留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 32 Issue 1
Jan.  2025

图(6)

数据统计

分享

计量
  • 文章访问数:  361
  • HTML全文浏览量:  156
  • PDF下载量:  18
  • 被引次数: 0
Chao Tan, Junling Lü, Chunchi Zhang, Dong Liang, Lei Yang, and Zegao Wang, Force and impulse multi-sensor based on flexible gate dielectric field effect transistor, Int. J. Miner. Metall. Mater., 32(2025), No. 1, pp. 214-220. https://doi.org/10.1007/s12613-024-2968-7
Cite this article as:
Chao Tan, Junling Lü, Chunchi Zhang, Dong Liang, Lei Yang, and Zegao Wang, Force and impulse multi-sensor based on flexible gate dielectric field effect transistor, Int. J. Miner. Metall. Mater., 32(2025), No. 1, pp. 214-220. https://doi.org/10.1007/s12613-024-2968-7
引用本文 PDF XML SpringerLink
研究论文

基于柔性栅介电层场效应晶体管的压力与冲量传感器



    * 共同第一作者
  • 通讯作者:

    王泽高    E-mail: zegao@scu.edu.cn

文章亮点

  • (1) 实现对静态/动态力引起的冲量脉冲变化的实时监测。
  • (2) 压力传感响应灵敏度可达8000%,功耗低至30 nW。
  • (3) 器件在空气中放置60 d几乎没有性能损失。
  • (4) 基于该器件的4×1传感阵列,实现对荷载的定量和定位监测。
  • 力学传感器在工业生产、电子信息、医疗卫生等诸多领域发挥着重要作用。基于二维材料的场效应晶体管(2D-FET)传感器具有纳米级尺寸、低功耗和高响应精度等优势,是力学传感器应用领域的研究热点。然而,这些力学传感器很少具备对冲量的检测能力。冲量检测是对过程量的检测,表示力在一段时间内对受力体的累积作用。因此,我们利用聚甲基丙烯酸甲酯(PMMA)作为栅极介电层,二维二硫化钼(2D-MoS2)作为沟道材料,设计并制备了柔性栅介电层场效应晶体管,用于压力与冲量的传感监测。系统地研究了该传感器对静态/动态荷载的响应作用,通过计算拟合获取了源漏电流信号(Ids)与冲量监测信号$( \overrightarrow{I} )$之间的转换系数。该传感器工作能耗低至30 nW,响应度达到8000%,在空气中放置60 d无性能损失。此外,基于该传感器的传感阵列实现了对压力荷载的定量和定位监测。
  • Research Article

    Force and impulse multi-sensor based on flexible gate dielectric field effect transistor

    + Author Affiliations
    • Nowadays, force sensors play an important role in industrial production, electronic information, medical health, and many other fields. Two-dimensional material-based filed effect transistor (2D-FET) sensors are competitive with nano-level size, lower power consumption, and accurate response. However, few of them has the capability of impulse detection, which is a path function, expressing the cumulative effect of the force on the particle over a period of time. Herein, we fabricated the flexible polymethyl methacrylate (PMMA) gate dielectric MoS2-FET for force and impulse sensor application. We systematically investigated the responses of the sensor to constant force and varying forces, and achieved the conversion factors of the drain current signals (Ids) to the detected impulse ($ \overrightarrow{I} $). The applied force was detected and recorded by Ids with a low power consumption of ~30 nW. The sensitivity of the device can reach ~8000% and the 4 × 1 sensor array is able to detect and locate the normal force applied on it. Moreover, there was almost no performance loss for the device as left in the air for two months.
    • loading
    • Supplementary Information-s12613-024-2968-7.docx
    • [1]
      H. Xia, L. Wang, H. Zhang, et al., MXene/PPy@PDMS sponge-based flexible pressure sensor for human posture recognition with the assistance of a convolutional neural network in deep learning, Microsyst. Nanoeng., 9(2023), art. No. 155. doi: 10.1038/s41378-023-00605-0
      [2]
      B. Li, C.Y. Cai, Y. Liu, et al., Ultrasensitive mechanical/thermal response of a P(VDF-TrFE) sensor with a tailored network interconnection interface, Nat. Commun., 14(2023), art. No. 4000. doi: 10.1038/s41467-023-39476-4
      [3]
      X.G. Han, M.M. Huang, Z.T. Wu, et al., Advances in high-performance MEMS pressure sensors: Design, fabrication, and packaging, Microsyst. Nanoeng., 9(2023), No. 1, art. No. 156. doi: 10.1038/s41378-023-00620-1
      [4]
      C.M. Boutry, Y. Kaizawa, B.C. Schroeder, et al., A stretchable and biodegradable strain and pressure sensor for orthopaedic application, Nat. Electron., 1(2018), p. 314. doi: 10.1038/s41928-018-0071-7
      [5]
      S. Lee, A. Reuveny, J. Reeder, et al., A transparent bending-insensitive pressure sensor, Nat. Nanotechnol., 11(2016), p. 472. doi: 10.1038/nnano.2015.324
      [6]
      G. Feng, Q. Zhu, X. Liu, et al., A ferroelectric fin diode for robust non-volatile memory, Nat. Commun., 15(2024), art. No. 513. doi: 10.1038/s41467-024-44759-5
      [7]
      L. Zhang, H. Jin, H. Liao, et al., Ultra-broadband microwave absorber and high-performance pressure sensor based on aramid nanofiber, polypyrrole and nickel porous aerogel, Int. J. Miner. Metall. Mater., 31(2024), No. 8, p. 1912. doi: 10.1007/s12613-023-2820-5
      [8]
      L. Zhang, Y. Lu, S.W. Lu, et al., Lifetime health monitoring of fiber reinforced composites using highly flexible and sensitive MXene/CNT film sensor, Sens. Actuators A, 332(2021), art. No. 113148. doi: 10.1016/j.sna.2021.113148
      [9]
      O. Ahmed, X. Wang, M.V. Tran, and M.Z. Ismadi, Advancements in fiber-reinforced polymer composite materials damage detection methods: Towards achieving energy-efficient SHM systems, Composites Part B, 223(2021), art. No. 109136. doi: 10.1016/j.compositesb.2021.109136
      [10]
      B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors, Nat. Nanotechnol., 6(2011), p. 147. doi: 10.1038/nnano.2010.279
      [11]
      C. Tan, R. Tao, Z.H. Yang, et al., Tune the photoresponse of monolayer MoS2 by decorating CsPbBr3 perovskite nanoparticles, Chin. Chem. Lett., 34(2023), No. 7, art. No. 107979. doi: 10.1016/j.cclet.2022.107979
      [12]
      C. Dai, Y. Liu, and D. Wei, Two-dimensional field-effect transistor sensors: The road toward commercialization, Chem. Rev., 122(2022), No. 11, p. 10319. doi: 10.1021/acs.chemrev.1c00924
      [13]
      W. Chen, C. Li, Y. Tao, et al., Chitosan-based triboelectric materials for self-powered sensing at high temperatures, Int. J. Miner. Metall. Mater., 31(2024), No. 11, p. 2518. doi: 10.1007/s12613-024-2839-2
      [14]
      S.J. Kim, S. Mondal, B.K. Min, and C.G. Choi, Highly sensitive and flexible strain-pressure sensors with cracked paddy-shaped MoS2/graphene foam/ecoflex hybrid nanostructures, ACS Appl. Mater. Interfaces, 10(2018), No. 42, p. 36377. doi: 10.1021/acsami.8b11233
      [15]
      Z. Yan, D. Xu, Z. Lin, et al., Highly stretchable van der Waals thin films for adaptable and breathable electronic membranes, Science, 375(2022), No. 6583, p. 852. doi: 10.1126/science.abl8941
      [16]
      M.J. Yin, Z.G. Yin, Y.X. Zhang, Q.D. Zheng, and A.P. Zhang, Micropatterned elastic ionic polyacrylamide hydrogel for low-voltage capacitive and organic thin-film transistor pressure sensors, Nano Energy, 58(2019), p. 96. doi: 10.1016/j.nanoen.2019.01.032
      [17]
      Z.A. Lamport, M.R. Cavallari, K.A. Kam, C.K. McGinn, C. Yu, and I. Kymissis, Organic thin film transistors in mechanical sensors, Adv. Funct. Mater., 30(2020), No. 51, art. No. 2004700. doi: 10.1002/adfm.202004700
      [18]
      Z. Shen, C. Zhang, Y. Meng, and Z. Wang, Highly tunable, broadband, and negative photoresponse MoS2 photodetector driven by ion-gel gate dielectrics, ACS Appl. Mater. Interfaces, 14(2022), No. 28, p. 32412. doi: 10.1021/acsami.2c08341
      [19]
      Y.P. Zang, F.J. Zhang, D.Z. Huang, X.K. Gao, C.A. Di, and D.B. Zhu, Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection, Nat. Commun., 6(2015), art. No. 6269. doi: 10.1038/ncomms7269
      [20]
      A.H. Nguyen, M.C. Nguyen, S. Cho, et al., Double-gate thin film transistor with suspended-gate applicable to tactile force sensor, Nano Converg., 7(2020), No. 1, art. No. 31. doi: 10.1186/s40580-020-00240-9
      [21]
      Y. Zhang, Y. Zhang, H. Liu, et al., TiN/Fe2N/C composite with stable and broadband high-temperature microwave absorption, Int. J. Miner. Metall. Mater., 31(2024), No. 11, p. 2508. doi: 10.1007/s12613-024-2972-y
      [22]
      Z.Y. Liu, Z.G. Yin, Y. Jiang, and Q.D. Zheng, Dielectric interface passivation of polyelectrolyte-gated organic field-effect transistors for ultrasensitive low-voltage pressure sensors in wearable applications, Mater. Today Electron., 1(2022), art. No. 100001. doi: 10.1016/j.mtelec.2022.100001
      [23]
      W.W. Li, C.H. Lin, A. Rasheed, E. Iranmanesh, Q. Zhou, and K. Wang, A force and temperature sensor array based on 3-D field-coupled thin-film transistors for tactile intelligence, IEEE Trans. Electron Devices, 67(2020), No. 7, p. 2890. doi: 10.1109/TED.2020.2995582
      [24]
      Y.L. Geng, J. Xu, M.A. Bin Che Mahzan, et al., Mixed dimensional ZnO/WSe2 piezo-gated transistor with active millinewton force sensing, ACS Appl. Mater. Interfaces, 14(2022), No. 43, p. 49026. doi: 10.1021/acsami.2c15730
      [25]
      Y. Li, J. Sun, S. Li,et al., Three-dimensional graphene field effect transistors as self-powered vibration sensors, [in] 2022 IEEE 35th International Conference on Micro Electro Mechanical Systems Conference (MEMS ), Tokyo, 2022, p. 75.
      [26]
      H.S. Kang, K.H. Lee, D.Y. Yang, B.H. You, and I.H. Song, Micro-accelerometer based on vertically movable gate field effect transistor, Nano Micro Lett., 7(2015), No. 3, p. 282. doi: 10.1007/s40820-015-0041-9
      [27]
      F. Menacer, A. Kadr, and Z. Dibi, Modeling of a smart nano force sensor using finite elements and neural networks, Int. J. Autom. Comput., 17(2020), No. 2, p. 279. doi: 10.1007/s11633-018-1155-6
      [28]
      W.D. Gao, C. Jia, Z.D. Jiang, X.Y. Zhou, L.B. Zhao, and D. Sun, The design and analysis of a novel micro force sensor based on depletion type movable gate field effect transistor, J. Microelectromech. Syst., 28(2019), No. 2, p. 298. doi: 10.1109/JMEMS.2019.2899621
      [29]
      Y.T. Zheng, J.J. Wei, J.L. Liu, et al., Carbon materials: The burgeoning promise in electronics, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 404. doi: 10.1007/s12613-021-2358-3
      [30]
      X.J. Song, J.P. Xu, L. Liu, and P.T. Lai, Comprehensive investigation on CF4/O2-plasma treating the interfaces of stacked gate dielectric in MoS2 transistors, Appl. Surf. Sci., 542(2021), art. No. 148437.
      [31]
      J.H. Wang, X.Z. Xu, T. Cheng, et al., Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS2 monolayer on vicinal a-plane sapphire, Nat. Nanotechnol., 17(2022), No. 1, p. 33.
      [32]
      H.X. Huang, J.J. Zha, S.S. Li, and C.L. Tan, Two-dimensional alloyed transition metal dichalcogenide nanosheets: Synthesis and applications, Chin. Chem. Lett., 33(2022), No. 1, p. 163. doi: 10.1016/j.cclet.2021.06.004
      [33]
      X.Y. Niu, Y. Yu, J.D. Yao, M.G. Li, J. Sha, and Y.W. Wang, Preparation of black phosphorus quantum dots and the surface decoration effect on the monolayer MoS2 photodetectors, Chem. Phys. Lett., 772(2021), art. No. 138571. doi: 10.1016/j.cplett.2021.138571
      [34]
      D.S. Schneider, A. Grundmann, A. Bablich, et al., Highly responsive flexible photodetectors based on MOVPE grown uniform few-layer MoS2, ACS Photonics, 7(2020), No. 6, p. 1388. doi: 10.1021/acsphotonics.0c00361
      [35]
      Y.H. Liu, M. Tang, S. Zhang, et al., U(VI) adsorption behavior onto polypyrrole coated 3R-MoS2 nanosheets prepared with the molten salt electrolysis method, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 479. doi: 10.1007/s12613-020-2154-5
      [36]
      X.A. Luo, Z.H. Peng, Z.G. Wang, and M.D. Dong, Layer-by-layer growth of AA-stacking MoS2 for tunable broadband phototransistors, ACS Appl. Mater. Interfaces, 13(2021), No. 49, p. 59154. doi: 10.1021/acsami.1c19906
      [37]
      S.W. Luo, C.P. Cullen, G.C. Guo, J.X. Zhong, and G.S. Duesberg, Investigation of growth-induced strain in monolayer MoS2 grown by chemical vapor deposition, Appl. Surf. Sci., 508(2020), art. No. 145126. doi: 10.1016/j.apsusc.2019.145126
      [38]
      R. Muñoz, E. López-Elvira, C. Munuera, et al., Direct growth of graphene-MoS2 heterostructure: Tailored interface for advanced devices, Appl. Surf. Sci., 581(2022), art. No. 151858. doi: 10.1016/j.apsusc.2021.151858
      [39]
      J.J. Zha, M.C. Luo, M. Ye, et al., Infrared photodetectors based on 2D materials and nanophotonics, Adv. Funct. Mater., 32(2022), No. 15, art. No. 2111970. doi: 10.1002/adfm.202111970
      [40]
      L.J. Bu, Y.M. Qiu, P. Wei, et al., Manipulating transistor operation via nonuniformly distributed charges in a polymer insulating electret layer, Phys. Rev. Applied, 6(2016), No. 5, art. No. 054022. doi: 10.1103/PhysRevApplied.6.054022
      [41]
      C.K. Zhu, I. Ahmed, A. Parsons, et al., Novel bioresorbable phosphate glass fiber textile composites for medical applications, Polym. Compos., 39(2018), No. S1, p. E140. doi: 10.1002/pc.24499
      [42]
      M.Z. Liao, Z. Wei, L.J. Du, et al., Precise control of the interlayer twist angle in large scale MoS2 homostructures, Nat. Commun., 11(2020), No. 1, art. No. 2153. doi: 10.1038/s41467-020-16056-4
      [43]
      L. Wang, X.Z. Li, C.J. Pei, et al., Single- and few-layer 2H-SnS2 and 4H-SnS2 nanosheets for high-performance photodetection, Chin. Chem. Lett., 33(2022), No. 5, p. 2611. doi: 10.1016/j.cclet.2021.09.094
      [44]
      M.S. Moghaddam, A. Bahari, and H.R. Litkohi, Using the synergistic effects of MoS2/rGO and bimetallic hybrids as a high-performance nanoelectrocatalyst for oxygen reduction reaction, Int. J. Hydrog. Energy, 48(2023), No. 85, p. 33139. doi: 10.1016/j.ijhydene.2023.05.070
      [45]
      M. Soleimani Moghaddam, A. Bahari, and H. Rajaei Litkohi, Designing and modeling fuel cells made of mixed transition metal dichalcogenide and carbon-based nanostructure electrodes for renewable energy storage, J. Power Sources, 604(2024), art. No. 234514. doi: 10.1016/j.jpowsour.2024.234514
      [46]
      L.T. Liu, L.G. Kong, Q.Y. Li, et al., Transferred van der Waals metal electrodes for sub-1-nm MoS2 vertical transistors, Nat. Electron., 4(2021), No. 5, p. 342. doi: 10.1038/s41928-021-00566-0
      [47]
      F. Wu, H. Tian, Y. Shen, et al., Vertical MoS2 transistors with sub-1-nm gate lengths, Nature, 603(2022), p. 259. doi: 10.1038/s41586-021-04323-3
      [48]
      K.L. Liu, X. Chen, P.L. Gong, et al., Approaching strain limit of two-dimensional MoS2 via chalcogenide substitution, Sci. Bull., 67(2022), No. 1, p. 45. doi: 10.1016/j.scib.2021.07.010
      [49]
      L.N. Liu, J.X. Wu, L.Y. Wu, et al., Phase-selective synthesis of 1T’ MoS2 monolayers and heterophase bilayers, Nat. Mater., 17(2018), No. 12, p. 1108. doi: 10.1038/s41563-018-0187-1
      [50]
      J.F. Jiang, Y. Zhang, A.Z. Wang, et al., Construction of high field-effect mobility multilayer MoS2 field-effect transistors with excellent stability through interface engineering, ACS Appl. Electron. Mater., 2(2020), No. 7, p. 2132. doi: 10.1021/acsaelm.0c00347
      [51]
      F. Li, R. Tao, B.L. Cao, L. Yang, and Z.G. Wang, Manipulating the light-matter interaction of PtS/MoS2 p–n junctions for high performance broadband photodetection, Adv. Funct. Mater., 31(2021), No. 36, art. No. 2104367. doi: 10.1002/adfm.202104367
      [52]
      Q. Wang, Q. Zhang, G.Y. Wang, Y.R. Wang, X.Y. Ren, and G.H. Gao, Muscle-inspired anisotropic hydrogel strain sensors, ACS Appl. Mater. Interfaces, 14(2022), No. 1, p. 1921. doi: 10.1021/acsami.1c18758
      [53]
      X.F. Zhang, L. Wei, L. Wang, J. Liu, and J. Xu, Gate length related transfer characteristics of GaN-based high electron mobility transistors, Appl. Phys. Lett., 102(2013), No. 11, art. No. 113501. doi: 10.1063/1.4795609
      [54]
      S.M. Shinde, G. Kalita, and M. Tanemura, Fabrication of poly(methyl methacrylate)-MoS2/graphene heterostructure for memory device application, J. Appl. Phys., 116(2014), No. 21, art. No. 214306. doi: 10.1063/1.4903552
      [55]
      W.Z. Bao, X.H. Cai, D. Kim, K. Sridhara, and M.S. Fuhrer, High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects, Appl. Phys. Lett., 102(2013), No. 4, art. No. 042104. doi: 10.1063/1.4789365

    Catalog


    • /

      返回文章
      返回