakash, Structural, electrical, and impedance spectroscopy studies of barium substituted nano calcium ferrites synthesized by solution combustion method, J. Nanostruct., 9(2019), No. 2, p. 202.
      [87]
      H.C. Gomes, S.S. Teixeira, and M.P.F. Graça, Synthesis of calcium ferrite for energy storage applications, J. Alloys Compd., 921(2022), art. No. 166026. doi: 10.1016/j.jallcom.2022.166026
      [88]
      S. Kumari, N. Dhanda, A. Thakur, S. Singh, and P. Thakur, Investigation of calcium substitution on magnetic and dielectric properties of Mg–Zn nano ferrites, Mater. Chem. Phys., 297(2023), art. No. 127394. doi: 10.1016/j.matchemphys.2023.127394
      [89]
      C.G.M. Lima, A.J.M. Araújo, R.M. Silva, et al., Electrical assessment of brownmillerite-type calcium ferrite materials obtained by proteic sol–gel route and by solid-state reaction using mollusk shells, J. Solid State Chem., 299(2021), art. No. 122172. doi: 10.1016/j.jssc.2021.122172
      [90]
      D.D. Miller and R. Siriwardane, CaFe2O4 oxygen carrier characterization during the partial oxidation of coal in the chemical looping gasification application, Appl. Energy, 224(2018), p. 708. doi: 10.1016/j.apenergy.2018.05.035
      [91]
      M.S. Sukma, Y.Y. Zheng, P. Hodgson, and S.A. Scott, Understanding the behavior of dicalcium ferrite (Ca2Fe2O5) in chemical looping syngas production from CH4, Energy Fuels, 36(2022), No. 17, p. 9410. doi: 10.1021/acs.energyfuels.2c01065
      [92]
      Z. Sun, C.K. Russell, and M.H. Fan, Effect of calcium ferrites on carbon dioxide gasification reactivity and kinetics of pine wood derived char, Renewable Energy, 163(2021), p. 445. doi: 10.1016/j.renene.2020.09.026
      [93]
      W.G. Lee and M.S. Song, CO2 adsorption reactions of synthetic calcium aluminum ferrite (CAF), Appl. Sci., 12(2022), No. 13, art. No. 6677. doi: 10.3390/app12136677
      [94]
      H.R. Ong, M.M. Rahman Khan, A. Yousuf, N.A. Hussain, and C.K. Cheng, Synthesis and characterization of a CaFe2O4 catalyst for oleic acid esterification, RSC Adv., 5(2015), No. 121, p. 100362. doi: 10.1039/C5RA17857F
      [95]
      G.S. Wang, D.X. Zhao, Y.Y. Ma, et al., Synthesis of calcium ferrite nanocrystal clusters for magnetorheological fluid with enhanced sedimentation stability, Powder Technol., 322(2017), p. 47. doi: 10.1016/j.powtec.2017.08.065
      [96]
      R.A. Candeia, M.I.B. Bernardi, E. Longo, I.M.G. Santos, and A.G. Souza, Synthesis and characterization of spinel pigment CaFe2O4 obtained by the polymeric precursor method, Mater. Lett., 58(2004), No. 5, p. 569. doi: 10.1016/S0167-577X(03)00563-9

    Catalog


    • /

      返回文章
      返回