留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 11
Nov.  2024

图(6)

数据统计

分享

计量
  • 文章访问数:  1246
  • HTML全文浏览量:  101
  • PDF下载量:  20
  • 被引次数: 0
Yahong Zhang, Yi Zhang, Huimin Liu, Dan Li, Yibo Wang, Chunchao Xu, Yuping Tian, and Hongjie Meng, TiN/Fe2N/C composite with stable and broadband high-temperature microwave absorption, Int. J. Miner. Metall. Mater., 31(2024), No. 11, pp. 2508-2517. https://doi.org/10.1007/s12613-024-2972-y
Cite this article as:
Yahong Zhang, Yi Zhang, Huimin Liu, Dan Li, Yibo Wang, Chunchao Xu, Yuping Tian, and Hongjie Meng, TiN/Fe2N/C composite with stable and broadband high-temperature microwave absorption, Int. J. Miner. Metall. Mater., 31(2024), No. 11, pp. 2508-2517. https://doi.org/10.1007/s12613-024-2972-y
引用本文 PDF XML SpringerLink
研究论文

具有稳定且宽频高温微波吸收性能的TiN/Fe2N/C复合材料



  • 通讯作者:

    田玉平    E-mail: tianyuping@vip.henu.edu.cn

    孟红杰    E-mail: menghongjie@sjtu.edu.cn

文章亮点

  • (1) 采用静电纺丝技术和高温氮化工艺,制备了一系列一维TiN/Fe2N/C复合材料。
  • (2) 一维TiN/Fe2N/C纤维互相搭接,构建出丰富的导电网络,产生可观的导电损耗。
  • (3) 在稳定介电损耗和优异阻抗匹配的协同作用下,TiN/Fe2N/C复合材料表现出优异稳定的高温吸波性能。
  • 面对复杂多变的高温环境,电磁波吸波材料保持稳定高效的吸波性能是必不可少的。本文采用静电纺丝技术和随后的高温氮化工艺,制备了一系列TiN/Fe2N/C复合材料,并对高温吸波性能进行了详细的研究。在制备的复合材料中,TiN/Fe2N/C纤维互相搭接,构建了复杂且发达的导电网络,在电磁场中能够引起可观的导电损耗。与此同时,不同组分之间的非均质界面产生了显著的界面极化。此外,在氮化过程中产生的缺陷部位也会出现了偶极子极化现象。在稳定介电损耗和优异阻抗匹配的协同作用下,TiN/Fe2N/C复合材料在293~453 K的宽温度范围内表现出优异稳定的吸收性能,且在2.1 mm和373 K下,样品TiN/Fe2N/C-15的最小反射损耗高达−48.01 dB,有效吸收带宽可达3.64 GHz。这项工作为开发复杂多变高温条件下高效稳定的电磁波吸收材料提供了新的思路。
  • Research Article

    TiN/Fe2N/C composite with stable and broadband high-temperature microwave absorption

    + Author Affiliations
    • Facing the complex variable high-temperature environment, electromagnetic wave (EMW) absorbing materials maintaining high stability and satisfying absorbing properties is essential. This study focused on the synthesis and EMW absorbing performance evaluation of TiN/Fe2N/C composite materials, which were prepared using electrostatic spinning followed by a high-temperature nitridation process. The TiN/Fe2N/C fibers constructed a well-developed conductive network that generates considerable conduction loss. The heterogeneous interfaces between different components generated a significant level of interfacial polarization. Thanks to the synergistic effect of stable dielectric loss and optimized impedance matching, the TiN/Fe2N/C composite materials demonstrated excellent and stable absorption performance across a wide temperature range (293–453 K). Moreover, TiN/Fe2N/C-15 achieved a minimum reflection loss (RL) of −48.01 dB and an effective absorption bandwidth (EAB) of 3.64 GHz at 2.1 mm and 373 K. This work provides new insights into the development of high-efficiency and stabile EMW absorbing materials under complex variable high-temperature conditions.
    • loading
    • Supplementary Information-s12613-024-2972-y.docx
    • [1]
      J.X. Xiao, B.B. Zhan, M.K. He, et al., Interfacial polarization loss improvement induced by the hollow engineering of necklace-like PAN/carbon nanofibers for boosted microwave absorption, Adv. Funct. Mater., (2024), art. No. 2316722.
      [2]
      Y. Zhou, H.P. Wang, D. Wang, et al., Insight to the enhanced microwave absorption of porous N-doped carbon driven by ZIF-8: Competition between graphitization and porosity, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 474. doi: 10.1007/s12613-022-2499-z
      [3]
      Z.H. Zhao, Y.C. Qing, L. Kong, et al., Advancements in microwave absorption motivated by interdisciplinary research, Adv. Mater., 36(2024), No. 4, art. No. 2304182. doi: 10.1002/adma.202304182
      [4]
      F.Z. Mao, X.K. Fan, L. Long, Y. Li, H. Chen, and W. Zhou, Constructing 3D hierarchical CNTs/VO2 composite microspheres with superior electromagnetic absorption performance, Ceram. Int., 49(2023), No. 11, p. 16924. doi: 10.1016/j.ceramint.2023.02.054
      [5]
      P.F. Yin, D. Lan, C.F. Lu, et al., Research progress of structural regulation and composition optimization to strengthen absorbing mechanism in emerging composites for efficient electromagnetic protection, J. Mater. Sci. Technol., 204(2025), p. 204. doi: 10.1016/j.jmst.2024.04.007
      [6]
      P.B. Liu, Y.R. Li, H.X. Xu, et al., Hierarchical Fe-Co@TiO2 with incoherent heterointerfaces and gradient magnetic domains for electromagnetic wave absorption, ACS Nano, 18(2024), No. 1, p. 560. doi: 10.1021/acsnano.3c08569
      [7]
      L.G. Ren, Y.Q. Wang, X. Zhang, Q.C. He, and G.L. Wu, Efficient microwave absorption achieved through in situ construction of core-shell CoFe2O4@mesoporous carbon hollow spheres, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 504. doi: 10.1007/s12613-022-2509-1
      [8]
      Y.L. Wang, G.S. Wang, X.J. Zhang, and C. Gao, Porous carbon polyhedrons coupled with bimetallic CoNi alloys for frequency selective wave absorption at ultralow filler loading, J. Mater. Sci. Technol., 103(2022), p. 34. doi: 10.1016/j.jmst.2021.06.021
      [9]
      H.X. Si, Y. Zhang, Y.H. Liu, et al., Structural design in reduced graphene oxide (RGO) metacomposites for enhanced microwave absorption in wide temperature spectrum, J. Mater. Sci. Technol., 206(2025), p. 211. doi: 10.1016/j.jmst.2024.04.011
      [10]
      H.Y. Wang, X.B. Sun, S.H. Yang, et al., 3D ultralight hollow NiCo compound@MXene composites for tunable and high-efficient microwave absorption, Nano Micro Lett, 13(2021), No. 1, art. No. 206. doi: 10.1007/s40820-021-00727-y
      [11]
      Z.J. Li, L.M. Zhang, and H.J. Wu, A regulable polyporous graphite/melamine foam for heat conduction, sound absorption and electromagnetic wave absorption, Small, 20(2024), No. 11, art. No. 2305120. doi: 10.1002/smll.202305120
      [12]
      N.X. Zhai, J.H. Luo, M.W. Xiao, Y.C. Zhang, W.X. Yan, and Y. Xu, In situ construction of Co@nitrogen-doped carbon/Ni nanocomposite for broadband electromagnetic wave absorption, Carbon, 203(2023), p. 416. doi: 10.1016/j.carbon.2022.12.004
      [13]
      G. Chen, H.S. Liang, J.J. Yun, L.M. Zhang, H.J. Wu, and J.Y. Wang, Ultrasonic field induces better crystallinity and abundant defects at grain boundaries to develop CuS electromagnetic wave absorber, Adv. Mater., 35(2023), No. 49, art. No. 2305586. doi: 10.1002/adma.202305586
      [14]
      S. Zhang, X.H. Liu, C.Y. Jia, et al., Integration of multiple heterointerfaces in a hierarchical 0D@2D@1D structure for lightweight, flexible, and hydrophobic multifunctional electromagnetic protective fabrics, Nano Micro Lett., 15(2023), No. 1, art. No. 204. doi: 10.1007/s40820-023-01179-2
      [15]
      N.X. Zhai, J.H. Luo, J. Mei, et al., Interface engineering of heterogeneous NiSe2-CoSe2@C@MoSe2 for high-efficient electromagnetic wave absorption, Adv. Funct. Mater., 34(2024), No. 9, art. No. 2312237. doi: 10.1002/adfm.202312237
      [16]
      H. Tanaka, K. Nakamura, and O. Ichinokura, Accuracy improvement of magnetic hysteresis calculated by LLG equation, J. Phys. Conf. Ser., 903(2017), art. No. 012048. doi: 10.1088/1742-6596/903/1/012048
      [17]
      X. Yang, Y.P. Duan, S.Q. Li, et al., Constructing three-dimensional reticulated carbonyl iron/carbon foam composites to achieve temperature-stable broadband microwave absorption performance, Carbon, 188(2022), p. 376. doi: 10.1016/j.carbon.2021.12.044
      [18]
      M.S. Cao, X.X. Wang, W.Q. Cao, X.Y. Fang, B. Wen, and J. Yuan, Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion, Small, 14(2018), No. 29, art. No. 1800987. doi: 10.1002/smll.201800987
      [19]
      Z.Y. Jiang, H.X. Si, Y. Li, et al., Reduced graphene oxide@carbon sphere based metacomposites for temperature-insensitive and efficient microwave absorption, Nano Res., 15(2022), No. 9, p. 8546. doi: 10.1007/s12274-022-4674-y
      [20]
      C. Li, D. Li, S. Zhang, et al., Interface engineering of titanium nitride nanotube composites for excellent microwave absorption at elevated temperature, Nano Micro Lett, 16(2024), No. 1, art. No. 168. doi: 10.1007/s40820-024-01381-w
      [21]
      Q.Y. Wang, X.F. Wu, J. Huang, et al., Enhanced microwave absorption of biomass carbon/nickel/polypyrrole (C/Ni/PPy) ternary composites through the synergistic effects, J. Alloys Compd., 890(2022), art. No. 161887. doi: 10.1016/j.jallcom.2021.161887
      [22]
      G. Wang, C.F. Li, D. Estevez, et al., Boosting interfacial polarization through heterointerface engineering in MXene/graphene intercalated-based microspheres for electromagnetic wave absorption, Nano Micro Lett., 15(2023), No. 1, art. No. 152. doi: 10.1007/s40820-023-01123-4
      [23]
      H.X. Xu, Z.Z. He, Y.R. Wang, X.R. Ren, and P.B. Liu, Metal–phenolic coordination crystals derived magnetic hollow carbon spheres for ultrahigh electromagnetic wave absorption, Nano Res., 17(2024), No. 3, p. 1616. doi: 10.1007/s12274-023-6132-x
      [24]
      Q. Jiang, Y. Qiao, A. Uddin, F.X. Qin, L. Chen, and L.W. Wu, Tailoring electromagnetic response of three-dimensional waffle-like metacomposite based on arrangement angle of ferromagnetic microwires, Composites Part B, 247(2022), art. No. 110298. doi: 10.1016/j.compositesb.2022.110298
      [25]
      Z.X. Hou, J.M. Xue, Y.Q. Liu, et al., Bidirectional periodic pore structure Si-C-N multiphase ceramic with high thermostability and excellent microwave absorption properties over a wide temperature range, J. Eur. Ceram. Soc., 44(2024), No. 2, p. 850. doi: 10.1016/j.jeurceramsoc.2023.09.085
      [26]
      Z.Y. Jiang, Y.J. Gao, Z.H. Pan, et al., Pomegranate-like ATO/SiO2 microspheres for efficient microwave absorption in wide temperature spectrum, J. Mater. Sci. Technol., 174(2024), p. 195. doi: 10.1016/j.jmst.2023.08.013
      [27]
      N.P. Zhou, L. Zhang, W.Q. Wang, et al., Stereolithographically 3D printed SiC metastructure for ultrabroadband and high temperature microwave absorption, Adv. Mater. Technol., 8(2023), No. 4, art. No. 2201222. doi: 10.1002/admt.202201222
      [28]
      L.L. Song, X.Q. Wang, Y.P. Duan, Y.Q. Wang, Z.Y. Huang, and W.Z. Xia, Designing high-performance microwave absorption materials through co-doping strategy: Experimental and theoretical insights, Mater. Res. Bull., 173(2024), art. No. 112679. doi: 10.1016/j.materresbull.2024.112679
      [29]
      H.T. Guan, Q.Y. Wang, X.F. Wu, et al., Biomass derived porous carbon (BPC) and their composites as lightweight and efficient microwave absorption materials, Composites Part B, 207(2021), art. No. 108562. doi: 10.1016/j.compositesb.2020.108562
      [30]
      H.H. Zhu, G. Qin, W. Zhou, Y. Li, and X.B. Zhou, Constructing flake-like ternary rare earth Pr3Si2C2 ceramic on SiC whiskers to enhance electromagnetic wave absorption properties, Ceram. Int., 50(2024), No. 1, p. 134. doi: 10.1016/j.ceramint.2023.10.050
      [31]
      Y.P. Shi, D. Li, H.X. Si, Z.Y. Jiang, M.Y. Li, and C.H. Gong, TiN/BN composite with excellent thermal stability for efficiency microwave absorption in wide temperature spectrum, J. Mater. Sci. Technol., 130(2022), p. 249. doi: 10.1016/j.jmst.2022.04.050
      [32]
      Y. Zhang, M.Y. Li, D. Li, et al., TiN-based materials for multispectral electromagnetic wave absorption, J. Electron. Mater., 52(2023), No. 6, p. 3549. doi: 10.1007/s11664-023-10280-6
      [33]
      Y.P. Shi, D. Li, H.X. Si, Y.P. Duan, C.H. Gong, and J.W. Zhang, TiN/Fe2Ni2N/SiO2 composites for magnetic-dielectric balance to facilitate temperature-stable broadband microwave absorption, J. Alloys Compd., 918(2022), art. No. 165603. doi: 10.1016/j.jallcom.2022.165603
      [34]
      C.P. Li, D. Li, L. Zhang, et al., Boosted microwave absorption performance of transition metal doped TiN fibers at elevated temperature, Nano Res., 16(2023), No. 2, p. 3570.
      [35]
      R. Liu, N. Lun, Y.X. Qi, et al., Microwave absorption properties of TiN nanoparticles, J. Alloys Compd., 509(2011), No. 41, p. 10032. doi: 10.1016/j.jallcom.2011.08.022
      [36]
      Y. Cui, C.J. Li, R.K. Li, et al., Effect of synthesis temperatures on the composition, microstructure, and microwave absorption properties of titanium nitride porous nanofibers prepared using ammonia reduction nitridation process, J. Mater. Sci. Mater. Electron., 34(2023), No. 12, art. No. 1036. doi: 10.1007/s10854-023-10471-1
      [37]
      Y.H. Zhang, H.J. Meng, Y.P. Shi, et al., TiN/Ni/C ternary composites with expanded heterogeneous interfaces for efficient microwave absorption, Composites Part B, 193(2020), art. No. 108028. doi: 10.1016/j.compositesb.2020.108028
      [38]
      C.P. Li, L. Zhang, S. Zhang, et al., Flexible regulation engineering of titanium nitride nanofibrous membranes for efficient electromagnetic microwave absorption in wide temperature spectrum, Nano Res., 17(2024), No. 3, p. 1666. doi: 10.1007/s12274-023-6350-2
      [39]
      X. Zhang, X.L. Tian, N. Wu, et al., Metal-organic frameworks with fine-tuned interlayer spacing for microwave absorption, Sci. Adv., 10(2024), No. 11, art. No. eadl6498. doi: 10.1126/sciadv.adl6498
      [40]
      X. Zhang, X.L. Tian, Y.T. Qin, et al., Conductive metal–organic frameworks with tunable dielectric properties for boosting electromagnetic wave absorption, ACS Nano, 17(2023), No. 13, p. 12510. doi: 10.1021/acsnano.3c02170
      [41]
      M.Y. Gong, J. Gao, D.P. Shen, P. Li, W.P. Tong, and C.Z. Liu, Electromagnetic wave absorption properties in Ku-band of magnetic iron nitrides prepared by high energy ball milling, J. Magn. Magn. Mater., 514(2020), art. No. 167246. doi: 10.1016/j.jmmm.2020.167246
      [42]
      X.Q. Cui, X.H. Liang, W. Liu, W.H. Gu, G.B. Ji, and Y.W. Du, Stable microwave absorber derived from 1D customized heterogeneous structures of Fe3N@C, Chem. Eng. J., 381(2020), art. No. 122589. doi: 10.1016/j.cej.2019.122589
      [43]
      Y. Zhai, D.M. Zhu, S.C. Duan, and F. Luo, Novel Fe3–4N@FCI particles with improved microwave absorption and antioxidation properties prepared by surface nitridation method, Chem. Phys. Lett., 755(2020), art. No. 137803. doi: 10.1016/j.cplett.2020.137803
      [44]
      R.R. Ding, J.Z. Zhang, J. Zhang, Z.H. Li, C.Y. Wang, and M.M. Chen, Core-shell Fe2N@amorphous carbon nanocomposite-filled 3D graphene framework: An additive-free anode material for lithium-ion batteries, Chem. Eng. J., 360(2019), p. 1063. doi: 10.1016/j.cej.2018.10.177
      [45]
      X.X. Huang, Z.Y. Yang, B. Dong, Y.Z. Wang, T.Y. Tang, and Y.L. Hou, In situ Fe2N@N-doped porous carbon hybrids as superior catalysts for oxygen reduction reaction, Nanoscale, 9(2017), No. 24, p. 8102. doi: 10.1039/C7NR00988G
      [46]
      X.Q. Cui, X.H. Liang, J.B. Chen, W.H. Gu, G.B. Ji, and Y.W. Du, Customized unique core-shell Fe2N@N-doped carbon with tunable void space for microwave response, Carbon, 156(2020), p. 49. doi: 10.1016/j.carbon.2019.09.041
      [47]
      C.X. Wang, Y. Liu, Z.R. Jia, W.R. Zhao, and G.L. Wu, Multicomponent nanoparticles synergistic one-dimensional nanofibers as heterostructure absorbers for tunable and efficient microwave absorption, Nano Micro Lett, 15(2022), No. 1, art. No. 13.
      [48]
      Y. Wei, Y.P. Shi, X.F. Zhang, et al., Electrospinning of lightweight TiN fibers with superior microwave absorption, J. Mater. Sci. Mater. Electron., 30(2019), No. 15, p. 14519. doi: 10.1007/s10854-019-01823-x
      [49]
      Y.W. Lou, J.J. Liu, M. Liu, and F. Wang, Hexagonal Fe2N coupled with N-doped carbon: Crystal-plane-dependent electrocatalytic activity for oxygen reduction, ACS Catal., 10(2020), No. 4, p. 2443. doi: 10.1021/acscatal.9b03716
      [50]
      F. Wu, Z.H. Liu, T. Xiu, et al., Fabrication of ultralight helical porous carbon fibers with CNTs-confined Ni nanoparticles for enhanced microwave absorption, Composites Part B, 215(2021), art. No. 108814. doi: 10.1016/j.compositesb.2021.108814
      [51]
      L.L. Xiang, A.K. Darboe, Z.H. Luo, et al., Constructing two-dimensional/two-dimensional reduced graphene oxide/MoX2 (X = Se and S) van der Waals heterojunctions: A combined composition modulation and interface engineering strategy for microwave absorption, Adv. Compos. Hybrid Mater., 6(2023), No. 6, art. No. 215. doi: 10.1007/s42114-023-00793-3
      [52]
      M. Zhou, J.W. Wang, S.J. Tan, and G.B. Ji, Top-down construction strategy toward sustainable cellulose composite paper with tunable electromagnetic interference shielding, Mater. Today Phys., 31(2023), art. No. 100962. doi: 10.1016/j.mtphys.2022.100962
      [53]
      Q. Su, H.Q. Wang, Y.F. He, D.D. Liu, X.X. Huang, and B. Zhong, Preparation of CIP@TiO2 composite with broadband electromagnetic wave absorption properties, Int. J. Miner. Metall. Mater., 31(2024), No. 1, p. 197. doi: 10.1007/s12613-023-2707-5
      [54]
      B.B. Zhan, Y.L. Hao, X.S. Qi, et al., Multifunctional cellular carbon foams derived from chitosan toward self-cleaning, thermal insulation, and highly efficient microwave absorption properties, Nano Res., 17(2024), No. 3, p. 927. doi: 10.1007/s12274-023-6236-7
      [55]
      H.R. Yuan, B. Li, C.L. Zhu, Y. Xie, Y.J. Jiang, and Y.J. Chen, Dielectric behavior of single iron atoms dispersed on nitrogen-doped nanocarbon, Appl. Phys. Lett., 116(2020), No. 15, art. No. 153101. doi: 10.1063/1.5143154
      [56]
      J.X. Xiao, B.B. Zhan, X.S. Qi, et al., Metal valence state modulation strategy to design core@shell hollow carbon microspheres@MoSe2/MoOx multicomponent composites for anti-corrosion and microwave absorption, Small, (2024), art. No. 2311312.
      [57]
      J.H. Wen, D. Lan, Y.Q. Wang, et al., Absorption properties and mechanism of lightweight and broadband electromagnetic wave-absorbing porous carbon by the swelling treatment, Int. J. Miner. Metall. Mater., 31(2024), No. 7, p. 1701. doi: 10.1007/s12613-024-2881-0
      [58]
      X. Zhong, M.K. He, C.Y. Zhang, Y.Q. Guo, J.W. Hu, and J.W. Gu, Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band, Adv. Funct. Mater., 34(2024), No. 19, art. No. 2313544. doi: 10.1002/adfm.202313544
      [59]
      Q.Q. Huang, Y. Zhao, Y. Wu, et al., A dual-band transceiver with excellent heat insulation property for microwave absorption and low infrared emissivity compatibility, Chem. Eng. J., 446(2022), art. No. 137279. doi: 10.1016/j.cej.2022.137279
      [60]
      M.K. He, J.W. Hu, H. Yan, et al., Shape anisotropic chain‐like CoNi/polydimethylsiloxane composite films with excellent low‐frequency microwave absorption and high thermal conductivity, Adv. Funct. Mater., (2024), art. No. 2316691.
      [61]
      Q.Q. Liang, L. Wang, X.S. Qi, et al., Hierarchical engineering of CoNi@Air@C/SiO2@Polypyrrole multicomponent nanocubes to improve the dielectric loss capability and magnetic-dielectric synergy, J. Mater. Sci. Technol., 147(2023), p. 37. doi: 10.1016/j.jmst.2022.10.069
      [62]
      B.L. Wang, Q. Wu, Y.G. Fu, and T. Liu, Yolk-shell structured Co@SiO2@Void@C nanocomposite with tunable cavity prepared by etching of SiO2 as high-efficiency microwave absorber, J. Colloid Interface Sci., 594(2021), p. 342. doi: 10.1016/j.jcis.2021.03.011

    Catalog


    • /

      返回文章
      返回