留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 12
Dec.  2024

图(7)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  865
  • HTML全文浏览量:  97
  • PDF下载量:  16
  • 被引次数: 0
Junping Shen, Chang Liu, Muhammad Dilawer Hayat, Jianan Chen, Hanqing Tian, Fusheng Xin, Gang Chen, Fei Yang, Mingli Qin, and Xuanhui Qu, Oxygen variation in titanium powder and metal injection molding, Int. J. Miner. Metall. Mater., 31(2024), No. 12, pp. 2706-2713. https://doi.org/10.1007/s12613-024-2970-0
Cite this article as:
Junping Shen, Chang Liu, Muhammad Dilawer Hayat, Jianan Chen, Hanqing Tian, Fusheng Xin, Gang Chen, Fei Yang, Mingli Qin, and Xuanhui Qu, Oxygen variation in titanium powder and metal injection molding, Int. J. Miner. Metall. Mater., 31(2024), No. 12, pp. 2706-2713. https://doi.org/10.1007/s12613-024-2970-0
引用本文 PDF XML SpringerLink
研究论文

氧含量在钛粉和金属注射成形中的变化


    * 共同第一作者
  • 通讯作者:

    陈刚    E-mail: gche098@ustb.edu.cn

文章亮点

  • (1) 氧化膜的厚度和成分导致了HDH钛粉的颜色变化。
  • (2) 在MIM过程中提出了一种通过氧化层厚度检测粉末氧化程度的新路线。
  • (3) 确定了MIM过程中氧含量增加的主要因素(烧结参数)。
  • 粉末冶金中氧含量的控制对于粉末冶金工艺(如金属注射成形(MIM))成形高性能钛(Ti)零件至关重要。由于Ti和Ti–6Al–4V是工业中最具代表性的钛材料,本研究选择了Ti和Ti–6Al–4V粉末作为原料。我们对氢化脱氢(HDH)钛粉进行预氧化处理,以研究氧含量变化与粉末颗粒表面氧化层之间的关系,并发现氧含量与颜色之间存在明显的相关性。结果表明,随着氧含量的增加,HDH钛粉末表面氧化层的厚度和钛的氧化物含量增加,导致颜色从灰色逐渐过渡到棕色和蓝色。本研究有助于在粉末冶金的初始阶段选择合适的粉末原料。此外,我们还全面研究了使用气雾化(GA)Ti–6Al–4V粉末在注射成形工艺过程中氧含量的变化,具体考察了捏合、注射、脱脂过程中粉末氧含量的变化,以及烧结后成形件氧含量的变化。结果表明,氧含量的变化主要发生在烧结阶段,且随着烧结温度的升高而增加。注射成形工艺中氧含量的变化进一步表明,粉末原料的选择和烧结参数的调控在控氧中具有决定性作用。本研究为粉末冶金钛及其合金工业中的氧含量控制提供了宝贵的参考。
  • Research Article

    Oxygen variation in titanium powder and metal injection molding

    + Author Affiliations
    • The control of oxygen is paramount in achieving high-performance titanium (Ti) parts by powder metallurgy such as metal injection molding (MIM). In this study, we purposely selected the Ti and Ti–6Al–4V powders as the reference materials since these two are the most representative Ti materials in the industry. Herein, hydride–dehydride (HDH) Ti powders were pre-oxidized to examine the effect of oxygen variation on the characteristics of oxide layer on the particle surface and its resultant color feature. The results indicate that the thickness and Ti oxide level (Ti0 → Ti4+) of the oxide layer on the HDH Ti powders increased as the oxygen content increased, leading to the transition of color appearance from grey, brown to blue. This work aids in the powder feedstock selection at the initial stage in powder metallurgy. In addition, the development of oxygen content was comprehensively studied during the MIM process using the gas-atomized (GA) Ti–6Al–4V powders. Particularly, the oxygen variation in the form of oxide layer, the change of oxygen content in the powders, and the relevant parts were investigated during the processes of kneading, injection, debinding, and sintering. The oxygen variation was mainly concentrated in the sintering stage, and the content increased with the increase of sintering temperature. The variation of oxygen content during the MIM process demonstrates the crucial role of powder feedstock and sintering stage in controlling oxygen content. This work provides a piece of valuable information on oxygen detecting, control, and manipulation for the powder and processing in the industry of Ti and its alloys by powder metallurgy.
    • loading
    • [1]
      W.S. Lee and C.F. Lin, Plastic deformation and fracture behaviour of Ti–6Al–4V alloy loaded with high strain rate under various temperatures, Mater. Sci. Eng. A, 241(1998), No. 1-2, p. 48. doi: 10.1016/S0921-5093(97)00471-1
      [2]
      X.W. Ji, P.T. Liu, J.C. Tang, et al., Different antibacterial mechanisms of titania nanotube arrays at various growth phases of E. coli, Trans. Nonferrous Met. Soc. China, 31(2021), No. 12, p. 3821. doi: 10.1016/S1003-6326(21)65767-9
      [3]
      J.P. Zheng, L.J. Chen, D.Y. Chen, C.S. Shao, M.F. Yi, and B. Zhang, Effects of pore size and porosity of surface-modified porous titanium implants on bone tissue ingrowth, Trans. Nonferrous Met. Soc. China, 29(2019), No. 12, p. 2534. doi: 10.1016/S1003-6326(19)65161-7
      [4]
      G.Z. Qiu and Y.F. Guo, Current situation and development trend of titanium metal industry in China, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 599. doi: 10.1007/s12613-022-2455-y
      [5]
      G.C. Obasi, O.M. Ferri, T. Ebel, and R. Bormann, Influence of processing parameters on mechanical properties of Ti–6Al–4V alloy fabricated by MIM, Mater. Sci. Eng. A, 527(2010), No. 16-17, p. 3929. doi: 10.1016/j.msea.2010.02.070
      [6]
      S. Sun, M. Brandt, and M.S. Dargusch, Characteristics of cutting forces and chip formation in machining of titanium alloys, Int. J. Mach. Tools Manuf., 49(2009), No. 7-8, p. 561. doi: 10.1016/j.ijmachtools.2009.02.008
      [7]
      Y. Gao, C. Zhang, J.Z. Zhang, and X. Lu, Microstructure evolution and strengthening mechanism of high-performance powder metallurgy TA15 titanium alloy by hot rolling, Int. J. Miner. Metall. Mater., 31(2024), No. 6, p. 1426. doi: 10.1007/s12613-023-2809-0
      [8]
      L. Lan, R.Y. Xin, X.Y. Jin, S. Gao and B. He, Influence of multiple laser shock peening treatments on the microstructure and mechanical properties of Ti–6Al–4V alloy fabricated by electron beam melting, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1780. doi: 10.1007/s12613-021-2322-2
      [9]
      F.H.S. Froes, Advances in titanium metal injection molding, Powder Metall. Met. Ceram., 46(2007), No. 5, p. 303.
      [10]
      R.M. German, Progress in titanium metal powder injection molding, Materials, 6(2013), No. 8, p. 3641. doi: 10.3390/ma6083641
      [11]
      A. Dehghan-Manshadi, M. Bermingham, M.S. Dargusch, D.H. StJohn, and M. Qian, Metal injection moulding of titanium and titanium alloys: Challenges and recent development, Powder Technol., 319(2017), p. 289. doi: 10.1016/j.powtec.2017.06.053
      [12]
      E. Ergül, H. Özkan Gülsoy, and V. Günay, Effect of sintering parameters on mechanical properties of injection moulded Ti–6Al–4V alloys, Powder Metall., 52(2009), No. 1, p. 65. doi: 10.1179/174329008X271691
      [13]
      L. Liu, X.D. Wang, X. Li, X.T. Qi, and X.H. Qu, Effects of size reduction on deformation, microstructure, and surface roughness of micro components for micro metal injection molding, Int. J. Miner. Metall. Mater., 24(2017), No. 9, p. 1021. doi: 10.1007/s12613-017-1491-5
      [14]
      S. Virdhian, T. Osada, H.G. Kang, F. Tsumori, and H. Miura, Evaluation and analysis of distortion of complex shaped Ti–6Al–4V compacts by metal injection molding process, Key Eng. Mater., 520(2012), p. 187. doi: 10.4028/www.scientific.net/KEM.520.187
      [15]
      Y.J. Liu, Y. Pan, J.Z. Sun, et al., Metal injection molding of high-performance Ti composite using hydride-dehydride (HDH) powder, J. Manuf. Process., 89(2023), p. 328. doi: 10.1016/j.jmapro.2023.01.064
      [16]
      X.M. Gan, S.F. Li, S.Y. Xiao, and Y.F. Yang, Integrated high-performance and accurate shaping technology of low-cost powder metallurgy titanium alloys: A comprehensive review, Int. J. Miner. Metall. Mater., 31(2024), No. 3, p. 413. doi: 10.1007/s12613-023-2774-7
      [17]
      H. Conrad, Effect of interstitial solutes on the strength and ductility of titanium, Prog. Mater. Sci., 26(1981), No. 2-4, p. 123. doi: 10.1016/0079-6425(81)90001-3
      [18]
      T. Ebel, O. Milagres Ferri, W. Limberg, M. Oehring, F. Pyczak, and F.P. Schimansky, Metal injection moulding of titanium and titanium-aluminides, Key Eng. Mater., 520(2012), p. 153. doi: 10.4028/www.scientific.net/KEM.520.153
      [19]
      H. Wang, Q. Chao, X.Y. Cui, et al., Introducing C phase in additively manufactured Ti–6Al–4V: A new oxygen-stabilized face-centred cubic solid solution with improved mechanical properties, Mater. Today, 61(2022), p. 11. doi: 10.1016/j.mattod.2022.10.026
      [20]
      M. Yan, M.S. Dargusch, T. Ebel, and M. Qian, A transmission electron microscopy and three-dimensional atom probe study of the oxygen-induced fine microstructural features in as-sintered Ti–6Al–4V and their impacts on ductility, Acta Mater., 68(2014), p. 196. doi: 10.1016/j.actamat.2014.01.015
      [21]
      A. Amherd Hidalgo, T. Ebel, R. Frykholm, E. Carreño-Morelli, and F. Pyczak, High-oxygen MIM Ti–6Al–7Nb: Microstructure, tensile and fatigue properties, Mater. Today Commun., 34(2023), art. No. 104982. doi: 10.1016/j.mtcomm.2022.104982
      [22]
      S. Banerjee and C.J. Joens, Sintering powder metal injection molded (MIM) titanium alloys: In vacuum or argon?, Key Eng. Mater., 704(2016), p. 113. doi: 10.4028/www.scientific.net/KEM.704.113
      [23]
      F.S. Xin, W.W. Ding, Q.Y. Tao, et al., Effect and evolution of oxide film in the HDH-Ti powder surface on densification behavior during sintering, Metall. Mater. Trans. A, 53(2022), No. 4, p. 1164. doi: 10.1007/s11661-022-06598-1
      [24]
      Q.Y. Tao, Z.W. Wang, G. Chen, et al., Selective laser melting of CP-Ti to overcome the low cost and high performance trade-off, Addit. Manuf., 34(2020), art. No. 101198.
      [25]
      Q.Y. Tao, W.W. Ding, G. Chen, X.H. Qu, and M.L. Qin, Towards an atomic-scale understanding of oxide film in the Ti powder surface, Scripta Mater., 210(2022), art. No. 114471. doi: 10.1016/j.scriptamat.2021.114471
      [26]
      W.W. Ding, Z.W. Wang, G. Chen, et al., Oxidation behavior of low-cost CP-Ti powders for additive manufacturing via fluidization, Corros. Sci., 178(2021), art. No. 109080. doi: 10.1016/j.corsci.2020.109080
      [27]
      E. Hryha, R. Shvab, M. Bram, M. Bitzer, and L. Nyborg, Surface chemical state of Ti powders and its alloys: Effect of storage conditions and alloy composition, Appl. Surf. Sci., 388(2016), p. 294. doi: 10.1016/j.apsusc.2016.01.046
      [28]
      S. Mendis, W. Xu, H.P. Tang, et al., Characteristics of oxide films on Ti–(10–75)Ta alloys and their corrosion performance in an aerated Hank’s balanced salt solution, Appl. Surf. Sci., 506(2020), art. No. 145013. doi: 10.1016/j.apsusc.2019.145013
      [29]
      M.C. Biesinger, L.W.M. Lau, A.R. Gerson, and R.S.C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn, Appl. Surf. Sci., 257(2010), No. 3, p. 887. doi: 10.1016/j.apsusc.2010.07.086
      [30]
      R. Williams, M. Bilton, N. Harrison, and P. Fox, The impact of oxidised powder particles on the microstructure and mechanical properties of Ti–6Al–4V processed by laser powder bed fusion, Addit. Manuf., 46(2021), art. No. 102181.
      [31]
      M.V. Diamanti, B. Del Curto, and M. Pedeferri, Interference colors of thin oxide layers on titanium, Color Res. Appl., 33(2008), No. 3, p. 221. doi: 10.1002/col.20403
      [32]
      M.H. Freeman, Optics, Elsevier, Amsterdam, 1990.
      [33]
      E.M. Assim, Optical constants of titanium monoxide TiO thin films, J. Alloys Compd., 465(2008), No. 1-2, p. 1. doi: 10.1016/j.jallcom.2007.10.059
      [34]
      M.M. Abdel-Aziz, I.S. Yahia, L.A. Wahab, M. Fadel, and M.A. Afifi, Determination and analysis of dispersive optical constant of TiO2 and Ti2O3 thin films, Appl. Surf. Sci., 252(2006), No. 23, p. 8163. doi: 10.1016/j.apsusc.2005.10.040
      [35]
      J.R. DeVore, Refractive indices of rutile and sphalerite, J. Opt. Soc. Am., 41(1951), No. 6, p. 416. doi: 10.1364/JOSA.41.000416
      [36]
      P.A. Lee, K.F. Stork, B.L. Maschhoff, K.W. Nebesny, and N.R. Armstrog, Oxide formation on Fe and Ti thin films and on Fe thin films modified with ultrathin layers of Ti, Surf. Interface Anal., 17(1991), No. 1, p. 48. doi: 10.1002/sia.740170112
      [37]
      I. Vaquila, M.C.G. Passeggi, and J. Ferrón, Temperature effects in the early stages of titanium oxidation, Appl. Surf. Sci., 93(1996), No. 3, p. 247. doi: 10.1016/0169-4332(95)00334-7
      [38]
      C. Jiménez, F. Garcia-Moreno, B. Pfretzschner, et al., Decomposition of TiH2 studied in situ by synchrotron X-ray and neutron diffraction, Acta Mater., 59(2011), No. 16, p. 6318. doi: 10.1016/j.actamat.2011.06.042
      [39]
      E.W. Lui, S. Palanisamy, M.S. Dargusch, and K. Xia, Oxide dissolution and oxygen diffusion in solid-state recycled Ti–6Al–4V: Numerical modeling, verification by nanoindentation, and effects on grain growth and recrystallization, Metall. Mater. Trans. A, 48(2017), No. 12, p. 5978. doi: 10.1007/s11661-017-4358-5
      [40]
      S. Arrhenius, Über die Reaktionsgeschwindigkeit bei der inversion von rohrzucker durch säuren, Z. Phys. Chem., 4U(1889), No. 1, p. 226. doi: 10.1515/zpch-1889-0416
      [41]
      Z. Liu and G. Welsch, Literature survey on diffusivities of oxygen, aluminum, and vanadium in alpha titanium, beta titanium, and in rutile, Metall. Trans. A, 19(1988), No. 4, p. 1121. doi: 10.1007/BF02628396

    Catalog


    • /

      返回文章
      返回