Cite this article as: |
Chao Tan, Junling Lü, Chunchi Zhang, Dong Liang, Lei Yang, and Zegao Wang, Force and impulse multi-sensor based on flexible gate dielectric field effect transistor, Int. J. Miner. Metall. Mater., 32(2025), No. 1, pp. 214-220. https://doi.org/10.1007/s12613-024-2968-7 |
王泽高 E-mail: zegao@scu.edu.cn
Supplementary Information-s12613-024-2968-7.docx |
[1] |
H. Xia, L. Wang, H. Zhang, et al., MXene/PPy@PDMS sponge-based flexible pressure sensor for human posture recognition with the assistance of a convolutional neural network in deep learning, Microsyst. Nanoeng., 9(2023), art. No. 155. doi: 10.1038/s41378-023-00605-0
|
[2] |
B. Li, C.Y. Cai, Y. Liu, et al., Ultrasensitive mechanical/thermal response of a P(VDF-TrFE) sensor with a tailored network interconnection interface, Nat. Commun., 14(2023), art. No. 4000. doi: 10.1038/s41467-023-39476-4
|
[3] |
X.G. Han, M.M. Huang, Z.T. Wu, et al., Advances in high-performance MEMS pressure sensors: Design, fabrication, and packaging, Microsyst. Nanoeng., 9(2023), No. 1, art. No. 156. doi: 10.1038/s41378-023-00620-1
|
[4] |
C.M. Boutry, Y. Kaizawa, B.C. Schroeder, et al., A stretchable and biodegradable strain and pressure sensor for orthopaedic application, Nat. Electron., 1(2018), p. 314. doi: 10.1038/s41928-018-0071-7
|
[5] |
S. Lee, A. Reuveny, J. Reeder, et al., A transparent bending-insensitive pressure sensor, Nat. Nanotechnol., 11(2016), p. 472. doi: 10.1038/nnano.2015.324
|
[6] |
G. Feng, Q. Zhu, X. Liu, et al., A ferroelectric fin diode for robust non-volatile memory, Nat. Commun., 15(2024), art. No. 513. doi: 10.1038/s41467-024-44759-5
|
[7] |
L. Zhang, H. Jin, H. Liao, et al., Ultra-broadband microwave absorber and high-performance pressure sensor based on aramid nanofiber, polypyrrole and nickel porous aerogel, Int. J. Miner. Metall. Mater., 31(2024), No. 8, p. 1912. doi: 10.1007/s12613-023-2820-5
|
[8] |
L. Zhang, Y. Lu, S.W. Lu, et al., Lifetime health monitoring of fiber reinforced composites using highly flexible and sensitive MXene/CNT film sensor, Sens. Actuators A, 332(2021), art. No. 113148. doi: 10.1016/j.sna.2021.113148
|
[9] |
O. Ahmed, X. Wang, M.V. Tran, and M.Z. Ismadi, Advancements in fiber-reinforced polymer composite materials damage detection methods: Towards achieving energy-efficient SHM systems, Composites Part B, 223(2021), art. No. 109136. doi: 10.1016/j.compositesb.2021.109136
|
[10] |
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors, Nat. Nanotechnol., 6(2011), p. 147. doi: 10.1038/nnano.2010.279
|
[11] |
C. Tan, R. Tao, Z.H. Yang, et al., Tune the photoresponse of monolayer MoS2 by decorating CsPbBr3 perovskite nanoparticles, Chin. Chem. Lett., 34(2023), No. 7, art. No. 107979. doi: 10.1016/j.cclet.2022.107979
|
[12] |
C. Dai, Y. Liu, and D. Wei, Two-dimensional field-effect transistor sensors: The road toward commercialization, Chem. Rev., 122(2022), No. 11, p. 10319. doi: 10.1021/acs.chemrev.1c00924
|
[13] |
W. Chen, C. Li, Y. Tao, et al., Chitosan-based triboelectric materials for self-powered sensing at high temperatures, Int. J. Miner. Metall. Mater., 31(2024), No. 11, p. 2518. doi: 10.1007/s12613-024-2839-2
|
[14] |
S.J. Kim, S. Mondal, B.K. Min, and C.G. Choi, Highly sensitive and flexible strain-pressure sensors with cracked paddy-shaped MoS2/graphene foam/ecoflex hybrid nanostructures, ACS Appl. Mater. Interfaces, 10(2018), No. 42, p. 36377. doi: 10.1021/acsami.8b11233
|
[15] |
Z. Yan, D. Xu, Z. Lin, et al., Highly stretchable van der Waals thin films for adaptable and breathable electronic membranes, Science, 375(2022), No. 6583, p. 852. doi: 10.1126/science.abl8941
|
[16] |
M.J. Yin, Z.G. Yin, Y.X. Zhang, Q.D. Zheng, and A.P. Zhang, Micropatterned elastic ionic polyacrylamide hydrogel for low-voltage capacitive and organic thin-film transistor pressure sensors, Nano Energy, 58(2019), p. 96. doi: 10.1016/j.nanoen.2019.01.032
|
[17] |
Z.A. Lamport, M.R. Cavallari, K.A. Kam, C.K. McGinn, C. Yu, and I. Kymissis, Organic thin film transistors in mechanical sensors, Adv. Funct. Mater., 30(2020), No. 51, art. No. 2004700. doi: 10.1002/adfm.202004700
|
[18] |
Z. Shen, C. Zhang, Y. Meng, and Z. Wang, Highly tunable, broadband, and negative photoresponse MoS2 photodetector driven by ion-gel gate dielectrics, ACS Appl. Mater. Interfaces, 14(2022), No. 28, p. 32412. doi: 10.1021/acsami.2c08341
|
[19] |
Y.P. Zang, F.J. Zhang, D.Z. Huang, X.K. Gao, C.A. Di, and D.B. Zhu, Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection, Nat. Commun., 6(2015), art. No. 6269. doi: 10.1038/ncomms7269
|
[20] |
A.H. Nguyen, M.C. Nguyen, S. Cho, et al., Double-gate thin film transistor with suspended-gate applicable to tactile force sensor, Nano Converg., 7(2020), No. 1, art. No. 31. doi: 10.1186/s40580-020-00240-9
|
[21] |
Y. Zhang, Y. Zhang, H. Liu, et al., TiN/Fe2N/C composite with stable and broadband high-temperature microwave absorption, Int. J. Miner. Metall. Mater., 31(2024), No. 11, p. 2508. doi: 10.1007/s12613-024-2972-y
|
[22] |
Z.Y. Liu, Z.G. Yin, Y. Jiang, and Q.D. Zheng, Dielectric interface passivation of polyelectrolyte-gated organic field-effect transistors for ultrasensitive low-voltage pressure sensors in wearable applications, Mater. Today Electron., 1(2022), art. No. 100001. doi: 10.1016/j.mtelec.2022.100001
|
[23] |
W.W. Li, C.H. Lin, A. Rasheed, E. Iranmanesh, Q. Zhou, and K. Wang, A force and temperature sensor array based on 3-D field-coupled thin-film transistors for tactile intelligence, IEEE Trans. Electron Devices, 67(2020), No. 7, p. 2890. doi: 10.1109/TED.2020.2995582
|
[24] |
Y.L. Geng, J. Xu, M.A. Bin Che Mahzan, et al., Mixed dimensional ZnO/WSe2 piezo-gated transistor with active millinewton force sensing, ACS Appl. Mater. Interfaces, 14(2022), No. 43, p. 49026. doi: 10.1021/acsami.2c15730
|
[25] |
Y. Li, J. Sun, S. Li,et al., Three-dimensional graphene field effect transistors as self-powered vibration sensors, [in] 2022 IEEE 35th International Conference on Micro Electro Mechanical Systems Conference (MEMS ), Tokyo, 2022, p. 75.
|
[26] |
H.S. Kang, K.H. Lee, D.Y. Yang, B.H. You, and I.H. Song, Micro-accelerometer based on vertically movable gate field effect transistor, Nano Micro Lett., 7(2015), No. 3, p. 282. doi: 10.1007/s40820-015-0041-9
|
[27] |
F. Menacer, A. Kadr, and Z. Dibi, Modeling of a smart nano force sensor using finite elements and neural networks, Int. J. Autom. Comput., 17(2020), No. 2, p. 279. doi: 10.1007/s11633-018-1155-6
|
[28] |
W.D. Gao, C. Jia, Z.D. Jiang, X.Y. Zhou, L.B. Zhao, and D. Sun, The design and analysis of a novel micro force sensor based on depletion type movable gate field effect transistor, J. Microelectromech. Syst., 28(2019), No. 2, p. 298. doi: 10.1109/JMEMS.2019.2899621
|
[29] |
Y.T. Zheng, J.J. Wei, J.L. Liu, et al., Carbon materials: The burgeoning promise in electronics, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 404. doi: 10.1007/s12613-021-2358-3
|
[30] |
X.J. Song, J.P. Xu, L. Liu, and P.T. Lai, Comprehensive investigation on CF4/O2-plasma treating the interfaces of stacked gate dielectric in MoS2 transistors, Appl. Surf. Sci., 542(2021), art. No. 148437.
|
[31] |
J.H. Wang, X.Z. Xu, T. Cheng, et al., Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS2 monolayer on vicinal a-plane sapphire, Nat. Nanotechnol., 17(2022), No. 1, p. 33.
|
[32] |
H.X. Huang, J.J. Zha, S.S. Li, and C.L. Tan, Two-dimensional alloyed transition metal dichalcogenide nanosheets: Synthesis and applications, Chin. Chem. Lett., 33(2022), No. 1, p. 163. doi: 10.1016/j.cclet.2021.06.004
|
[33] |
X.Y. Niu, Y. Yu, J.D. Yao, M.G. Li, J. Sha, and Y.W. Wang, Preparation of black phosphorus quantum dots and the surface decoration effect on the monolayer MoS2 photodetectors, Chem. Phys. Lett., 772(2021), art. No. 138571. doi: 10.1016/j.cplett.2021.138571
|
[34] |
D.S. Schneider, A. Grundmann, A. Bablich, et al., Highly responsive flexible photodetectors based on MOVPE grown uniform few-layer MoS2, ACS Photonics, 7(2020), No. 6, p. 1388. doi: 10.1021/acsphotonics.0c00361
|
[35] |
Y.H. Liu, M. Tang, S. Zhang, et al., U(VI) adsorption behavior onto polypyrrole coated 3R-MoS2 nanosheets prepared with the molten salt electrolysis method, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 479. doi: 10.1007/s12613-020-2154-5
|
[36] |
X.A. Luo, Z.H. Peng, Z.G. Wang, and M.D. Dong, Layer-by-layer growth of AA-stacking MoS2 for tunable broadband phototransistors, ACS Appl. Mater. Interfaces, 13(2021), No. 49, p. 59154. doi: 10.1021/acsami.1c19906
|
[37] |
S.W. Luo, C.P. Cullen, G.C. Guo, J.X. Zhong, and G.S. Duesberg, Investigation of growth-induced strain in monolayer MoS2 grown by chemical vapor deposition, Appl. Surf. Sci., 508(2020), art. No. 145126. doi: 10.1016/j.apsusc.2019.145126
|
[38] |
R. Muñoz, E. López-Elvira, C. Munuera, et al., Direct growth of graphene-MoS2 heterostructure: Tailored interface for advanced devices, Appl. Surf. Sci., 581(2022), art. No. 151858. doi: 10.1016/j.apsusc.2021.151858
|
[39] |
J.J. Zha, M.C. Luo, M. Ye, et al., Infrared photodetectors based on 2D materials and nanophotonics, Adv. Funct. Mater., 32(2022), No. 15, art. No. 2111970. doi: 10.1002/adfm.202111970
|
[40] |
L.J. Bu, Y.M. Qiu, P. Wei, et al., Manipulating transistor operation via nonuniformly distributed charges in a polymer insulating electret layer, Phys. Rev. Applied, 6(2016), No. 5, art. No. 054022. doi: 10.1103/PhysRevApplied.6.054022
|
[41] |
C.K. Zhu, I. Ahmed, A. Parsons, et al., Novel bioresorbable phosphate glass fiber textile composites for medical applications, Polym. Compos., 39(2018), No. S1, p. E140. doi: 10.1002/pc.24499
|
[42] |
M.Z. Liao, Z. Wei, L.J. Du, et al., Precise control of the interlayer twist angle in large scale MoS2 homostructures, Nat. Commun., 11(2020), No. 1, art. No. 2153. doi: 10.1038/s41467-020-16056-4
|
[43] |
L. Wang, X.Z. Li, C.J. Pei, et al., Single- and few-layer 2H-SnS2 and 4H-SnS2 nanosheets for high-performance photodetection, Chin. Chem. Lett., 33(2022), No. 5, p. 2611. doi: 10.1016/j.cclet.2021.09.094
|
[44] |
M.S. Moghaddam, A. Bahari, and H.R. Litkohi, Using the synergistic effects of MoS2/rGO and bimetallic hybrids as a high-performance nanoelectrocatalyst for oxygen reduction reaction, Int. J. Hydrog. Energy, 48(2023), No. 85, p. 33139. doi: 10.1016/j.ijhydene.2023.05.070
|
[45] |
M. Soleimani Moghaddam, A. Bahari, and H. Rajaei Litkohi, Designing and modeling fuel cells made of mixed transition metal dichalcogenide and carbon-based nanostructure electrodes for renewable energy storage, J. Power Sources, 604(2024), art. No. 234514. doi: 10.1016/j.jpowsour.2024.234514
|
[46] |
L.T. Liu, L.G. Kong, Q.Y. Li, et al., Transferred van der Waals metal electrodes for sub-1-nm MoS2 vertical transistors, Nat. Electron., 4(2021), No. 5, p. 342. doi: 10.1038/s41928-021-00566-0
|
[47] |
F. Wu, H. Tian, Y. Shen, et al., Vertical MoS2 transistors with sub-1-nm gate lengths, Nature, 603(2022), p. 259. doi: 10.1038/s41586-021-04323-3
|
[48] |
K.L. Liu, X. Chen, P.L. Gong, et al., Approaching strain limit of two-dimensional MoS2 via chalcogenide substitution, Sci. Bull., 67(2022), No. 1, p. 45. doi: 10.1016/j.scib.2021.07.010
|
[49] |
L.N. Liu, J.X. Wu, L.Y. Wu, et al., Phase-selective synthesis of 1T’ MoS2 monolayers and heterophase bilayers, Nat. Mater., 17(2018), No. 12, p. 1108. doi: 10.1038/s41563-018-0187-1
|
[50] |
J.F. Jiang, Y. Zhang, A.Z. Wang, et al., Construction of high field-effect mobility multilayer MoS2 field-effect transistors with excellent stability through interface engineering, ACS Appl. Electron. Mater., 2(2020), No. 7, p. 2132. doi: 10.1021/acsaelm.0c00347
|
[51] |
F. Li, R. Tao, B.L. Cao, L. Yang, and Z.G. Wang, Manipulating the light-matter interaction of PtS/MoS2 p–n junctions for high performance broadband photodetection, Adv. Funct. Mater., 31(2021), No. 36, art. No. 2104367. doi: 10.1002/adfm.202104367
|
[52] |
Q. Wang, Q. Zhang, G.Y. Wang, Y.R. Wang, X.Y. Ren, and G.H. Gao, Muscle-inspired anisotropic hydrogel strain sensors, ACS Appl. Mater. Interfaces, 14(2022), No. 1, p. 1921. doi: 10.1021/acsami.1c18758
|
[53] |
X.F. Zhang, L. Wei, L. Wang, J. Liu, and J. Xu, Gate length related transfer characteristics of GaN-based high electron mobility transistors, Appl. Phys. Lett., 102(2013), No. 11, art. No. 113501. doi: 10.1063/1.4795609
|
[54] |
S.M. Shinde, G. Kalita, and M. Tanemura, Fabrication of poly(methyl methacrylate)-MoS2/graphene heterostructure for memory device application, J. Appl. Phys., 116(2014), No. 21, art. No. 214306. doi: 10.1063/1.4903552
|
[55] |
W.Z. Bao, X.H. Cai, D. Kim, K. Sridhara, and M.S. Fuhrer, High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects, Appl. Phys. Lett., 102(2013), No. 4, art. No. 042104. doi: 10.1063/1.4789365
|